Slika 1: Hitrost razširjanja motnje v napeti vrvi
|
|
- Σωτηρία Αντωνοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 1 F n F vdt cdt Slika 1: Hitrost razširjanja motnje v napeti vrvi F Valovanje Mehansko valovanje Naštejmo nekaj vrst mehanskih valovanj: valovanje vzdolž napete vrvi ali žice, valovanje na vodni površini, zvočno valovanje, potresni valovi, itd. Našteta valovanja se razlikujejo v tem, da se razširjajo v eni, dveh ali treh razsežnostih in da nihajo delci snovi vzdolž ali pravokotno na smer razširjanja valovanja. V prvem primeru govorimo o vzdolžnem ali longitudinalnem valovanju, v drugem primeru pa o prečnem ali transverzalnem valovanju. Hitrost potovanja motnje Po strunah, žicah in vrveh se razširja transverzalno valovanje. Poglejmo, s kakšno hitrostjo se razširja po vodoravni vrvi, ki je napeta s silo F, če zmotimo vrv tako, da jo dvigamo na enem od koncev s hitrostjo v. Celotna vrv se ne bo odzvala v trenutku na dviganje konca vrvi, ampak bo koleno med poševnino in nezmotenim vodoravnim delom potovalo z enakomerno hitrostjo c vzdolž vrvi. Za določitev hitrosti potovanja motnje uporabimo izrek o ohranitvi gibalne količine, ki pravi, da je sunek sile v smeri navzgor enak spremembi gibalne količine tistega dela vrvi, ki jo je že dosegla motnja F n dt = µcdtv. ( ) F n je navpična sila, s katero dvigujemo vrv, µ je masa na dolžinsko enoto in cdt je dolžina tistega dela vrvi, ki ga je dosegla motnja. Če hočemo določiti hitrost razširjanja motnje, upoštevamo podobnost dveh trikonikov: trikotnik sil s katetama F n in F ter trikotnik hitrosti s katetama v in c. Zapis podobnosti nam da F n /F = v/c (sl. 1). Ko postavimo to razmerje v enačbo (*), dobimo c = F/µ. (M87) To je hitrost razširjanja motnje vzdolž vrvi in je istočasno enako tudi hitrosti razširjanja valovanja vzdolž vrvi. Na podoben način določimo tudi hitrost razširjanja motnje v elastičnem sredstvu, za katero velja Hookov zakon. Dolgo palico s presekom S zmotimo z vzdolžnim udarcem na enem koncu, tako da začne čelo palice lesti navznoter s hitrostjo v, meja med deformiranim in nedeformiranim delom palice pa se pomika naprej s hitrostjo, ki ji pravimo hitrost razširjanja motnje, in jo zopet označimo s c. Za tako deformirano krajišče palice zapišemo Hookov zakon (sl. 2) v obliki F/S = Evdt/(cdt). Zakon o ohranitvi gibalne količine pa se zapiše v obliki Fdt = ρscdtv. Ko iz sistema enačb eliminiramo spremenljivki F in v, dobimo za c rešitev c = E/ρ. (M88) Na podoben način dobimo tudi hitrost razširjanja transverzalne motnje motnje c = G/ρ, (M89)
2 Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 2 vdt F S cdt Slika 2: Razširjanje motnje skozi elastično sredstvo za tekočine pa dobimo hitrost razširjanja longitudinalne motnje v obliki c = 1/ χρ. (M90) kjer je χ stisljivost tekočine. Stisljivost idealnih plinov, med katere se uvršča tudi zrak, je χ = 1/(κp). Za dvoatomne pline velja κ = 1.4, tako da dobimo za hitrost razširjanja zvoka vrednost c = 340m/s. Sinusno valovanje v eni razsežnosti Valovanje, ki se razširja vzdolž vrvi v pozitivni smeri koordinate x, zapišemo v obliki y = y 0 cos(ωt kx + δ). (M91) V tem izrazu je y 0 višina vala (bolj natančno: polovična višinska razlika med najvišjo in najnižjo točko valovanja), ω je krožna frekvenca nihanja delcev vrvi, k je valovni vektor (k = 2π/λ) in δ je poljuben fazni kot. Do izraza za zapis valovanja pridemo na ta način, da smiselno strnemo zapis za gibanje posameznih delcev vrvi, ki sinusno nihajo y = y 0 cos(ωt + δ t ) in zapis za obliko sinusnega vala y = y 0 cos(2πx/λ + δ x ) in da upoštevamo, da je valovanje pojav, pri katerem nespremenjena sinusna oblika vala potuje naprej s hitrostjo c. Od tod sledi tudi pomembna zveza med frekvenco ν = ω/(2π), valovno dolžino λ in hitrostjo razširjanja valovanja c = λν. (M92) Za valovanje, ki se razširja v negativni smeri osi x, nastopa v (M91) pred produktom kx pozitiven znak. Odboj valovanja Valovanje se na meji dveh sredstev (na primer na stiku dveh različno napetih vrvi) delno odbije, tako da ga del potuje naprej, del pa se vrača. Še bolj očiten je odboj na koncu sredstva - na primer na koncu pritrjene ali proste vrvi ali na robu bazena. Obstojata dve vrsti odboja: z isto in z nasprotno fazo. Odboj z isto fazo je takšen, pri katerem ima odbito valovanje nasprotno smer razširjanja in enako smer odmikov, pri odboju z nasprotno fazo pa se pojavijo doline, kjer bi pričakovali vrhove in obratno (sl. 3). Stoječe valovanje Dva vala, ki potujeta v nasprotnih smereh, se seštejeta v stoječ val. O tem se prepričamo,
3 Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 3 c c c c Slika 3: Odboj motnje z enako in z nasprotno fazo Slika 4: Stoječi valovi na struni če seštejemo dva izraza oblike (M91) z različnima znakoma pred členom kx v argumentu kosinusove funkcije. Uporabimo trigonometrijsko formulo, s katero pretvorimo vsoto dveh kosinusov v njun produkt in dobimo y = 2y 0 cos(kx)cos(ωt). (M93) Stojna valovanja opažamo v vodnih bazenih, pri strunah in v piščalih. Zvočila, strune, piščali Piščalim in glasbenim instrumentom na strune lahko napovemo frekvenco zvoka, ki ga bodo oddajali. Strune, ki so vpete na obeh krajiščih, valujejo tako, da valovi vzdolž strune ne tečejo, ampak stojijo na mestu, delci strune pa sinusno nihajo, tako da je njihova amplituda v odvisnosti od spremenljivke x, ki teče vzdolž strune, podana s prvim faktorjem v obliki kosinusove funkcije v enačbi (M93). Enačba c = λν določa frekvenco tona, ki jo oddaja struna: ν N = Nc/(2l) (M94) (sl. 4). Podoben izraz dobimo tudi za piščali, vendar je rezultat odvisen od tega, kako je piščal izdelana. Na koncu je piščal lahko odprta ali zaprta in je tam vozel ali hrbet valovanja, pri ustju pa je spet lahko vozel ali hrbet, tako da je raznolikost višin tonov pri piščalih velika. Interferenca valovanja
4 Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 4 Slika 5: Odboj valovanja Dve valovanji, ki se na eni sami vrvi srečata, ali se naložita drugo na drugo v primeru, ko ko se dve vrvi nadaljujeta v tretjo vrv, seštejemo tako, da seštejemo izraza za njuna zapisa. Omenimo le tri primere: a) dve valovanji, ki potujeta v isti smeri in imata enako amplitudo in valovno dolžino, se bosta ojačali, kadar se vrhovi in doline srečajo in se seštejejo. To se zgodi, kadar se fazi obeh valovanj razlikujeta za cel mnogokratnik števila 2π. b) Kadar razlika faz znantno odstopa od mnogokratnika števila 2π, je valovanje, ki izhaja kot vsota dveh valovanj, oslabljeno. V posebnem primeru, ko je razlika faz zelo blizu lihemu nogokratniku števila π, se valovanji uničita. c) Dve valovanji z enako valovno dolžino in amplitudo, ki potujeta v nasprotnih smereh, se seštejeta v stoječe valovanje, kot smo videli zgoraj. Primer takšnega valovanja je nihanje strun na glasbenih inštrumentih. Valovanje v dveh in treh razsežnostih Pri odboju ravninskega valovanja, ali valovanja, ki se razširja v trirazsežnem prostoru, moramo povedati tudi, v kateri smeri se bo razširjalo odbito valovanje. Odbojni zakon določa, da se odbito valovanje razširja v takšni smeri, da je odbojni kot enak vpadnemu kotu. Kota merimo glede na pravokotnico na mejo med sredstvoma, ki povzroča odboj. Glej sliko 6! Interferenca na mrežici je pojav, ki ga opazimo, kadar pada valovanje na ravninsko prepreko, ki je oblikovana tako, da prepušča valovanje le vzdolž ravnih vzporednih rež, ki so razmaknjene za razdaljo d. Na drugi strani te prepreke se bodo prepuščeni deli valovanja ojačali le v smereh, kjer bo razlika med njihovimi potmi cel mnogokratnik valovne dolžine. Če pade valovanje pravokotno na ravnini z režami, je razlika poti med prispevkoma, ki gresta skozi dve sosednji reži, enaka dsin, kjer je kot med izbrano smerjo in pravokotnico na ravnino rež. Pogoj za ojačanje se torej zapiše dsin = Nλ. (M95) Pogoj za ojačanje je vedno izpolnjen v smeri naravnost naprej za = 0, dodatna ojačanja pa dobimo samo v primeru, da velja d > λ. Glej sliko 5!
5 Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 5 λ d d sin Slika 6: Interferenca na mrežici Slika 7: Uklon valovanja Uklon valovanja, Huyghensovo načelo Valovanje se ne razširja od izvira samo naravnost naprej ampak tudi v področje sence. Pravimo, da se na ovirah valovanje uklanja. Ta pojav pojasnimo s Huyghensovim načelom, ki pravi, da je vsaka točka valovanja izvor novega valovanja. Huyghensovo načelo daje torej poudarjeno veljavo krožnim valovom v dveh razsežnostih in krogelnim valovom v treh razsežnostih. Ravni valovi so v luči tega načela le seštevek prej omenjenih valov. Ko pa ravni valovi zadanejo na oviro, kot je na primer zgoraj omenjena uklonska mrežica, se izkaže, da so pri napovedi nadaljnjega razširjanja krožni in kroglasti valovi res pravšnji gradbeni elementi. Glej sliko 7! Energija valovanja in jakost zvoka Delci sredstva, vzdolž katerega se razširja valovanje, nihajo, z nihanjem pa sta povezani kinetična in njej komplementarna prožnostna ali potencialna energija. Ko valovanje potuje,
6 Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 6 s w ct Slika 8: K izpeljavi godtote energijskega toka valovanja nosi s seboj energijo. Energijski tok skozi neko ploskev S, ki je postavljena pravokotno glede na smer razširjanja valovanja, lahko zapišemo kot produkt volumske gostote energije valovanja in hitrosti razširjanja valovanja: P = Swc. Ta zapis je rezultat premisleka, da preteče skozi ploskev S v času t vsa energija, ki je znotraj prizme z osnovnico S in višino ct. Ploskovno gostoto energijskega toka pa dobimo, če energijski tok P delimo z velikostjo ploskve S, torej j = wc (M96) (sl.8). Preostane nam še, da povemo kaj o gostoti energije sredstva, ki valuje. Glede kinetične energije je odgovor enostaven, saj lahko uporabimo kar izraz za energijo nihanja in ga delimo s prostornino ter dobimo w kin = ρω 2 y0 2 /4. V tem izrazu je ω krožna frekvenca nihanja delcev sredstva, ki valuje ω = 2πc/λ, y 0 pa je amplituda odmikov sredstva od ravnovesne lege. Faktor 1/4 v izrazu za w kin je produkt faktorja 1/2, ki izhaja iz izraza za kinetično energijo in še enega enakega faktorja, ki je rezultat povprečenja po kosinusovi ali sinusovi funkciji, s katero izražamo odmik v odvisnosti od kraja in časa. Celotna gostota energijskega toka je seštevek kinetičnega prispevka in njegovega komplementa, ki je pri večini valovanj elastična energija. Tako kot smo videli pri nihanju, je tudi pri valovanju v povprečju prispevek kinetične energije enak prispevku elastične energije, tako da je končni izraz za gostoto energijskega toka enak j = 2ρc 3 π 2 y 2 0/λ 2. (M97) Najnižja vrednost gostote energijskega toka, ki jo človeško uho še zazna je enaka j 0 = W/m 2. Glasnost nekega oddajnika zvoka je desetkratnik desetiškega logaritma razmerja med dejansko in najšibkejšo še zaznavno gostoto energijskega toka: glasnost = 10 log(j/j 0 ), (M98) kjer je j 0 ravnokar omenjena vrednost W/m 2. Enota za glasnost je decibel ali fon. Razpon glasnosti je od nič fonov, ko ima gostota energijskega toka vrednost j 0 do 120 fonov, ko postane zaznavanje zvoka boleče (hrup reakcijskega motorja v neposredni bližini.)
7 Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 7 ct vt Slika 9: Machov stožec Pri večjih gostotah energijskega toka nima več smisla količinsko določati glasnosti. Glasnost človeškega govora v neposredni bližini govorca je 50 do 60 fonov. Gostota energijskegas toka točkovnega izvora valovanja, ki oddaja valovanje v vse smeri enakomerno, pada s kavadratom oddaljenosti od izvora, saj lahko zapišemo j(r) = P/(4πr 2 ). (M99) Z logaritmiranjem tega izraza dobimo odvisnost glasnosti od razdalje od zvočila. Enačba (M97) je uporabna tudi za napovedovanje gostote energijskega toka potresnega valovanja. Dopplerjev pojav Če se zvočilo, ali izvor kakšne druge vrste valovanja giblje, bodo valovne fronte v smeri gibanja izvora gostejše, kot pri valovanju, ki se razširja v nasprotni smeri od smeri gibanja zvočila. Tako bo sprejemnik valovanja zaznal v prvem primeru višjo, v drugem primeru pa nižjo frekvenco. Račun zvišanja, oziroma znižanja frekvence poteka tako, da zapišemo enačbo, ki pravi, da je v času enega nihaja izvora valovanja (T = 1/ν) pretečena pot izvora (vt) in pretečena pot valovanja (ct) enaka valovni dolžini, ki jo izmeri mirujoč opazovalec: v/ν + c/ν = λ,. Tudi za valovanje s spremenjeno valovno dolžino velja zveza c = λ, ν, in tako dobimo ν, = ν/(1 v/c). (M100) Na podoben način, kot za primer gibajočega se oddajnika in mirujočega sprejemnika, dobimo tudi izraz za spremenjeno frekvenco v primeru gibajočega se sprejemnika in mirujočega oddajnika valovanja: ν, = ν(1 + v/c). (M1) Če je hitrost približevanja izvora valovanja mirujočemu sprejemniku večja od hitrosti razširjanja valovanja, bo odddajnik prej dosegel sprejemnika, kot valovanje, ki ga oddaja. V takem primeru pravkar zapisane enačbe ne moremo uporabiti. Valovanje okrog gibajočega se sprejemnika bo napolnjevalo stožec (pravimo mu Machov stožec - sl. 9), katerega polovični kot pri vrhu je podan z enačbo sin = c/v. (M102)
11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune
11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραVALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA
VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραZVOK UVOD HITROST ZVOKA V SNOVI JAKOST IN GLASNOST ZVOKA DOPPLERJEV POJAV MACHOV STOŽEC UVOD
ZVOK 11.1. UVOD 11.2. HITROST ZVOKA V SNOVI 11.3. JAKOST IN GLASNOST ZVOKA 11.4. DOPPLERJEV POJAV 11.5. MACHOV STOŽEC 11.1. UVOD Zvok je longitudinalno valovanje, ki ga človeško uho zaznava. Skozi prazen
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραKvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότεραOsnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Διαβάστε περισσότερα1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραVEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότερα*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραGimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραmatrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Διαβάστε περισσότεραKotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Διαβάστε περισσότεραMatematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Διαβάστε περισσότεραTema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραNa pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Διαβάστε περισσότεραNajprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
Διαβάστε περισσότεραČe je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):
ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti
Διαβάστε περισσότεραFrekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Διαβάστε περισσότεραPodobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Διαβάστε περισσότεραVAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.
VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do
Διαβάστε περισσότεραdiferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Διαβάστε περισσότερα8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότεραČe se telo giblje, definiramo še vektorja hitrosti v in pospeška a:
FIZIKA 1. poglavje: Mehanika - B. Borštnik 1 MEHANIKA(prvi del) Kinematika Obravnavamo gibanje točkastega telesa. Izberemo si pravokotni desni koordinatni sistem (sl. 1), to je takšen, katerega os z kaže
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότερα1. naloga. 2. Pojasni, kaj je značilno za transverzalno valovanje in kaj za longitudinalno valovanje. [2t]
1. naloga 1. Po vrvi se širi transverzalno valovanje. Vzemimo, da delci vrvi nihajo harmonično. Za dva nihaja prikaži na grafu odmik delca vrvi v odvisnosti od časa. [1t] 2. Pojasni, kaj je značilno za
Διαβάστε περισσότεραDefinicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Διαβάστε περισσότεραUniverza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
Διαβάστε περισσότεραFazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Διαβάστε περισσότεραFunkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Διαβάστε περισσότεραODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA
ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA 1. Pod pojmom telo razumemo snov z dano velikostjo in obliko. Sistem točkastih teles so vsa tista telesa, ki so v naši okolici in katerih gibanje
Διαβάστε περισσότερα1. Na dve enako dolgi vrvi obesimo dve utezi, tako da dobimo dve enaki nihali. casovni potek nihanja prvega nihala.
1. Na dve enako dolgi vrvi obesimo dve utezi, tako da dobimo dve enaki nihali. Graf prikazuje ˇ casovni potek nihanja prvega nihala. sna je amplituda nihala? Amplitudo nihala odˇcitamo iz slike, kakor
Διαβάστε περισσότεραKVANTNA FIZIKA. Svetloba valovanje ali delci?
KVANTNA FIZIKA Proti koncu 19. stoletja je vrsta poskusov kazala še druga neskladja s predvidevanji klasične fizike, poleg tistih, ki so vodila k posebni teoriji relativnosti. Ti pojavi so povezani z obnašanjem
Διαβάστε περισσότεραcot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
Διαβάστε περισσότεραSlika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
Διαβάστε περισσότερα13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Διαβάστε περισσότερα7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)
7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem
Διαβάστε περισσότεραENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.
ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami
Διαβάστε περισσότεραKvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Διαβάστε περισσότεραMATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Διαβάστε περισσότεραTransformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Διαβάστε περισσότερα7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto
Διαβάστε περισσότεραNaloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.
1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.
Διαβάστε περισσότεραPoglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700
Διαβάστε περισσότεραPROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Διαβάστε περισσότεραMatej Komelj. Ljubljana, september 2013
VAJE IZ FIZIKE ZA ŠTUDENTE FARMACIJE Matej Komelj Ljubljana, september 2013 Kazalo 1 Uvod 2 2 Kinematika v eni razsežnosti, enakomerno kroženje 3 3 Kinematika v dveh razsežnostih, statika, dinamika 5 4
Διαβάστε περισσότερα5 Modeli atoma. 5.1 Thomsonov model. B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 2014, 1
B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 204, 5 Modeli atoma V nasprotju s teorijo relativnosti, ki jo je formuliral Albert Einstein v koncizni matematični obliki in so jo kasneje
Διαβάστε περισσότερα1 Seštevanje vektorjev in množenje s skalarjem
Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo
Διαβάστε περισσότεραSEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Διαβάστε περισσότεραp 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Διαβάστε περισσότερα17. Električni dipol
17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje
Διαβάστε περισσότεραEnergijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija
Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)
Διαβάστε περισσότερα1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
Διαβάστε περισσότερα1. Newtonovi zakoni in aksiomi o silah:
1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni
Διαβάστε περισσότερα1.3 Vsota diskretnih slučajnih spremenljivk
.3 Vsota diskretnih slučajnih spremenljivk Naj bosta X in Y neodvisni Bernoullijevo porazdeljeni spremenljivki, B(p). Kako je porazdeljena njuna vsota? Označimo Z = X + Y. Verjetnost, da je P (Z = z) za
Διαβάστε περισσότεραOsnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Διαβάστε περισσότεραAnaliza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
Διαβάστε περισσότεραNAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.
Διαβάστε περισσότεραSplošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Διαβάστε περισσότερα386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)
386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da
Διαβάστε περισσότερα3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.
3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,
Διαβάστε περισσότεραMEHANIKA: sinopsis predavanj v šolskem letu 2003/2004
MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004 NTF, Visokošolski strokovni program KINEMATIKA 18. 2. 2004 Osnovne kinematične količine.: položaj r, hitrost, brzina, pospešek. Definicija vektorja
Διαβάστε περισσότεραDomače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Διαβάστε περισσότεραPoglavje 1. Posebna teorija relativnosti. 1.1 Zakaj klasična fizika ni dobra
Poglavje 1 Posebna teorija relativnosti Dvajseto stoletje je v fiziko prineslo dve revoluionarni novosti: Einsteinovo teorijo relativnosti in kvantno fiziko. Tako danes pravimo fiziki do kona 19. stoletja
Διαβάστε περισσότεραIterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Διαβάστε περισσότεραvezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
Διαβάστε περισσότεραUniverza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar HIDRODINAMIKA OBALNIH VALOV Mateja Erjavec Mentor: prof. dr. Rudolf Podgornik Februar 2010 Povzetek V začetnem delu seminarja
Διαβάστε περισσότεραEnačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Διαβάστε περισσότεραMatematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija
Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a
Διαβάστε περισσότεραMatematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo
Διαβάστε περισσότεραNihanje in valovanje, zbirka kolokvijskih nalog
Barbara Rovšek Nihanje in valovanje, zbirka kolokvijskih nalog z rešitvami 1 Nihanje 11 Kinematika (nedušenega) nihanja 1 Nihalo niha z nihajnim časom 4 s V nekem trenutku je njegov odmik od mirovne lege
Διαβάστε περισσότεραPri tej vaji se bomo seznanili z osnovnimi značilnostmi ultrazvoka in njegove uporabe v medicini.
4 Ultrazvok Pri tej vaji se bomo seznanili z osnovnimi značilnostmi ultrazvoka in njegove uporabe v mediini. S človeškim ušesom lahko zaznamo zvok s frekvenami od približno 16 Hz do 20 khz. Zvok, ki ima
Διαβάστε περισσότεραUPOR NA PADANJE SONDE V ZRAKU
UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži
Διαβάστε περισσότεραMehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS
Mehanika L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 2. januar 2004 Kazalo 1 Gibalne enačbe 4 1 Posplošene koordinate...............................
Διαβάστε περισσότεραJan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)
Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da
Διαβάστε περισσότεραUniverza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar HIDRODINAMIKA OBALNIH VALOV Mateja Erjavec Mentor: prof. dr. Rudolf Podgornik Februar 2010 Povzetek V začetnem delu seminarja
Διαβάστε περισσότεραprimer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
Διαβάστε περισσότεραSATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Διαβάστε περισσότεραNARAVOSLOVJE - 7. razred
NARAVOSLOVJE - 7. razred Vsebina Zap. št. ZVOK 7.001 Ve, da predmeti, ki oddajajo zvok zvočila, zatresejo zrak in da take tresljaje imenujemo nihanje. 7.002 Ve, da sprejemnik zvoka zazna tresenje zraka
Διαβάστε περισσότεραVaje iz MATEMATIKE 2. Vektorji
Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo
Διαβάστε περισσότεραMatematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Διαβάστε περισσότερα