1. naloga. 2. Pojasni, kaj je značilno za transverzalno valovanje in kaj za longitudinalno valovanje. [2t]
|
|
- Γερασιμος Δημαράς
- 9 χρόνια πριν
- Προβολές:
Transcript
1 1. naloga 1. Po vrvi se širi transverzalno valovanje. Vzemimo, da delci vrvi nihajo harmonično. Za dva nihaja prikaži na grafu odmik delca vrvi v odvisnosti od časa. [1t] 2. Pojasni, kaj je značilno za transverzalno valovanje in kaj za longitudinalno valovanje. [2t] 3. V kovinski palici se lahko širijo transverzalni in longitudinalni valovi. Ali je to možno tudi v zraku? Pojasni odgovor. [2t] Slika, ki ni v naravni velikosti, kaže napravo za preučevanje interference zvočnih valov. Zvočnika sta priključena na tonski generator in postavljena na prostem. 4. Opazovalec hodi po črti od A do E. Zaradi interference sliši glasen zvok le v točkah A, B, C, D in E. Med temi točkami sliši šibkejši zvok. Ali je nujno za ta pojav, da sta zvočnika priključena na isti tonski generator? Pojasni odgovor. [2t] 5. Točka C je enako oddaljena od obeh zvočnikov. Razdalja Z 1 E meri 12,5 m, razdalja Z 2 E pa 11,0 m. Izračunaj valovno dolžino zvoka, ki ga oddajata zvočnika. [2t] 6. Zvočnika priključimo na dva tonska generatorja, katerih frekvenci se malo razlikujeta. Opiši pojav, ki pri tem nastane. [1t]
2 2. naloga 1. Slika prikazuje valovanje na struni v določenem trenutku. Nariši na črto valovanje: a. z dvakrat večjo frekvenco, [1t] b. z dvakrat manjšo amplitudo. [1t] 2. Po čem se razlikujeta longitudinalno in transverzalno valovanje? Stoječe valovanje na struni zbuja zvok, ki se širi po zraku. Katero od obeh valovanj je longitudinalno in katero transverzalno? [1t] 3. Struna na violončelu je dolga 72 cm in oddaja osnovni ton s frekvenco 220 Hz. S kolikšno hitrostjo se širi valovanje po struni? [1t] 4. Delec na sredini te strune niha z največjim odmikom 1,0 mm. Kolikšno hitrost ima, ko gre skozi ravnovesno lego? [1t] 5. Struna ne oddaja samo osnovnega tona, ampak tudi višje harmonične tone. Skiciraj stoječe valovanje na struni za osnovni in prva dva višja harmonična tona. [1t]
3 6. Dopolni spekter zvena, ki ga sestavljajo osnovni in prva dva višja harmonična tona strune. Upoštevaj, da so jakosti (gostote energijskega toka j) osnovnega, prvega in drugega višjega harmoničnega tona v razmerju 4 : 2 : 1. [2t] 7. Violončelist na isti in enako napeti struni lahko spremeni ton tako, da jo skrajša s prstom. Kako daleč od vpetišča jo mora prijeti, da bo namesto osnovnega zaigral ton s frekvenco 248 Hz? [1t] 8. Kako se spremeni osnovni ton, če se struna nekoliko zrahlja, in kako jo violončelist spet uglasi? [1t]
4 3. naloga 1. Zvočnik oddaja ton s frekvenco 1000 Hz. Hitrost zvoka je 340 m/s. Kolikšna je dolžina tega tona? [1t] 2. Zvočnik usmerimo proti steni in z mikrofonom raziskujemo nastalo stoječe valovanje. Kolikšna je razdalja med sosednjima vozloma? [1t] 3. Delci v valu, ki ga oddaja zvočnik, nihajo z amplitudo 1,0 μm. S kolikšno amplitudo nihajo delci v hrbtu stoječega valovanja? [1t] 4. Zvočnik obrnemo od stene, mikrofon pa se mu približuje s tolikšno hitrostjo, da zazna frekvenco 1050 Hz. S kolikšno hitrostjo se giblje mikrofon proti zvočniku? [2t] 5. Kolikšno frekvenco pa zabeleži mikrofon, če se z enako veliko hitrostjo oddaljuje od zvočnika? [1t] Zvočnik in mikrofon sta od stene oddaljena za h = 1,0 m. Mikrofon sprejema direktni val in od stene odbiti val. Odboj od tal je zanemarljiv. Kot vemo, nastane ojačano valovanje tedaj, ko je razlika poti direktnega in odbitega vala enaka celemu mnogokratniku valovne dolžine. 6. Zapiši pogoj za ojačitev z razdaljama a in b s slike in valovno dolžino λ. [1t] 7. Pogoj iz prejšnje naloge zapiši v obliki 2 4b ( n a ) 2, poveži razdalje a, b in h ter izrazi razdaljo a v obliki a = a (n, λ, h). [1t] 8. Določi lego a interferenčnega maksimuma za n = 1 in frekvenco 1000 Hz. [1t]
5 9. Za koliko moramo premakniti mikrofon vzdolž stene, da najdemo sosednji maksimum? [1t]
6 4. naloga Na violini so vse štiri strune dolge 32,5 cm. Vendar so različno debele in napete z različnimi silami, zato zvenijo različno. 1. Zapiši, kako je hitrost valovanja na struni povezana z valovno dolžino in frekvenco valovanja. V enačbi poimenuj posamezne količine. [1t] 2. Druga struna (imenovana struna»a«) je na violini uglašena na ton a 1, kar pomeni, da je najnižja frekvenca za to struno 440 Hz. Kolikšna je valovna dolžina valovanja na struni»a«, ko niha s to frekvenco? Kolikšna je hitrost valovanja na tej struni? [2t] 3. Pojasni razliko med longitudinalnim in transverzalnim valovanjem. Ali je valovanje na violinski struni longitudinalno ali transverzalno? [1t] 4. Na prvi sliki je narisana mirujoča struna. V naslednje slike vrišite struno, ko zveni najprej z najnižjo lastno frekvenco, nato še s prvo naslednjo in nazadnje še z drugo naslednjo lastno frekvenco, vsakokrat v trenutku, ko je odmik največji. Amplituda valovanja je vedno 3 mm. [3t]
7 5. Violinist s prstom pritisne na struno»a«na tretjini njene dolžine. S kolikšno osnovno frekvenco niha krajši konec strune»a«? [1t] Hitrost valovanja na struni je podana z zvezo c F. V izrazu je F sila, ki napenja struno, in μ linearna gostota strune (to je masa strune na dolžinsko enoto). 6. Tretja struna (struna»d«) bi morala biti uglašena na ton d 1, to je 297 Hz. Vendar je na neki violini ta struna preveč napeta, tako da zveni za cel ton previsoko, in sicer s 330 Hz. Napeta je s silo 77 N. Na koliko mora violinist napenjalno silo zmanjšati, da bo inštrument pravilno uglašen? [2t]
8 5. naloga Na odprtem, mirnem morju plava plutovinasti zamašek. Oddaljena ladja povzroči nastanek transverzalnih valov, ki se s hitrostjo 8,0 m/s približujejo zamašku. Graf kaže trenutno sliko valovanja ob času t = 0. V tem trenutku je zamašek v točki A. 1. Kolikšna je valovna dolžina tega valovanja? [1t] 2. Na grafu označi smer, v katero se začne gibati zamašek, ko se valovanje razširi do točke A. [1t] 3. S kolikšnim nihajnim časom niha zamašek? [1t] 4. Čez koliko časa bo imel zamašek prvič po začetku nihanja največji pospešek? [1t] 5. Kolikšna sta hitrost in pospešek zamaška med nihanjem, ko je ta na višini y = 0? [1t] 6. Kolikšna sta pospešek in hitrost zamaška med nihanjem, ko je ta na vrhu vala? [1t]
9 Valovanje se širi proti predelu, kjer je globina manjša, hitrost se zato spremeni s c 1 = 8,0 m/s na c 2 = 6,0 m/s. Na skici je z debelo črto označena meja med področjema, na katerih ima valovanje različnih hitrosti. Kot med valovnimi črtami in mejo je 60º. 7. Na skici skiciraj vpadno pravokotnico in žarek valovanja na obeh straneh meje. [1t] 8. Kolikšna je valovna dolžina na področju, kjer je hitrost c 2? [1t] 9. Za kolikšen kot se je spremenila smer širjenja valovanja? [2t]
10 6. naloga Majhna valovna izvira I 1 in I 2, ki nihata sočasno, ustvarjata v valovni kadi krožne valove z valovno dolžino λ. Razdalja med izviroma je d. 1. Razdalja od I 1 do T je enaka r 1. Razdalja od I 2 do T je enaka r 2. Z enačbo zapiši pogoj, ki mora biti izpolnjen, da bo prišlo v točki T do ojačenja valovanja. Za količine uporabi oznake s skice, za druge oznake pa pojasni, kaj pomenijo. [1t] 2. Zapiši pogoj, ki mora biti izpolnjen, da bo v točki T valovanje oslabljeno. [1t] Slika kaže trenutno sliko valovanja dveh izvirov krožnega valovanja. Črte povezujejo točke, ki so v trenutku, ko valovanji opazujemo, na vrhu valovnih grebenov. Razdalja med sosednjima črtama je valovna dolžina. 3. V sliko vrišite črte, ki povezujejo točke, kjer je valovanje ojačeno. To stori za interferenčni red 0, 1 in 2. Ob vsaki vrisani črti zapiši ustrezni red. [1t]
11 V sredini velike dvorane s stenami, ki dobro dušijo zvok, sta na razdalji 1,0 m postavljena dva majhna zvočnika A in B. Zvočnika napajamo z istim generatorjem, tako da oddajata zvok s frekvenco 825 Hz enakomerno v vse smeri. 4. Kolikšna je valovna dolžina zvočnega valovanja, ki ga oddajata zvočnika? Hitrost zvoka je 330 m/s. [1t] 5. V katerih smereh zazna oddaljeni poslušalec ojačen zvok? Izračunaj kote α, ki jih te smeri tvorijo s simetralo veznice zvočnikov. [2t] 6. Poslušalec se sprehodi okrog zvočnikov tako, da napravi polni krog. Koliko ojačitev sliši pri tem? [1t] 7. Zvočnika oddaljimo na razdaljo 6,60 m. En zvočnik izklopimo. Na sredini med zvočnikoma izmerimo gostoto energijskega toka 4, W/m 2. Kolikšen energijski tok oddaja zvočnik? [2t] 8. Izklopljen zvočnik ponovno vklopimo. Mikrofon premikamo od enega do drugega zvočnika. Koliko vozlov ugotovimo? [1t]
12 7. naloga 1. Opiši razliko med longitudinalnim in transverzalnim mehanskim valovanjem. [1t] 2. Ali je zvok longitudinalno ali transverzalno valovanje? [1t] 3. Kolikšna je hitrost zvoka v zraku pri sobni temperaturi? [1t] 4. Zapiši slišno območje zvoka. [1t] 5. V kromatski lestvici ima ton A frekvenco 440 Hz. Kolikšna je valovna dolžina tega tona pri sobni temperaturi? [1t] 6. Avtomobilska hupa oddaja ton s frekvenco 350 Hz. Kolikšno frekvenco zazna poslušalec, kateremu se avtomobil približuje s hitrostjo 90 km/h? Hitrost zvoka je 340 m/s. [2t] 7. Skiciraj Machov stožec za valovanje. [1t] Raca plava po jezeru s hitrostjo 30 cm/s. Za njo lahko opazujemo Machov stožec, ker je hitrost valov na vodni gladini manjša od hitrosti race. 8. Kolikšna je hitrost valovanja na gladini jezera, po katerem plava raca, če se valovi dotaknejo obale 0,5 sekunde zatem, ko raca priplava mimo, raca pa je od obale oddaljena 1,5 m, kot kaže slika? [2t]
13 8. naloga Na napeti vrvi opazujemo potujoče transverzalno valovanje v desno. Prikazani sta dve trenutni sliki valovanja. Prekinjena črta prikazuje trenutno sliko valovanja 0,50 sekunde kasneje kot polna črta. 1. Kolikšna je hitrost valovanja? [1t] 2. Kolikšni sta amplituda in valovna dolžina valovanja? [1t] 3. Kolikšna je frekvenca valovanja? [1t] Hitrost valovanja na vrvi izračunamo z enačbo: c F S, kjer je F sila, s katero je napeta vrv, S je prečni presek vrvi, ρ pa je gostota vrvi. 4. Kolikšna je hitrost valovanja na vrvi, če je vrv napeta s silo 50 N, masa vrvi je 0,5 kg, dolžina vrvi pa 3,0 m? [2t] 5. Na napeti vrvi lahko nastane tudi stoječe valovanje. Kolikšna je najmanjša (osnovna) frekvenca stoječega valovanja na tej vrvi (F = 50 N, m = 0,50 kg, l = 3,0 m)? [1t] 6. Za koliko odstotkov se spremeni lastna frekvenca na tej vrvi, če se sila, s katero je struna napeta, poveča za 10 %? [2t]
14 7. Na sliki je prikazano stoječe valovanje. Na sliko doriši trenutno sliko valovanja, ki je za to sliko zakasnjena za polovico nihajnega časa, s katerim nihajo posamezni delci vrvi. [1t] 8. Kako imenujemo mesta na vrvi, ki ne nihajo? [1t]
11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune
11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih
VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA
VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje
6 NIHANJE 105. (c) graf pospe²ka v odvisnosti od asa. Slika 32: Graf hitrosti, odmika in pospe²ka v odvisnosti od asa.
6 NIHANJE 105 6 nihanje 6.1 mehanska 1. Hitrost nekega nihala se spreminja po ena bi: v(t) = 5 cm/s cos(1, 5s 1 t). Nari²i in ozna i kako se spreminjajo odmik hitrost in pospe²ek v odvisnosti od asa! Rp:
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
1. Na dve enako dolgi vrvi obesimo dve utezi, tako da dobimo dve enaki nihali. casovni potek nihanja prvega nihala.
1. Na dve enako dolgi vrvi obesimo dve utezi, tako da dobimo dve enaki nihali. Graf prikazuje ˇ casovni potek nihanja prvega nihala. sna je amplituda nihala? Amplitudo nihala odˇcitamo iz slike, kakor
Slika 1: Hitrost razširjanja motnje v napeti vrvi
Študijsko gradivo za študente kemijske tehnologije: FIZIKA Mehanika (valovanje) - B. Borštnik 1 F n F vdt cdt Slika 1: Hitrost razširjanja motnje v napeti vrvi F Valovanje Mehansko valovanje Naštejmo nekaj
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Nihanje in valovanje, zbirka kolokvijskih nalog
Barbara Rovšek Nihanje in valovanje, zbirka kolokvijskih nalog z rešitvami 1 Nihanje 11 Kinematika (nedušenega) nihanja 1 Nihalo niha z nihajnim časom 4 s V nekem trenutku je njegov odmik od mirovne lege
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
ZVOK UVOD HITROST ZVOKA V SNOVI JAKOST IN GLASNOST ZVOKA DOPPLERJEV POJAV MACHOV STOŽEC UVOD
ZVOK 11.1. UVOD 11.2. HITROST ZVOKA V SNOVI 11.3. JAKOST IN GLASNOST ZVOKA 11.4. DOPPLERJEV POJAV 11.5. MACHOV STOŽEC 11.1. UVOD Zvok je longitudinalno valovanje, ki ga človeško uho zaznava. Skozi prazen
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Hidravli ni oven. Univerza v Ljubljani Fakulteta za matematiko in ziko. Oddelek za ziko
Univerza v Ljubljani Fakulteta za matematiko in ziko Oddelek za ziko Hidravli ni oven Seminar Avtor: Marko Kozin Mentor: do. dr. Daniel Sven²ek Ljubljana, mare 2014 Povzetek V seminarju sta predstavljena
VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.
VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Mehurčki v zvočnem polju: Bjerknesove interakcije
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Mehurčki v zvočnem polju: Bjerknesove interakcije Seminar Avtor: Nika Oman Mentor: prof. dr. Rudolf Podgornik Ljubljana, september
7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto
Kvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
Slika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik
Orietacija Aleš Glavik i Boja Rotovik 52 Izvleček: Pred stav lje e so iz bra e te me iz orie ti ra ja v a ra vi, ki jih mo ra poz a ti vsak vod ik PZS, da lah ko var o vo di ude le `e ce a tu ri Pred stav
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
predavatelj: doc. Andreja Drobni Vidic
1 RE ITVE 5. DOMAƒE NALOGE - TOTP - modul MATEMATIKA predavaelj: doc. Andreja Drobni Vidic UPORABA ODVODOV IN INTEGRALI Diferencialni ra un je omogo il re²evanje nalog, za kaere je pred em kazalo, da presegajo
1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!
UNI: PISNI IZPIT IZ Atomike in optike, 3. junij, 7.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!.naloga:
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine, katere valovne
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Pri tej vaji se bomo seznanili z osnovnimi značilnostmi ultrazvoka in njegove uporabe v medicini.
4 Ultrazvok Pri tej vaji se bomo seznanili z osnovnimi značilnostmi ultrazvoka in njegove uporabe v mediini. S človeškim ušesom lahko zaznamo zvok s frekvenami od približno 16 Hz do 20 khz. Zvok, ki ima
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.
DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):
ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar HIDRODINAMIKA OBALNIH VALOV Mateja Erjavec Mentor: prof. dr. Rudolf Podgornik Februar 2010 Povzetek V začetnem delu seminarja
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Regijsko tekmovanje srednje²olcev iz zike v letu 2007
Regijsko tekmovanje srednje²olcev iz zike v letu 2007 c Tekmovalna komisija pri DMFA 23. marec 2007 Kazalo Skupina I 2 Skupina II 3 Skupina III 4 Skupina I re²itve 6 Skupina II re²itve 8 Skupina III re²itve
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Matej Komelj. Ljubljana, september 2013
VAJE IZ FIZIKE ZA ŠTUDENTE FARMACIJE Matej Komelj Ljubljana, september 2013 Kazalo 1 Uvod 2 2 Kinematika v eni razsežnosti, enakomerno kroženje 3 3 Kinematika v dveh razsežnostih, statika, dinamika 5 4
ELEKTRIČNI NABOJ IN ELEKTRIČNO POLJE
Tretji letnik ELEKTRIČNI NABOJ IN ELEKTRIČNO POLJE 11.1 Ponovijo, kako naelektrimo telesa, razložijo pojem električne sile kot sile med električnima nabojema, ločijo med prevodniki in izolatorji, pojasnijo
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA
ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA 1. Pod pojmom telo razumemo snov z dano velikostjo in obliko. Sistem točkastih teles so vsa tista telesa, ki so v naši okolici in katerih gibanje
Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013
Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo
Univerza v Ljubljani fakulteta za matematiko in fiziko Oddalek za fiziko. Fizika cunamijev. Mentor: prof. dr. Rudolf Podgornik
Univerza v Ljubljani fakulteta za matematiko in fiziko Oddalek za fiziko Fizika cunamijev Jože Pernar Mentor: prof. dr. Rudolf Podgornik 11. avgust 2007 Kazalo 0.1 Povzetek..............................
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Ne vron ske mre že vs. re gre sij ski mo de li na po ve do va nje pov pra še va nja na treh vr stah do brin
Ne vron ske mre že vs. re gre sij mo de li na po ve do va nje pov pra še va nja na treh vr stah do brin An ton Zi dar 1, Ro ber to Bi lo sla vo 2 1 Bo bo vo 3.a, 3240 Šmar je pri Jel šah, Slo ve ni ja,
DARJA POTOƒAR, FMF
7. ²olska ura Tema: Ponovitev Oblika: vaje B 1 Kotne funkcije v pravokotnem trikotniku: A V α A 1 B 1 sin α = AA 1 V A = BB 1 V B cos α = V B 1 V B = V A 1 V A tan α = sin α cos α cos α cot α = sin α =
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
NALOGE ZA SKUPINE A, C, E, G, I, K
Fizioterapija ESM FIZIKA - VAJE NALOGE ZA SKUPINE A, C, E, G, I, K 1.1 Drugi Newtonov zakon podaja enačba F = m a. Pokažite, da je N, enota za silo, sestavljena iz osnovnih enot. 1.2 2.1 Krogla z maso
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar HIDRODINAMIKA OBALNIH VALOV Mateja Erjavec Mentor: prof. dr. Rudolf Podgornik Februar 2010 Povzetek V začetnem delu seminarja
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Poglavje 10. Molekule Kovalentna vez
Poglavje 10 Molekule Atomi se vežejo v molekule. Vezavo med atomi v molkuli posredujejo zunanji - valenčni elektroni. Pri vseh molekularnih vezeh negativni naboj elektronov posreduje med pozitinvimi ioni
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Električne lastnosti vodov. Ohmske upornosti. Induktivnost vodov. Kapacitivnost vodov. Odvodnost vodov. Vod v svetlobi telegrafske enačbe.
Električne lastnosti vodov Ohmske upornosti. Induktivnost vodov. Kapacitivnost vodov. Odvodnost vodov. Vod v svetlobi telegrafske enačbe. Primarne konstante vodov Če opazujemo električni vod iz istega
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Fizika (BF, Biologija)
dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2013/14 Vsebina 1. vaje: Velikostni redi, leče, mikroskop 2 2. vaje: Newtnovi zakoni gibanja: kinematika, sile, navori, energija 4 3. vaje: Gravitacija,
EMV in optika, zbirka nalog
Barbara Rovšek EMV in optika, zbirka nalog z rešitvami 1 Električni nihajni krogi in EMV 1.1 Električni nihajni krogi, lastno nihanje 1. Električni nihajni krog z lastno frekvenco 10 5 s 1 je sestavljen
Merske enote. Računanje z napakami.
Vaje Merske enote. Računanje z napakami. tb 1. Enačba x= Ae sin ( at + α ) je dimenzijsko homogena. V kakšnih merskih enotah so x, a, b in α, če je A dolžina in t čas?. V dimenzijsko homogeni enačbi w
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
œj œ œ œ œ œ œ b œ œ œ œ œ œ w
Osmogasnik - as 5 - Jutrewe 1 16.. Na O treni j Bog= o - spod' i - vi - sq nam=, n b w ba - go - so-ven= grq-dyj vo i -mq o-spod - ne. Bog= o-spod' i -vi - sq nam=, ba - go - so - n > b w ven= grq - dyj
FIZIKA NAVODILA ZA OCENJEVANJE
Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A
Vaje iz fizike 1. Andrej Studen January 4, f(x) = C f(x) = x f(x) = x 2 f(x) = x n. (f g) = f g + f g (2) f(x) = 2x
Vaje iz fizike 1 Andrej Studen January 4, 2012 13. oktober Odvodi Definicija odvoda: f (x) = df dx = lim f(x + h) f(x) h 0 h Izračunaj odvod funkcij po definiciji: (1) f(x) = C f(x) = x f(x) = x 2 f(x)
Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.
Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον
VPLIVI (NIZKOFREKVENČNEGA) HRUPA, KI GA POVZROČA DELOVANJE VETRNIH ELEKTRARN
POBUDA ZA DRŽAVNI PROSTORSKI NAČRT ZA PARK VETRNIH ELEKTRARN SENOŽEŠKA BRDA SREČANJA S KRAJANI SENOŽEČ, DOLENJE VASI, POTOČ IN LAŽ, november 2013 VPLIVI (NIZKOFREKVENČNEGA) HRUPA, KI GA POVZROČA DELOVANJE
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev: