REALIZAREA BAZEI DE MODELE PENTRU PERFECŢIONAREA METODELOR DE PROGNOZA MACROECONOMICA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "REALIZAREA BAZEI DE MODELE PENTRU PERFECŢIONAREA METODELOR DE PROGNOZA MACROECONOMICA"

Transcript

1 REALIZAREA BAZEI DE MODELE PENTRU PERFEŢIONAREA METODELOR DE PROGNOZA MAROEONOMIA Prof. univ. dr. Moisa Alar, Asis. univ. drd. Ionu Dumiru, Asis. univ. drd. iprian Necula, Asis. univ. drd. Bogdan Moinescu, Prep. univ. drd. Gabriel Bobeica, Prep. univ. Anca Sirbu, Prep. univ. Nicolea iurila Penru fazei Realizarea bazei de modele penru perfecţionarea meodelor de prognoza macroeconomica au fos realizae urmăoarele obiecive: fundamenarea corelaţiilor macroeconomice ce caracerizează evoluţia economiei româneşi prin idenificarea cu auorul ehnicilor economerice a vecorilor-forţă care deermină evoluţia PIB-ului; elemene privind fundamenarea poliicilor de creşere economică; srucurarea şi realizarea unei baze de modele penru perfecţionarea meodelor de prognoză macroeconomică. A. Fundamenarea corelaiilor macroeconomice ce caracerizeaza evoluia economiei romanesi prin idenificarea cu auorul ehnicilor economerice a vecorilor fora care deermina evoluia PIB-ului In cadrul sudiului de faa sun analizaţi sabilizaorii fiscali auomaţi in cadrul bugeului general consolida al României modificarea veniurilor si cheluielilor bugeare consolidae daorae flucuaţiilor in aciviaea economica cauzae de ciclul economic - si influena acesora asupra cererii agregae si in final efecul de neezire a ciclului economic (engl. smooh he business ccle). In cadrul lucrării s-a considera ca veniurile bugeului consolida (V) provin din conribuţii la asigurările sociale (AS), TVA (TVA), accize (AIZE), impozi pe veni (VEN) impozi pe profi (PROFIT) si ale veniuri (ε ): V = AS + TVA + AIZE + VEN + PROFIT + ε heluielile bugeare (h) sun consiuie din ransferuri căre populaţie (TRANS), achiziţii de bunuri si servicii (AH) si ale cheluieli (ϕ ): h = TRANS + AH + ϕ Veniurile si cheluielile bugeare au o componena srucurala ( V S S, h ) si una ciclica ( V, h ). Soldul bugeului de sa ( DEF ) reprezină suma deficiului srucural ( DEF S ) si a celui ciclic ( DEF ): DEF DEF S DEF = +. DEF PIB = DEF α gap _ PIB PIB PIB poenial gap _ PIB = PIB poenial In cadrul acesui sudiu PIB-ul poenţial a fos esima uilizând o meoda bazaa pe componene neobservabile univariaa bazae pe filre alman. Asfel, seria PIB real a fos descompusa înr-o componenă de rend (T ), o componenă ciclu ( c ), o componenă sezonieră ( s ) şi un ermen de eroare, componene ce nu sun observabile. Figura 2 - Evoluţia PIB real, PIB poenţial si PIB desezonaliza

2 mld lei (preuri 1998 Q1) PIB real desezonaliza PIB real PIB real rend (poenial) Trendul PIB (PIB-ul poenţial), PIB-ul real desezonaliza si PIB-ul real sun prezenae in figura 2. După cum se observă, rendul PIB ese unul crescăor in perioada analizaa. De asemenea, cea mai mare pare a inervalului de imp considera ese caraceriza prin oupu-gap negaiv (PIB poenţial mai mare decâ PIB desezonaliza). Se observa la începuul si sfarsiul inervalului ca oupu-gapul ese poziiv, adică PIB-ul ese pese cel poenţial, siuaţie in care se creează presiuni inflaţionise. Soldul bugear srucural (soldul bugear ausa ciclic AB) se poae scrie ca: DEF S = = = AB DEF DEF DEF DEF, unde DEF reprezină parea ciclica a componenei a bugeului care depinde de oupu-gap ( gap _ PIB ) si de elasiciaea componenei a bugeului: DEF gap _ PIB = = DEF PIB α gap _ PIB PIB PIB poenial PIB poenial omponena ciclica a aciviaii economice deermina un defici bugear ciclic mărimea sabilizaorilor auomaţi - cuprins inre -1.49% (2001 rimesrul I) si 0.94 (exceden ciclic al bugeului consolida, 2004 rimesrul II). Deficiul srucural, calcula ca diferenţa inre deficiul efeciv si deficiul ciclic (figura 3) înregisrează valori cuprinse inre -5.43% (anul 1998, rimesrul II) din PIB si 1.64 (anul 1999 rimesrul III). Figura 3 Deficiul srucural, deficiul ciclic si deficiul efeciv 124

3 Defici ciclic Defici srucural Defici efeciv Anul La nivel anual cumula, deficiul efeciv, srucural si ciclic a înregisra urmăoarele valori: Soldul bugeului consolida (mld lei) PIB Nominal (mld lei) Defici efeciv Defici ciclic (-defici, +exceden) Defici srucural , % 0.04% -3.60% % -0.84% -1.09% % -1.24% -2.74% % -1.07% -2.23% % -0.50% -1.94% % 0.28% -2.63% 2004* % 0.93% -2.48% 2004** % 0.38% -1.00% * Luând in calcul deficiul si PIB-ul pe primele 6 luni. ** Luând in calcul deficiul cumula pe primele 6 luni si PIB-ul anual prognoza pe De remarca ca pe ulimii 2 ani anul 2003 si pe 6 luni din 2004, deficiul ciclic ese exceden bugear, iar deficiul srucural ese mai mare decâ cel efeciv. Asfel, când oupu-gap-ul ese poziiv, funcţionarea sabilizaorilor auomaţi imbunaaese soldul bugear efeciv comparaiv cu cel srucural (1998, 2003 si 2004). In România, începând cu anul 2000 când procesul creşerii economice s-a relua, funcţionarea sabilizaorilor auomaţi au imbunaai soldul bugear, in 2003 si 2004 soldul bugear ciclic fiind chiar poziiv. ând oupu-gapul ese negaiv, funcţionarea sabilizaorilor auomaţi inrauaese soldul bugear efeciv comparaiv cu cel srucural (1999, 2000, 2001 si 2002). Penru o analiza a caracerului poliicii fiscal-bugeare rebuie comparae deciziile din perioada curena faa de cele din perioada anerioara, calculând diferenţa dinre deficiul srucural de la an la an (figura 4). Figura 4 Variaţia anuala a deficiului srucural si raa de creşere a PIB real Defici srucural variaie anuala (%din PIB) resere reala a PIB Defici srucural (%din PIB) După cum se observa din figura 4, in anul 2000 variaţia deficiului srucural faa de anul 1999 a fos negaiva, ceea ce araa fapul ca poliica fiscal-bugeara a fos expansionisa (de simulare a cererii agregae) in anul 2000, anul 2000 fiind si anul in care creşerea economica s-a relua. In 1998, 2001 si 2002 poliica 125

4 fiscal-bugeara a fos resriciva, penru a deveni din nou expansionisa in 2003 si umăaea anului In 2003 si 2004 cheluielile bugeare au crescu mai mul decâ veniurile bugeare accenuând asfel deficiul bugear. omparând caracerul poliicii fiscal-bugeare cu evoluţia creşerii economice in România se poae concluziona ca pe perioada analizaa ( ), poliica fiscal-bugeara a fos in ansamblu una conraciclica direcionaa penru a neezii flucuaţiile ciclice in economie. B. Elemene privind fundamenarea poliicilor de creşere economică În aceasă secţiune a lucrării vom prezena o serie de modele de creşere economică considerae a fi adecvae penru elaborarea unor prognoze ale procesului de creşere economică în România. Penru începu au fos analizae srucura, proprieăţile şi modul de uilizare a modelelor de creşere exogenă de ip Ramse- ass-oopmans, după care s-a recu la analiza unor modele de creşere economică endogenă de ip Uzawa- Lucas. În vederea realizării de scenarii privind creşerea economică în România, a fos necesară esimarea socului de capial fizic şi a funcţiei de producţie macroeconomică penru economia românească. alculul socului de capial şi esimarea funcţiei de producţie macroeconomică penru România Penru cazul României, penru a evia urbulenţele primilor ani de ranziţie vom uiliza esimarea socul iniţial de capial din anul Urmând meoda aplicaă de FMI (2003) în Raporul de ţară penru România, vom presupune că raporul dinre socul de capial şi PIB în anul 1992 a fos de 1,3. Propunem uilizarea urmăoarei formule penru calculul socului de capial, formulă care diferă de cea uilizaă în Raporul FMI: ( δ ) I = 0( 1 δ ) + I + 1, (B.III.1) = 1 δ I u 0 s-a noa socul iniţial de capial, cu δ raa deprecierii socului iniţial de capial, cu I s-a noa formarea bruă de capial fix şi cu δ I, raa deprecierii acumulărilor de capial realizae după anul Penru esimarea efecivă a socului de capial în România a fos consideraă o raă de depreciere a noilor invesiţii de δ i = 5%. În ceea ce priveşe deprecierea socului iniţial de capial, au fos considerae 3 variane disince, şi anume: variana 1: δ = 15% ; variana 2: δ = 20% ; variana 3: δ = 25%. Tabelul B.III.1 Esimările privind socul de capial în România Ani Socul de capial (mld. lei preuri 1998) Variana 1 Variana 2 Variana Indicele capialului (Y) obţinu pe baza esimării socului de capial fizic în 2003 se siuează înre 1,633 şi 1,765, valori comparabile cu cele ale celorlale economii în ranziţie. În ceea ce priveşe funcţia de producţie macroeconomică, se va considera că aceasa ese de ip obb-douglas: 126 α 1 (, ) α Y = F L = A L.(B.III.3)

5 u Y s-a noa mărimea PIB-ului, cu socul de capial, iar cu L mărimea forţei de muncă. În formula (B.III.3), α reprezină elasiciaea PIB-ului în rapor cu capialul fizic, iar A reprezină facorul oal de produciviae. Paramerii A şi α vor fi esimaţi prin aplicarea ehnicilor economerice de ip OLS. Prin liniarizare, ecuaţia (B.III.3) devine: unde ln = ln A+ α ln k,(b.iii.4) = Y L ese PIB per-capia şi k = L înzesrarea cu capial a muncii. Tabelul B.III.2. Specificaţiile funcţiei de producţie Variana 1 Variana 2 Variana 3 lna α lna α lna α Valoare Sd. error saisic p-value Pe baza seriilor esimae privind capialul fizic şi prezenae în Tabelul B.III.1, precum şi pe baza daelor privind mărimea PIB-ului real calcula în 1998, precum şi pe baza daelor privind populaţia ocupaă, au fos esimae rei funcţii de producţie macroeconomică. Rezulaele obţinue sun prezenae în Tabelul B.III.2. Previzionarea PIB pe baza modelelor de creşere economică In aceasă secţiune am implemena paru modele: modele 1,2,3 care reprezină modele de ip Ramse-ass-oopmans cu funcţia de producţie daă de fiecare din cele rei variane şi modelul 4 care ese un model de ip Uzawa-Lucas cu funcţia de producţie daă de variana 1. Alegerea puncului iniţial în cadrul acesor modele s-a făcu asfel încâ influenţa capialului învechi asupra evoluţiei viioare a PIB să fie câ mai redusă. onsiderăm ca punc iniţial anul 2002, penru care deprecierea capialului iniţial depăşeşe 80% în oae cele rei variane de depreciere considerae penru esimarea socului de capial din România. Ani Tabelul B.IV.2 Previziunea PIB Modele exogene Modelul 1 Modelul 2 Modelul 3 Raa de creşere (%) Raa de creşere (%) Modelul 4 Raa de creşere (%) Raa de creşere (%) Tabelul B.IV.11 prezină comparaiv rezulaele celor 4 modele de creşere economică în ceea ce priveşe previziunea PIB. Observăm că în oae modelele analizae aâ nivelurile PIB, câ şi raele de creşere ale acesuia sun comparabile, în special în primii ani ai perioadei analizae. 127

6 . Srucurarea şi realizarea unei baze de modele penru perfecţionarea meodelor de prognoză macroeconomică oncepul de previziune ese srâns lega de cel de proces sohasic generaor, în sensul că, în funcţie de modelul despre care se presupune că să la baza seriei de dae se vor obţine previziuni penru orizonul de imp lua in calcul. În general, pornind de la valorile realizae ale variabilei considerae şi uilizând cele mai noi rezulae obţinue de căre şiinţa economică, se va deermina un număr corespunzăor de procese sohasice generaoare. Acesea vor fi deerminae pe baza esimărilor economerice, folosind daele din eşanionul de care se dispune. Esimările realizae pe baza eşanionului sun evaluae din punc de vedere economeric, iar cele considerae corec specificae vor fi ulerior uilizae penru a genera aşa numiele serii de previziuni în afara eşanionului (ou of sample, în engleză). Din punc de vedere pracic, seria de dae se împare în două sub-serii de dae sau sub-eşanioane: primul eşanion ese uiliza în esimarea modelelor, iar cel de-al doilea eşanion ese folosi în generarea previziunilor. Noând cu + h valorile prognozae penru perioada +h la momenul, erorile de previziune vor fi calculae pe baza urmăoarei formule : e = (.1) h + h + h u +h s-a noa valorile realizae. În realizarea previziunilor de ip h sep ahead ale indicaorului la momenul cu h paşi înaine, se porneşe de la concepul de previziuni opimale. Penru a defini concepul de previziune opimală, vom considera mulţimea care conţine oaliaea informaţiilor cunoscue la momenul, noaă cu I. Se consideră că previziunea ese opimală dacă nu exisă o ală previziune ~ penru care + h + h media păraelor erorilor de previziune sa fie mai mică. Rezulă că o previziune ese opimală dacă ea minimizează urmăoarea expresie: + h ( ) 2 2 E + h h I + = E e+ h I (.2) Se demonsrează maemaic că soluţia problemei, respeciv previziunea opimală are urmăoarea expresie: op + h = E[ + h I ] (.3) În evaluarea seriei de previziuni obţinue se porneşe de la analiza erorilor de previziune. În cazul în care previziunile sun opimale (raţionale), erorile de previziune rebuie să aibă urmăoarele proprieăţi: medie zero auocorelaţie zero imposibiliaea previziunii erorilor După analiza erorilor de previziune, se rece la esarea nedeplasării seriei de previziuni consruie prin fiecare model în pare. oncepul de nedeplasare a previziunii se referă la coreciudinea, în medie, a previziunilor şi ese complemenar concepului de medie zero a erorilor de previziune. el mai cunoscu es de nedeplasare ese cel uiliza penru prima daă de Mincer şi Zarnowiz (1969) şi aces es ese baza pe regresia: α + β ε (.4) + h = + h + +1 unde =1 până la n şi n reprezină numărul de valori prognozae aflae în seria de previziuni Ipoeza nulă esaă după esimarea regresiei ese H 0 : α = 0, β = 1. În cazul în care nu puem respinge ipoeza nulă seria de previziuni ese nedeplasaă. În pracică, ese puţin probabilă găsirea unui model care să genereze previziuni oal opimale. De aceea, cel mai adesea ese necesară compararea performanţelor şi apoi chiar combinarea mai mulor modele de previziune. Penru evaluarea acuraeţei previziunii, elemenul esenţial ese definirea funcţiei de pierdere uilizaă în compararea diferielor modele de previziune. Mai precis, în lieraura de specialiae se uilizează în compararea şi, mai apoi ordonarea modelelor de previziune urmăoarele ipuri de funcţii de pierdere: funcţii de pierdere bazae pe păraul erorilor de previziune ; funcţii de pierdere bazae pe erorile de previziune absolue; funcţia de pierdere de ip Linex;

7 funcţii de pierdere uilizae în cazul previziunii schimbării direcţiei; funcţii de pierdere uilizae în cazul previziunii variabilelor ce reprezină probabiliăţi ; funcţii de pierdere uilizae în cazul previziunii volailiăţii. În urma alegerii unei funcţii de pierdere şi a calculării acesui indicaor penru fiecare serie de previziune în pare, vom ordona modelele de previziune în ordinea descrescăoare a pierderii. Ese însă necesar să esăm exisenţa unei semnificaţiei saisice a diferenţialelor de pierdere. Tesul ce verifică ipoeza nulă de puere predicivă egală ese cel consrui de Diebold şi Mariano (1995), precum şi variana sa modificaă de Harve, Lebourne şi Newbold (1997). Saisica Diebold-Mariano (1995) se consruieşe asfel: d S = (.5) V ˆ( d ) unde d ese media diferenţei dinre păraele erorilor, iar V ˆ( d) ese varianţa asimpoică a acesei medii. Penru seriile de previziuni generae pe baza unor procese generaoare de dae, rebuie esaă şi exisenţa unei evenuale relaţii de dominare.noţiunea de dominare ( encompassing ) ese srâns legaă de cea a combinării de modele de previziune diferie. Ese posibil ca unele modele de previziune sã conţină informaţii ce nu po fi regăsie în alele şi acese informaţii po fi înglobae înr-un singur model care sã le cuprindă pe oae. Mai mule modele de previziune po fi combinae dacă nu exisă nici o relaţie de dominare înre ele; în cazul în care exisă relaţii de dominare, modelul domina nu rebuie inclus înr-o evenuală combinare. Unul din primele ese de dominare a unei previziuni de căre ală previziune ese propus de hong şi Hendr (1986). Ei consruiesc un es care implică regresarea erorilor de previziune dinr-un model de previziune noa cu 1 asupra previziunilor modelului compeior noa cu 2 : e = α + ε (.6) 1, + h 2, + h In aces caz, penru a esa ipoeza nulă că previziunile modelului 1 le domină pe cele ale modelului 2, se uilizează saisica a ipoezei nule α = 0. În cazul în care nu se poae deermina o relaţie de dominare înre cele două modele (sau puem lua în considerare esarea relaţiei de dominare penru perechi de modele în cazul în care avem mai mul de douã modele compeioare), se aunge la concluzia cã ar fi eficienă o combinare a modelelor. 129

TEMA 12 SERII DE TIMP

TEMA 12 SERII DE TIMP TEMA SERII DE TIMP Obiecive Cunoaşerea concepelor referioare la seriile de imp Analiza principalelor meode de analiză şi prognoză cu serii de imp Aplicaţii rezolvae Aplicaţii propuse Cuprins Concepe referioare

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

1 Noţiuni privind teoria probabilităţilor Noţiuni privind statistica matematică Modelul clasic de regresie liniară...

1 Noţiuni privind teoria probabilităţilor Noţiuni privind statistica matematică Modelul clasic de regresie liniară... CUPRINS Inroducere... 4 Noţiuni privind eoria probabiliăţilor... 3 Noţiuni privind saisica maemaică... 6 3 Modelul clasic de regresie liniară... 35 4 Abaeri de la ipoezele modelului clasic de regresie

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE

ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE ANALIZA SPECRALĂ A SEMNALELOR ALEAOARE. Scopul lucrării Se sudiază caracerizarea în domeniul frecvenţă a semnalelor aleaoare de ip zgomo alb şi zgomo roz şi aplicaţiile aceseia la deerminarea modulelor

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE 6 ELEMENTE DE STABILITATE A SISTEMELOR LINIARE In sudiul sabiliăţii sisemelor se uilizează două concepe: concepul de sabiliae inernă (a sării) şi concepul de sabiliae exernă (a ieşirii) 6 STABILITATEA

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte Lucaea N. 5 opoaea cascode E-B în doenul fecenţelo înale Scopul lucă - edenţeea cauzelo ce deenă copoaea la HF a cascode E-B; - efcaea coespondenţe dne ezulaele obţnue expeenal penu la supeoaă a benz acesu

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Lucrarea nr.1b - TSA SISTEM. MODEL. CONSTRUCTIA MODELULUI MATEMATIC

Lucrarea nr.1b - TSA SISTEM. MODEL. CONSTRUCTIA MODELULUI MATEMATIC 1 SISTEM. MODEL. CONSTRUCTIA MODELULUI MATEMATIC 1. Scopul lucrǎrii Lucrarea are drep scop însuşirea noţiunilor de sysem, model şi analiza posibiliăţilor de consruire a modelului mahemaic penru un sysem

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

ELEMENTE DE TEORIA GRAFURILOR ŞI ANALIZA DRUMULUI CRITIC

ELEMENTE DE TEORIA GRAFURILOR ŞI ANALIZA DRUMULUI CRITIC ELEMENTE DE TEORIA GRAFURILOR ŞI ANALIZA DRUMULUI CRITIC Concepe fundamenale.modelarea prin grafuri a proceselor economice. Drumuri de valoare opimă. Arbori minimali. Analiza drumului criic. graful coordonaor

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Sisteme cognitive bazate pe tehnici neuro-fuzzy, minerit de date (data mining) si descoperire de cunostinte (knowledge discovery); aplicatii

Sisteme cognitive bazate pe tehnici neuro-fuzzy, minerit de date (data mining) si descoperire de cunostinte (knowledge discovery); aplicatii PROIECT DE CERCETARE PRIORITAR al A.R. 003 3. CAPITOLUL 3 Dinamica sisemelor exper în bucle de decizie. Modele economice fuzzy Auor: Horia-Nicolai Teodorescu, Marius Zbancioc. Inroducere Scopul cercearilor

Διαβάστε περισσότερα

STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR ELECTRICE

STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR ELECTRICE UNIVERSITATEA "POLITEHNICA" DIN BUCURESTI CATEDRA DE FIZICĂ LABORATORUL ELECTRICITATE SI MAGNETISM BN 119 STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR ELECTRICE 7 STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR

Διαβάστε περισσότερα

Dinamica structurilor şi inginerie seismică. Note de curs. Aurel Stratan

Dinamica structurilor şi inginerie seismică. Note de curs. Aurel Stratan Dinamica srucurilor şi inginerie seismică Noe de curs Aurel Sraan Timişoara 2009 1. Inroducere 1. Inroducere Dinamica srucurilor are ca obieciv principal elaborarea unor meode de deerminare a eforurilor

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

STUDIUL POLARIZĂRII LUMINII

STUDIUL POLARIZĂRII LUMINII STUDIUL POLARIZĂRII LUMINII 1. Scopul lucrării Măsurarea inensiăţii luminii care rece prinr-un sisem forma dinr-un polarizor şi un analizor în funcţie de unghiul ϕ dinre planele de polarizare ale polarizorului

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

3.3. Ecuaţia propagării căldurii

3.3. Ecuaţia propagării căldurii 3 ECUAŢII γ k + k iar din (34 rezuă că a 4Aω δ k (k + + a + (k+ (k+ ω deci 4Aω δ k + a a (k + (k+ ω Conform (9 souţia probemei considerae va fi 4Aω a w ( sin( sin( k+ k+ + a k a (k+ (k+ ω 4Asinω + sin(k+

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformaa Laplace GOM mai 8 Tranformaa Laplace În cele ce urmează vom udia ranformaa Laplace, care din punc de vedere maemaic nu ee decâ o inegrală improrie şi cu parameru (vezi formula ()), dar are numeroae

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

CIRCUITE ELEMENTARE CU AMPLIFICATOARE OPERAȚIONALE

CIRCUITE ELEMENTARE CU AMPLIFICATOARE OPERAȚIONALE LUCAEA nr. CICUITE ELEMENTAE CU AMPLIFICATOAE OPEAȚIONALE Scopul lucrării: Se sudiază câeva dinre circuiele elemenare ce se po realiza cu amplificaoare operaţionale (), în care acesea sun considerae ca

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cap PRIMITIVE 5 CAPITOLUL PRIMITIVE METODE GENERALE DE CALCUL ALE PRIMITIVELOR Î aces paragraf vom reamii oţiuea de primiivă, proprieăţile primiivelor şi meodele geerale de calcul ale acesora Defiiţia

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Dinamica structurilor şi inginerie seismică. Note de curs. Aurel Stratan

Dinamica structurilor şi inginerie seismică. Note de curs. Aurel Stratan Dinamica srucurilor şi inginerie seismică Noe de curs Aurel Sraan Timişoara 2014 Dinamica Srucurilor şi Inginerie Seismică. [v.2014] hp://www.c.up.ro/users/aurelsraan/ Cuprins 1. INTRODUCERE... 1 2. DINAMICA

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Analiza și previziunea serviciilor de sănătate în România

Analiza și previziunea serviciilor de sănătate în România Prof.ec. Tănase Mihai Expert contabil Analiza și previziunea serviciilor de sănătate în România Analiză statistică Braşov, 2015 Analiza si previziunea serviciilor de sanatate (spitale) in Romania in perioada

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

CIRCUITE ELEMENTARE DE PRELUCRARE A IMPULSURILOR

CIRCUITE ELEMENTARE DE PRELUCRARE A IMPULSURILOR Circuie elemenare de prelucrare a impulsurilor P a g i n a 1 LUCRARA NR.1 CIRCUIT LMNTAR D PRLUCRAR A IMPULSURILOR Scopul lucrării: sudierea comporării unor circuie RC de prelucrare liniară a impulsurilor

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

I X A B e ic rm te e m te is S

I X A B e ic rm te e m te is S Sisteme termice BAXI Modele: De ce? Deoarece reprezinta o solutie completa care usureaza realizarea instalatiei si ofera garantia utilizarii unor echipamente de top. Adaptabilitate la nevoile clientilor

Διαβάστε περισσότερα

CORELATIILE MACROECONOMICE DINTRE SECTOARELE REAL, MONETAR, BUGETAR SI EXTERN IN PROCESUL CRESTERII ECONOMICE

CORELATIILE MACROECONOMICE DINTRE SECTOARELE REAL, MONETAR, BUGETAR SI EXTERN IN PROCESUL CRESTERII ECONOMICE CORELATIILE MACROECONOMICE DINTRE SECTOARELE REAL, MONETAR, BUGETAR SI EXTERN IN PROCESUL CRESTERII ECONOMICE. TESTAREA SI DEFINITIVAREA MODELELOR ECONOMETRICE Prof. univ. dr. Moisa Altar, Asist. univ.

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

INGINERIE FINANCIARĂ

INGINERIE FINANCIARĂ ACADMIA D SUDII CONOMIC BUCURŞI CADRA D MONDĂ INGINRI FINANCIARĂ SUPOR PNRU SMINARII Bucureşi 9 CUPRINS Seminar : Opţiuni şi sraegii pe bază de opţiuni... 3 Seminar : Noţiuni elemenare... 7 Seminar 3:

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

INTRODUCERE IN TEORIA SISTEMELOR AUTOMATE

INTRODUCERE IN TEORIA SISTEMELOR AUTOMATE 1 INTRODUCERE IN TEORIA SISTEMELOR AUTOMATE Disciplina Teoria sisemelor auomae consiuie o pune de legăura înre eapa pregăirii ehnice fundamenale şi eapa pregăirii de specialiae, inroducănd o serie de cunoşine,

Διαβάστε περισσότερα

Clasificarea proceselor termodinamice se poate face din mai multe puncte de vedere. a. După mărimea variaţiei relative a parametrilor de stare avem:

Clasificarea proceselor termodinamice se poate face din mai multe puncte de vedere. a. După mărimea variaţiei relative a parametrilor de stare avem: Cursul 4..4.Mărimi de proces. Lucrul mecanic si căldura Procesul ermodinamic sau ransformarea de sare ese un fenomen fizic în cursul căruia corpurile schimbă energie sub formă de căldură şi lucru mecanic;

Διαβάστε περισσότερα

Teorema Rezidurilor şi Bucuria Integralelor Reale

Teorema Rezidurilor şi Bucuria Integralelor Reale Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului

Διαβάστε περισσότερα