Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών



Σχετικά έγγραφα
Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

AX=B (S) A A X=A B I X=A B X=A B I X=A B X=A B X=A B X X

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων»

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

= = = A X = B X = A B=

1 Ασκήσεις. Άσκηση 1.1 Να επιλυθούν τα παρακάτω γραμμικά συστήματα.

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

όπου Η μήτρα ή πίνακας του συστήματος

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Κεφάλαιο 7 Βάσεις και ιάσταση

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Επίλυση Γραµµικών Συστηµάτων

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

Στοχαστικά Σήµατα και Εφαρµογές

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

Μαρία Λουκά. Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

Περιεχόμενα. Πρόλογος 3

Γραμμική Άλγεβρα Ι,

Εφαρμοσμένα Μαθηματικά ΙΙ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ιούνιος 2010 Επιλεγµένες απαντήσεις και σχόλια

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

, ορίζουμε deta = ad bc. Πρόταση Ένας πίνακας Α είναι αντιστρέψιμος τότε και μόνο αν deta 0.

Γ 3 2Γ. Από τον τελευταίο πίνακα προκύπτει το ισοδύναμο με το αρχικό σύστημα. 3x 2 2x 3 = 1 x 3 = 2

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Φίλη μαθήτρια, φίλε μαθητή,

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

Γραμμικός Προγραμματισμός Μέθοδος Simplex

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Γραμμικά συστήματα. - όπου Α είναι ένας (m x n) πίνακας, ο οποίος περιέχει. - όπου Β είναι ένας (m x 1) πίνακας που περιέχει τους

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

Αριθμητική Ανάλυση και Εφαρμογές

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

[A I 3 ] [I 3 A 1 ].

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Τι είναι Γραμμική Άλγεβρα;

Εφαρμοσμένα Μαθηματικά ΙΙ

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΠΡΟΣΑΡΤΗΜΑ IΙΙ (III-1.1) όπου x i η τιµή της µέτρησης i και Ν ο αριθµός των µετρήσεων.

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Εφαρμοσμένα Μαθηματικά ΙΙ

x y max(x))

min f(x) x R n (1) x g (2)

Άσκηση 13. Θεωρήματα Δικτύων

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.

ΣΥΣΤΗΜΑΤΑ. Για την επίλυση ενός γραμμικού συστήματος με την χρήση των οριζουσών βασική είναι η παρακάτω επισήμανση:

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Transcript:

Συστήµατα γραµµικών εξισώσεων m m... n... n mn M n b M b m µη-οµογενείς Μπορεί να υπάρχει µία, πολλές ή καµία λύση Προγραµµατισµός µε χρήση MATLAB 58

ΈστωΈστω το σύστηµα: 5 λύση: 7/3, 8/3 συντεταγµένες τοµής γραµµών 0 8 6 4 0 - -4 5-5 -6 - - 0 3 4 5 6 Προγραµµατισµός µε χρήση MATLAB 59

ΈστωΈστω το σύστηµα: 0 0 8 λύση: ΕΝ ΥΠΑΡΧΕΙ 6 4-0 0 - - -4-6 - - 0 3 4 5 6 Προγραµµατισµός µε χρήση MATLAB 60

ΈστωΈστω το σύστηµα: 6 5 λύση: ΕΝ ΥΠΑΡΧΕΙ 5 50 40 30 0 0 0-6 - -5 5-0 - - 0 3 4 5 6 Προγραµµατισµός µε χρήση MATLAB 6

Το σύστηµα m m... n... n mn M n b M b m παριστάνεται µε µορφή πινάκων: ΑΧΒ και λύνεται: ΧΑ - Β X inv(a) ) * B Χρήσιµη η κλασµατική απεικόνιση rts(x) Προγραµµατισµός µε χρήση MATLAB 6

Σύστηµα της µορφής ΑΧ0 Οµογενές Περιπτώσεις: det(a)<>0 προφανής λύση Χ0-0 0 det3, 0 det(a)0 µπορεί να υπάρχουν περισσότερες της µίας λύσης -6 3 0-0 det0, Προγραµµατισµός µε χρήση MATLAB 63

Τάξη ενός πίνακα συντελεστών 3 4-3 0-3 - 4 3 0 5 3 0 Πίνακας Α 43-9 5-0 3 0 Οι µεγαλύτερες ορίζουσες 333 όλες µηδέν (0) Υπάρχουν ορίζουσες µη-µηδενικές µηδενικές τάξη Τάξη ενός πίνακα στο MATLAB: rnk(a) Λύση συστήµατος εξισώσεων µε αγνώστους και έναν ελεύθερο άγνωστο: 3 4 3-3 4 3 λύσεις: -0/7 3, 6/7 3 Προγραµµατισµός µε χρήση MATLAB 64

Επίλυση γραµµικών συστηµάτων εξισώσεων στο MATLAB: τελεστής «\»«- 5 A[ -; ]; B[ ; 5]; XA\B Ο τελεστής «\» δίνει πάντα λύση, ακόµη και ειδική Για τον έλεγχο εισάγεται η έννοια του επαυξηµένου πίνακα [Α Β] και εξετάζεται η τάξη του Α (n)( και του [Α Β] (r).( rn µοναδική λύση r<n άπειρες λύσεις (ως προς n-r µεταβλητές) Προγραµµατισµός µε χρήση MATLAB 65

Παράδειγµα επίλυσης: 3 4 3 4 3 5 A[ 3 4; ]; B[4; 5]; rnk(a) )rnk(b) υπάρχει µία λύση A\B [8; 0; -3] τάξη<πλήθος µεταβλητών λύση ως προς 3- ελεύθερες µεταβλητές 3, -6-3 Προγραµµατισµός µε χρήση MATLAB 66

Ψευδοαντίστροφος ενός πίνακα: Μη-τετραγωνικός πίνακας Α (mn) δεν έχει αντίστροφο Μπορεί να οριστεί πίνακας P (nm( nm), ώστε: A*P*AA, P*A*PP Ο P ονοµάζεται ψευδοαντίστροφος του Α Στο MATLAB: χρήση συνάρτησης pinv Στο προηγούµενο παράδειγµα: Xpinv(A pinv(a)*b Προγραµµατισµός µε χρήση MATLAB 67

Υπερπροσδιορισµένα συστήµατα (περισσότερες ανεξάρτητες εξισώσεις από αγνώστους): 3 3 3 3 5 3 4 7 3 3 0 9 8 3 7 rnk(a)3, rnk([a B])4 X A\B[.0887; A -057;.5349]!!!!! A*X[5.8; 4.9; 3; 0.89] <> B!!!!! Προγραµµατισµός µε χρήση MATLAB 68

Υπερπροσδιορισµένα συστήµατα: Λύση ελαχίστων τετραγώνων Έστω φαινόµενο στο οποίο δύο µεταβλητές σχετίζονται: yb Έστω m πειράµατα για τον προσδιορισµό των, b Στο i-οστό πείραµα έχουµε είσοδο i και µετρούµε έξοδο y i Ορίζουµε e i το σφάλµα µέτρησης της yi.. Έχουµε: y i b i e i, i,,,m Στην πράξη µετρούµε: (y i -e i )b i Για m> το σύστηµα αυτό δεν έχει λύση ενδιαφερόµαστε για προσέγγιση µε ελαχιστοποίηση του αθροίσµατος σφαλµάτων. ΕΣ e i κριτήριο ελαχίστων τετραγώνων Συνεπώς αναζητούνται, b που ελαχιστοποιούν το Ε Αποδεικνύεται ότι [;b[ ;b] ] (A A) - A Y, όπου A[ ; ; ; m ] Προγραµµατισµός µε χρήση MATLAB 69

Λύση ελαχίστων τετραγώνων (συνέχεια) 0:.5:0; erndn(,length());.5; b3.6; yb b*e; A[ ones(size())' ']; Yy'; Xinv(A inv(a'*a)*a'*y XXA\Y % εδώ δίνει λύση κατά την έννοια των ελαχίστων τετραγώνων plot(,y,'*',,(x()x()*),'r'); Προγραµµατισµός µε χρήση MATLAB 70

Λύση ελαχίστων τετραγώνων (συνέχεια) -y y- y 5 y5-6-y 3-5 5 y365 A[ -; ; 6 -]; B[; 5; -5]; XA\B -:6; y*-; ; y5-; y36*5; plot(,y,,y,,y3,x(),x(),'*'); grid; is tight; legend('y_-','y_5 ','y_5-','y_365', 'LSE solution'); Προγραµµατισµός µε χρήση MATLAB 7

Ασταθή συστήµατα Σφάλµατα µετρήσεων και ανοχές A[ ;.0]; ; B[;.0]; X[; ]; formt short; ; XA\B formt long; ; XA\B % αλλαγή κατά 0,5% % 0% µείωση, 00% αύξηση A(,).005; XA\B % αλλαγή <0.5% στο Β() 50% µεταβολή στα Χ A(,); B().05; XA\B % δείκτης αξιοπιστίας ευαισθησία λύσης σε µεταβολές formt short e; cond(a (A), formt short; Προγραµµατισµός µε χρήση MATLAB 7

Θέση διακόπτη A B C D Ασκήσεις: Εύρος (ma) 0-0 0-50 0-00 0-500. είξτε ότι το σύστηµα δεν έχει λύση: 4-4 3, 3-3 0. Κάνετε χρήση θεµελιώδους ιδιότητας οριζουσών.. ώστε γεωµετρική ερµηνεία.. Έστω το ασταθές σύστηµα: / / 3 / 4 X () 0.95 (α). Βρείτε λύση (β). Βρείτε λύση εάν B(3)0.53 ώστε σχετικές µεταβολές / 3 / 4 / 4 / 5 X () 0.67 / 6 X (3) 0.5 (γ). Βρείτε το δείκτη αξιοπιστίας και συµπεράσµατα για τη λύση 3. Έστω αµπερόµετρο µεταβλητής κλίµακας. Η κλίµακά του οργάνου είναι 0-mA0 ma. Η εσωτερική αντίστασή του είναι 55Ω. Να βρεθούν οι αντιστάσεις R, R, R3, R4 / 5 Προγραµµατισµός µε χρήση MATLAB 73