Πλαστική Κατάρρευση Δοκών



Σχετικά έγγραφα
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

Νοέμβριος Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7

ιάλεξη 7 η, 8 η και 9 η

Μέθοδος των Δυνάμεων

ΠΛΑΣΤΙΚΗ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟΣΤΟΛΟΣ Σ. ΠΑΠΑΓΕΩΡΓΙΟΥ

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδοι των Μετακινήσεων

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

4.5 Αµφιέρειστες πλάκες

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

Πειραματική Αντοχή Υλικών Ενότητα:

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Μέθοδος Επικόμβιων Μετατοπίσεων

ιαλέξεις Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

Μέθοδος των Δυνάμεων (συνέχεια)

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M)

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

Παραδείγματα μελών υπό αξονική θλίψη

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

Μέθοδος των Δυνάμεων (συνέχεια)

ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

ιαλέξεις Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος

Σιδηρές Κατασκευές ΙΙ

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών

Περίληψη μαθήματος Ι

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. 1. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xiv. 2. Συμβάσεις προσήμων...

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Χ. ΖΕΡΗΣ Απρίλιος

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Ενότητα: Υπολογισμός διατμητικών τάσεων

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

Γενικευμένα Mονοβάθμια Συστήματα

ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ

ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

Υπολογισμός τιμής του συντελεστή συμπεριφοράς «q» για κατασκευές προ του 1985 στην Αθήνα.

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

Κεφάλαιο 3 Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα

Κεφάλαιο 4 Συγκριτική επίλυση φορέων με και χωρίς ατένεια

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12

sin ϕ = cos ϕ = tan ϕ =

Σιδηρές Κατασκευές Ι. Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 25/12/2016. Νόμος του Coulomb q1 q2 F K. C 8,85 10 N m Ένταση πεδίου Coulomb σε σημείο του Α

ΑΣΚΗΣΗ 8. Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα M, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση.

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ

Π A N E Π I Σ T H M I O Θ E Σ Σ A Λ I A Σ TMHMA MHXANOΛOΓΩN MHXANIKΩN

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008

Κεφάλαιο 1 Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς

Transcript:

Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός Μετατοπίσεων

Σταδιακή Μελέτη Πλαστικής Κατάρρευσης ορθογωνική διατομή Υπολογισμός του πλαστικού φορτίου κατάρρευσης και εύρεση του αντίστοιχου μηχανισμού κατάρρευσης (collapse mechanism): Σταδιακή διερεύνηση πλαστικής κατάρρευσης (plastic collapse) (βοηθάει στην κατανόηση του υπολογισμού των παραμορφόσεων της κατασκευής) Με κατ ευθείαν μεθόδους κατα τις οποίες δεν ενδιαφερόμαστε για την σειρά σχηματισμού των πλαστικών αρθρώσεων (η απλότητα των πλαστικών μεθόδων έγκειται στο γεγονός οτι είναι δυνατοί κατ ευθείαν υπολογισμοί αυτού του τύπου)

Σταδιακή Μελέτη Πλαστικής Κατάρρευσης: Παράδειγμα 1 Το διάγραμμα ροπών κάμψης της ισοστατικής (αμφιερείστου) δοκού ειναι ανεξάρτητο απο την συμπεριφορά του υλικού και υπολογίζεται μόνον απο τις εξισώσεις στατικής ισορροπίας. Το φορτίο πλαστικής κατάρευσης δίδεται απο την σχέση. Το καμπυλόγραμμο σχήμα του ημίσεως της δοκού είναι το ίδιο στις θέσεις & του σχήματος (απλώς έχει περιστραφεί κατα απροσδιόριστη γωνία ). Μέθοδοι εύρεσης του φορτίου κατάρρευσης: Στατική Μέθοδος (Static Method): Κινηματική Μέθοδος (Kinematic Method):

Υπολογισμός καμπύλης φορτίου μετατόπισης αμφιερείστου δοκού ορθογωνικής διατομής Θα υπολογίσουμε την ακριβή καμπύλη φορτίου μετατόπισης (loaddeflection curve) της αμφιερείστου δοκού ορθογωνικής διατομής για συγκεντρωμένο φορτίο στο μέσο του ανοίγματος της δοκού. Επιλύουμε το ισοδύναμο πρόβλημα προβόλου δοκού. Ροπή στην στήριξη του προβόλου: l Ροπή διατομής σε τυχούσα διατομή σε απόσταση απο την ριζα της προβόλου: l Εχουμε παράξει την ακόλουθη εξίσωση: Επομένως, για την πλαστική περιοχή,, της δοκού: l Για,, και επομένως: Για την πλαστική περιοχή,, ισχύει η εξίσωση: για

Υπολογισμός καμπύλης φορτίου μετατόπισης αμφιερείστου δοκού ορθογωνικής διατομής Ολοκληρώνουμε την εξίσωση της ελαστικής καμπύλης: l l 1 1 l l Με ακόμη μία ολοκλήρωση λαμβάνουμε την εξίσωση ελαστικής καμπύλης του διαστήματος : l l l l Απο τα ανωτέρω δύο αποτελέσματα υπολογίζουμε την κλίση και την μετατόπιση του σημείου (όπου ) θέτοντας. Το υπόλοιπο μήκος της δοκού,, είναι ελαστικό και η ελαστική λύση για την ελαστική καμπύλη μπορεί να χρησιμοποιηθεί για να υπολογίσουμε την μετατόπιση στο ακρο της προβόλου δοκού.

Υπολογισμός καμπύλης φορτίου μετατόπισης αμφιερείστου δοκού ορθογωνικής διατομής Τα προηγούμενα αποτελέσματα μπορούν άμεσα να χρησιμοποιηθούν για να υπολογίσουμε την μετατόπιση στο μέσον του ανοίγματος της αμφιερείστου δοκού: όπου: Η ανωτέρω εξίσωση μετατόπισης είναι δυνατόν να εκφρασθεί συναρτήσει της δυσκαμψίας (σε κάμψη), ως ακολούθως:

Υπολογισμός καμπύλης φορτίου μετατόπισης αμφιερείστου δοκού ορθογωνικής διατομής Κατά την πρώτη διαρροή, και. Για τις τιμές αυτές, η ανωτέρω εξίσωση δίδει την τιμή μετατόπισης (= οριακή ελαστική μετατόπιση), όπου από την εξίσωση. Κατά την στιγμή της κατάρρευσης ( και ) το φορτίο κατάρρευσης είναι και η αντίστοιχη μετατόπιση δίδεται απο την σχέση: Κάνοντας την αντικατάσταση για στην ανωτέρω έκφραση μετατόπισης ευρίσκουμε ότι η μετατόπιση κατα την στιγμή της κατάρρευσης είναι της μετατόπισης κατά την στιγμή της πρώτης διαρροής.

Υπολογισμός καμπύλης φορτίου μετατόπισης αμφιερείστου δοκού ορθογωνικής διατομής Τα ανωτέρω αποτελέσματα συνοψίζονται στο ανωτέρω σχήμα.

Σταδιακή Μελέτη Πλαστικής Κατάρρευσης: Παράδειγμα 2 Η δοκός έχει ένα βαθμό στατικής αοριστίας Αρχικά ολόκληρη η δοκός συμπεριφέρεται ελαστικά. Η ελαστική συμπεριφορά παύει όταν Σχηματίζονται δύο πλαστικές αρθρώσεις στις στηρίξεις. Απο το σημείο αυτό και μετά, όσο το φορτίο αυξάνεται, οι επιπλέον παραμορφώσεις (και ροπές κάμψης) ειναι ίσες με τις παραμορφώσεις (και ροπές κάμψης) αμφιερείστου δοκού: Η τιμή του δίδεται απο την σχέση:

Σταδιακή Μελέτη Πλαστικής Κατάρρευσης: Παράδειγμα 2 Εχοντας προσδιορίσει το επιπλέον φορτίο που μπορεί να φέρει η δοκός, απο τις σχέσεις της αμφιερείστου δοκού: υπολογίζουμε τις επιπλέον παραμορφώσεις: Το φορτίο κατάρρευσης δίδεται από την σχέση:

Σταδιακή Μελέτη Πλαστικής Κατάρρευσης: Παράδειγμα 2 Υπολογισμός πλαστικού φορτίου κατάρρευσης, κατ ευθείαν: Στατική Μέθοδος (Static Method): Απο το διάγραμμα ροπών κατα την στιγμή της κατάρρευσης, έχουμε: Κινηματική Μέθοδος (Kinematic Method): 2 2 Επομένως: 2

Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Σημαντικό συμπέρασμα: Απο τα ανωτέρω παραδείγματα συμπεραίνουμε ότι το πλαστικό φορτίο κατάρρευσης είναι δυνατόν να υπολογισθεί κατ ευθείαν θεωρώντας μόνο το τελικό στάδιο παραμόρφωσης, δηλ. τον μηχανισμό πλαστικής κατάρρευσης (collapse mechanism) και το αντίστοιχο διάγραμμα ροπών κάμψης, κάνοντας χρήση μόνο τις εξισώσεις στατικής ισορροπίας. Στο παράδειγμα της αμφιπάκτου δοκού (υπερστατικός φορέας δύο υπερστατικών μεγεθών) όταν σχηματίζονται δύο πλαστικές αρθρώσεις τότε ο φορέας ειναι ισοστατικος (αφου στις πλαστικές αρθρώσεις η ροπή είναι γνωστή και ιση με την πλαστική ροπή εκαστης διατομής εκαστης δοκού). Η κατασκευή καταρρέει / καταπίπτει όταν σχηματισθεί τρίτη (που ειναι και η τελευταία) πλαστική άρθρωση, οπότε και υπολογίζουμε το φορτίο κατάρρευσης. Επομένως για τον κατ ευθείαν υπολογισμό που προαναφέραμε, χρειάζεται να γνωρίζουμε ποία πλαστική άρθρωση σχηματίζεται τελευταία.

Προσδιορισμός Μετατοπίσεων Ποία πλαστική άρθρωση σχηματίζεται τελευταία? Ενας τρόπος να απαντήσουμε στο ανωτέρω ερώτημα είναι με την σταδιακή μελέτη πλαστικής κατάρρευσης. Αν όμως επιθυμούμε κατ ευθείαν απάντηση, τότε υποθέτουμε οτι κάθε άρθρωση με την σειρά της είναι η τελευταία που σχηματίζεται και έτσι η σωστή μετατόπιση στο φορτίο πλαστικής κατάρρευσης είναι η μεγαλύτερη από εκείνες που υπολογόζονται σε κάθε υποθετική περίπτωση (Θεώρημα Μετατοπίσεων Displacement Theorem).

Παραμορφώσεις Δοκών Christian Otto MOHR (October 8, 1835 October 2, 1918) Σχέσεις της Μεθόδου των Παραμορφώσεων: Μεταξύ των κόμβων &, η δοκός πρέπει να είναι συνεχής (δηλ. να μήν υπάρχουν αρθρώσεις, πλαστικές αρθρώσεις, κλπ.) ΙΣΤΟΡΙΚΗ ΣΗΜΕΙΩΣΗ: Η ανωτέρω σχέση της Μεθόδου των Παραμορφώσεων αρχικώς επροτάθη απο τους Otto MOHR & ΜANDERLA (του Πολυτεχνείου της Δρέσδης) το 1868 με αφορμή μελέτη των δευτερευουσών τάσεων στα δικτυώματα. Αργότερα ο Prof. G.A. MANEY το 1915 επεξεργάστηκε περαιτέρω την Μέθοδο των Παραμορφώσεων και την διατύπωσε με τις εξισώσεις Slope Deflection.

Προσδιορισμός Μετατοπίσεων Πρώτα σχεδιάζουμε το διάγραμμα ροπών κατα την στιγμή της πλαστικής κατάρρευσης καθώς και τον αντίστοιχο μηχανισμό κατάρρευσης. Κατόπιν υπολογίζουμε το φορτίο πλαστικής κατάρρευσης ( με την στατική ή την κινηματική μέθοδο). Για το παράδειγμα της αμφιπάκτου δοκού έχουμε. Κατόπιν αρχίζουμε τους δοκιμαστικούς υπολογισμούς. Η και επομένως διαρρέει τελευταία η διατομή

Προσδιορισμός Μετατοπίσεων Μας αποσχολεί το μέγεθος των μετατοπίσεων ενός πλαισίου: κατα την στιγμή της κατάρρευσης υπό το φορτίο λειτουργίας (service or working load) ; συντελεστής φορτίου (load factor) Οι παραμορφώσεις / μετατοπίσεις της κατασκευής πρέπει να είναι περιορισμένες ώστε η κατασκευή να εξακολουθήσει να είναι λειτουργική, και να ισχύει η θεωρία μικρών μετατοπίσεων (γραμμική θεωρία) που χρησιμοποιούμε για την ανάλυση. Μας απασχολεί η ικανοτητα στροφής (rotation capacity) που χαρακτηρίζει την ικανότητα ενός κατασκευαστικού μέλους να απορροφά στροφές για τιμές της ροπής καμψης εγγύς της πλαστικής ροπής. Εξαρτάται απο την τοποθεσία της θέσης της πλαστικής αρθρωσης στην κατασκευή, καθώς και απο το φορτίο.

Πλαστική Κατάρρευση Δοκών ΑΣΚΗΣΕΙΣ (1) Αμφιέρειστη δοκός ορθογωνικής διατομής και ανοίγματος, φέρει συγκεντρωμένο φορτίο που ασκείται σε απόσταση απο μία απο τις δύο στηρίξεις. Σχεδιάσατε το σχήμα της πλαστικής ζώνης κατα την στιγμή της κατάρρευσης. (2) Μια οριζοντία πρόβολος δοκός μήκους l και σταθερής διατομής καθ όλο το μήκος της, καταρρέει όταν ασκηθεί φορτίο στο ελεύθερο άκρο της. Εαν μία δύναμης,, ασκηθεί πρός τα επάνω σε απόσταση l από το σημείο στήριξης της δοκού, τι εντάσεως φορτίο μπορεί να φέρει η δοκός, στην περίπτωση αυτή, στο ελεύθερο άκρο της. (Αγνοήσατε την επίδραση της τέμνουσας δύναμης στην διατομή.) (3) Να γίνει σταδιακή μελέτη πλαστικής κατάρρευσης για μια δοκό που είναι πακτωμένη στην αριστερή στήριξη και εχει απλή άρθρωση στην δεξιά στήριξη, για τα ακόλουθα δύο φορτία: (α) συνεχές σταθερό φορτίο, (β) συγκεντρωμένο φορτίο στο μέσον του ανοίγματος της δοκού. [Αγνοήσατε την επίδραση τεμνουσών δυνάμεων και θεωρήσατε ελαστική απόλυτα πλαστική πλαστικοποίηση των διατομών.]