f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

Σχετικά έγγραφα
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

(f(x)+g(x)) =f (x)+g (x), x R

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

P(A ) = 1 P(A). Μονάδες 7

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

(f(x) + g(x)) = f (x) + g (x).

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

P A B P(A) P(B) P(A. , όπου l 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

,,, και τα ενδεχόμενα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

Μαθηματικός Περιηγητής σχ. έτος

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

Λύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων 2014 Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γενικής Παιδείας ΗΜΕΡΗΣΙΑ ΓΕ.Λ.

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Transcript:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g είναι παραγωγίσιμες στο, να αποδείξετε ότι f x g x f x g x, x Μονάδες 7 Α Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη στο σημείο x0 του πεδίου ορισμού της; Μονάδες 4 Α Αν x 1, x,, x ν είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w 1, w,, w ν είναι οι αντίστοιχοι συντελεστές στάθμισης (βαρύτητας), να ορίσετε τον σταθμικό μέσο της μεταβλητής Χ Μονάδες 4 Α4 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α) Αν για τη συνάρτηση f ισχύουν fx0 0 για x0 α,β, α,x 0 και fx 0 στο 0 διάστημα x x α,β για 0 f x 0 στο x,β, τότε η f παρουσιάζει ελάχιστο στο β) Ένα τοπικό ελάχιστο μιας συνάρτησης στο πεδίο ορισμού της μπορεί να είναι μεγαλύτερο από ένα τοπικό μέγιστο γ) Η διακύμανση των παρατηρήσεων μιας ποσοτικής μεταβλητής Χ εκφράζεται με τις ίδιες μονάδες με τις οποίες εκφράζονται οι παρατηρήσεις

ΘΕΜΑ Β δ) Αν για τους συντελεστές μεταβολής των δειγμάτων Α και Β ισχύει CV >CV, τότε λέμε ότι το δείγμα Β εμφανίζει μεγαλύτερη ομοιογένεια A από το δείγμα Α ε) Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω, τότε η έκφραση «η πραγματοποίηση του Α συνεπάγεται την πραγματοποίηση του Β» δηλώνει ότι Α Β Μονάδες 10 Έστω Α, Β και Γ ενδεχόμενα ενός δειγματικού χώρου Ω Οι πιθανότητες των ενδεχομένων Α, A και A ανήκουν στο σύνολο λύσεων της εξίσωσης x 1 8x 6x 1 0 Η πιθανότητα του ενδεχομένου Γ ανήκει στο σύνολο λύσεων της εξίσωσης 9x x 0 1 1 1 Β1 Να αποδείξετε ότι P(A), P(A ) και P(A ) 4 Μονάδες 5 Β Να υπολογίσετε την πιθανότητα P(A ), καθώς επίσης και την πιθανότητα του ενδεχομένου Δ: «πραγματοποιείται το πολύ ένα από τα ενδεχόμενα Α και Β» Β Να υπολογίσετε την πιθανότητα του ενδεχομένου Ε: «πραγματοποιείται μόνο ένα από τα ενδεχόμενα Α και Β» Β4 Να εξετάσετε αν τα ενδεχόμενα Β και Γ είναι ασυμβίβαστα Μονάδες 8 Μονάδες 6 Μονάδες 6 ΘΕΜΑ Γ Θεωρούμε ένα δείγμα ν παρατηρήσεων μιας συνεχούς ποσοτικής μεταβλητής Χ, τις οποίες ομαδοποιούμε σε 5 ισοπλατείς κλάσεις, όπως παρουσιάζονται στον Πίνακα Ι, όπου f %, 1,,,4,5 είναι οι σχετικές συχνότητες επί τοις εκατό των αντιστοίχων κλάσεων Θεωρούμε ότι οι παρατηρήσεις κάθε κλάσης είναι ομοιόμορφα κατανεμημένες Δίνεται ότι : Το ποσοστό των παρατηρήσεων του δείγματος που είναι μικρότερες του 10 είναι 10% Το ποσοστό των παρατηρήσεων του δείγματος που είναι μεγαλύτερες ή ίσες του 16 είναι 0% Στο κυκλικό διάγραμμα σχετικών συχνοτήτων, η γωνία του κυκλικού τομέα που αντιστοιχεί στην η κλάση είναι 108 ο Η μέση τιμή των παρατηρήσεων του δείγματος είναι x 14

Kλάσεις f % [8, 10) [10, 1) [1, 14) [14, 16) [16, 18) ΠΙΝΑΚΑΣ Ι Γ1 Να αποδείξετε ότι f 1% 10, f % 10, f % 0, f 4% 0, f 5% 0 Δεν είναι απαραίτητο να μεταφέρετε στο τετράδιό σας τον Πίνακα Ι συμπληρωμένο Μονάδες 6 Γ Να εξετάσετε αν το δείγμα των παρατηρήσεων είναι ομοιογενές Δίνεται ότι 6,6,57 Μονάδες 7 Γ Έστω x 1, x, x και x 4 τα κέντρα της 1 ης, ης, ης και 4 ης κλάσης αντίστοιχα και ν 1, ν, ν και ν 4 οι συχνότητες της 1 ης, ης, ης και 4 ης κλάσης αντίστοιχα Αν 4 1 x ν 1780, βρείτε το πλήθος ν των παρατηρήσεων του δείγματος Μονάδες 5 Γ4 Έστω 1,,, 4, 5 πέντε τυχαία επιλεγμένες παρατηρήσεις διαφορετικές μεταξύ τους από το παραπάνω δείγμα ν παρατηρήσεων Ορίζουμε ως τη μέση τιμή των πέντε αυτών παρατηρήσεων και S α την τυπική τους απόκλιση Εάν, για =1,,, 4, 5, να δείξετε ότι η μέση τιμή του δείγματος S β, =1,,, 4, 5 είναι ίση με 0 και η τυπική του απόκλιση S β είναι ίση με 1 Μονάδες 7

ΘΕΜΑ Δ Δίνεται κύκλος (Ο,ρ) με κέντρο Ο και ακτίνα ρ=5 και ορθογώνιο ΑΒΓΔ εγγεγραμμένο στον κύκλο αυτόν με πλευρά ΑΒ=x, όπως φαίνεται στο Σχήμα Ι A x Β Δ Ο Γ ΣΧΗΜΑ Ι Δ1 Να αποδείξετε ότι το εμβαδόν του ορθογωνίου ΑΒΓΔ, ως συνάρτηση του x, δίνεται από τον τύπο f(x) x 100 x, 0 x 10 Μονάδες 4 Δ Να βρείτε την τιμή του x για την οποία το εμβαδόν του ορθογωνίου ΑΒΓΔ γίνεται μέγιστο Για την τιμή αυτήν του x, δείξτε ότι το ορθογώνιο ΑΒΓΔ είναι τετράγωνο Μονάδες 5 (1 x) 99 Δ Να υπολογίσετε το όριο lm x 0 98 x f Μονάδες 8 Δ4 Έστω Α, Β ενδεχόμενα ενός δειγματικού χώρου Ω Αν P(A-)>0, να δείξετε ότι f P(A ) P(A) f 100 P (A) 100 P (A ) Μονάδες 8

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ 1 Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 87 Α4 α) Λ, β) Σ, γ) Λ, δ) Λ, ε) Σ ΘΕΜΑ Β Β1 Είναι Επειδή 1 1 1 x 1 8x 6x 1 0 x, x, x 4 A A A έχουμε 1 1 1 P A, P A, P A 4 P( ) Επίσης P A P A P A 9x x 0 x Β ' ' ' ' ' ' 1 1 1 PA P(A ) PA 1 P( A) P A 1 P( A) 1P A 1 1 6 Είναι ' 1 P( ) P A 1 P A 1 4 4 Β Από τον προσθετικό νόμο έχουμε: 1 1 1 5 P A P( A) P( ) P A P( ) P( ) 4 1 Οπότε P( E) P A A P A P A P( A) P A P( ) P A 1 1 5 1 1 4 1 4 4

Β4 Έστω Β,Γ ασυμβίβαστα τότε: 5 1 P P( ) P( ) P 1 1 1 ασυμβίβαστα Άρα Β,Γ δεν είναι ΘΕΜΑ Γ Γ1 8,10 10,1 1,14 14,16 16,18 x % f 9 10 0,1 11 10 0,1 1 0 0, 15 0 0, 17 0 0, 100 1 f Από το κυκλικό διάγραμμα έχουμε 60 f 108 f 0, δηλαδή f % 0 Αφού x 14 έχω 4 5 x x f 14 0,19 f 11 0,1 f 15 0,17 11f 15 f 4,1 1 και, 1 4 f f f f f 1 0,1 f 0, f 0, 1 f f 0, 1 4 5 4 4 Λύνοντας το σύστημα των 1, έχουμε f f4 1 Γ Είναι πίνακα βρίσκουμε 5 5 s x x r x x f r 1 1 0,1, 0, Αντικαθιστώντας τις τιμές από τον s 6,6 δείγμα δεν είναι ομοιογενές S 6, 6,57 CV 0,18 18% το x 14 14

Γ Είναι 5 4 14 1780 x 1780 5v5 14 17 0, v 00 v v xv xv x5v5 1 1 1780 x x f v v v 5 5 Γ4 Από την εφαρμογή σελ 99 έχουμε: 1 s s με 1,,,5 Άρα 1 0 s s και 1 s s 1 s ΘΕΜΑ Δ Δ1 Από το ορθογώνιο τρίγωνο ΑΔΓ έχουμε: 100 x x 100 x με 0 10 x Δ Έστω f x x 100 x ' f x x x 0 100 0 50 5 μεταβολών: f f ' Είναι f x 100 x 100 x Έχουμε Κατασκευάζουμε πίνακα x 0 10 + 0 - ' x x 5 Το εμβαδό γίνεται μέγιστο όταν 5 x οπότε δηλαδή το ορθογώνιο γίνεται τετράγωνο 100 5 5

Δ f x f x 1 99 1 99 f 1 x 99 f 1 x 99 lm lm lm x o 98x x o 98x f 1 x 99 x o 98x f 1 x 99 g x 1 x 100 1 x 99 x x 1 99 x x 99 x x 99 1 x lm lm lm xo 98x g x xo 98x g x xo 98x g x x x gx 99 1 98 1 99 lm xo 98 98 99 99 99 Δ4 Είναι 0 P A 1 f οπότε αφού, 0P A 1 P A και P A 0,1 0,5 A A P A P A f P A f P A P A 100 P A P A 100 P A 1 Ισχύει ότι: P A 100 P Όμοια Έχουμε A 100 P A 50 P A 50 100 P A P A 50P A 5000 P A 50 P A P A P A P A f f ό f 100 P A 100 P A 100 P A 100 P A P A 100 P A P A 100 P A που αποδείχθηκε από 1