Μοντέλα και Τεχνικές Αξιολόγησης. Ενεργειακών και Περιβαλλοντικών Πολιτικών

Σχετικά έγγραφα
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων

ΧΡΗΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΕ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΕΝΕΡΓΕΙΑΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μάθημα: ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης ούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

Ενεργειακών και Περιβαλλοντικών Πολιτικών

ΔΙΑΧΕΙΡΙΣΗ ΕΤΕΡΟΓΕΝΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων

ΔΙΑΧΕΙΡΙΣΗΣ ΕΤΕΡΟΓΕΝΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΤΗΝ ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ

Πολυκριτήρια Ανάλυση Αποφάσεων

Πολυκριτήρια ανάλυση με γλωσσικές μεταβλητές για την υποστήριξη αποφάσεων ενεργειακής πολιτικής: Επισκόπηση μεθοδολογιών και ανάλυση εφαρμογών

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #11: Ασαφής Αριθμητική. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές. Δρ. Γιώργος Λαμπρινίδης 23/10/2015 Η - Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1

Εισαγωγή στον Προγραμματισμό

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ. ΗΜΥ-210: Εαρινό Εξάµηνο Σκοπός του µαθήµατος. Ψηφιακά Συστήµατα. Περίληψη. Εύρος Τάσης (Voltage(

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο. Τι θα τυπωθεί στον παρακάτω κώδικα;

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα = 3 x x x x 10 0

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL

Χάραξης Ενεργειακών και Περιβαλλοντικών Πολιτικών

Εισαγωγή στη Matlab Βασικές Συναρτήσεις

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Εισαγωγή στην γλώσσα προγραμματισμού C

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΒΑΡΩΝ SIMOS - ROC. Χάρης Δούκας

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Επιχειρησιακή Έρευνα I

ΣΥΝΑΡΤΗΣΙΑΚΑ ΜΟΝΤΕΛΑ ΑΠΟΦΑΣΕΩΝ

5. (Λειτουργικά) Δομικά Διαγράμματα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΓΛΩΣΣΑ ΑΛΦΑΒΗΤΟ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΣΤΑΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 3 Ο. Σταθερές-Παράμετροι-Μεταβλητές Αριθμητικοί & Λογικοί Τελεστές Δομή ελέγχου-επιλογής Σύνθετοι έλεγχοι

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

Συναρτήσεις στη Visual Basic 6.0

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-)

Αριθμητική Ανάλυση & Εφαρμογές

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Δύο λόγια από τη συγγραφέα

Πράξεις με δυαδικούς αριθμούς

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1

Αριθµητική υπολογιστών

Πατώντας το πλήκτρο Enter ή το κουμπί Enter από την γραμμή τύπων εκτελείται η μαθηματική πράξη και παρουσιάζει το αποτέλεσμα του κελιού.

Pascal, απλοί τύποι, τελεστές και εκφράσεις

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Δείκτες & Πίνακες Δείκτες, Πίνακες

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex

Προγραμματισμός I (Θ)

Κεφάλαιο 7 Βασικά Θέματα Προγραμματισμού. Εφαρμογές Πληροφορικής Κεφ. 7 Καραμαούνας Πολύκαρπος 1

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου

Γραμμικός Προγραμματισμός

Προγραμματισμός Ι (ΗΥ120)

Εισαγωγή στην Επιστήμη Υπολογιστών. Εισαγωγή στην Python

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Υπερφόρτωση Τελεστών

3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting)

Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB

Εισαγωγή στην Επιστήμη των Υπολογιστών

Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας

Οικονόμου Βαγγέλησ Διάλεξη Νο 2. Δομημένοσ Προγραμματιςμόσ - Διάλεξη 2

Προγραμματισμός Ι (HY120)

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Αντικειμενοστρεφής Προγραμματισμός -Python. Κ.Π. Γιαλούρης

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

Γεννήτριες Συναρτήσεις

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Transcript:

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Μοντέλα και Τεχνικές Αξιολόγησης Ενεργειακών και Περιβαλλοντικών Πολιτικών Χάρης Δούκας, Ιωάννης Ψαρράς Μάθημα: Διαχείριση Ενέργειας και Περιβαλλοντική Πολιτική

Περιεχόμενα Μοντέλα Αναπαράστασης και Επεξεργασίας Προσέγγιση Προέκτασης Προσέγγιση Διπλής Αναπαράστασης Αριθμητικά Παραδείγματα

Μοντέλα Αναπαράστασης και Επεξεργασίας [2/3] Σύνολο Γλωσσικών Όρων

Μοντέλα Αναπαράστασης και Επεξεργασίας [3/3] Σύνολο Γλωσσικών Όρων Πρόσθετα Χαρακτηριστικά: Να υπάρχει ένας αρνητικός τελεστής π.χ. neg(s i ) = s j. j = T i (T + 1 είναι ο αριθμός των στοιχείων). Τελεστής μεγιστοποίησης: max(s i, s j ) = s i αν s i s j. Τελεστής ελαχιστοποίησης: min(s i, s j ) = s i αν s i s j. Δεν ορίζονται οι συνηθισμένες αλγεβρικές πράξεις της πρόσθεσης, αφαίρεσης, πολλαπλασιασμού και διαίρεσης μεταξύ των όρων της. Ορίζονται μόνο πράξεις που αφορούν τη διάταξη όπως π.χ. η max και η min.

Φιλοσοφία Προσέγγιση Προέκτασης [1/5] Herrera F, Martinez L. (1999) Μετατροπή αριθμητικών τιμών σε ασαφή σύνολα Αλγεβρικές πράξεις Απώλεια πληροφορίας Herrera F et al (2009)

Προσέγγιση Προέκτασης [2/5] Παράδειγμα (1/4) Η συνάρτηση συσχέτισης για την αναπαράσταση των γλωσσικών μεταβλητών είναι τριγωνικής μορφής, δηλαδή Si ( ai, bi, ci ), όπου το a είναι το αριστερό όριο, το i c είναι το i δεξιό όριο και το b i η τιμή που η συνάρτηση παίρνει την μέγιστη τιμή δηλαδή το 1.

Προσέγγιση Προέκτασης [3/5] Παράδειγμα (2/4) S= {N, VL, L, M, H, VH, P}, όπου: P = Perfect = (.83, 1, 1) VH = Very_High = (.67,.83, 1) H = High = (.5,.67,.83) M = Medium = (.33,.5,.67) L = Low = (.17,.33,.5) VL = Very_Low = (0,.17,.33) N = None = (0, 0,.17)

Προσέγγιση Προέκτασης [4/5] Παράδειγμα (3/4) x x 1 3 2 x x P 1 VL M M L 4 P 2 M L VL H P 3 H VL M M P 4 H H L L C = (1/ m a,1/ m b,1/ m c ) d j m i1 ij m i1 ij m 2 2 2 ( si, C j ) Q1 ( a1 a j ) Q2 ( b1 b j ) Q3 ( c1 c j ) i1 ij

Προσέγγιση Προέκτασης [5/5] Παράδειγμα (4/4) Εγγύτερος όρος με βάση το app 1 C 2 Το app 1 (.) επιλέγει το s * i (app 1 (C j)= s * i ), έτσι ώστε, d(s * i, C j) d(s i, C j ) s i S

Προσέγγιση Διπλής Αναπαράστασης [1/4] «2-tuple» Έστω S = {s 0,, s g } ένα γλωσσικό σύνολο όρων Έστω β το αποτέλεσμα μιας συμβολικής άθροισης, ενός συνόλου γλωσσικών όρων που έχουν εκφραστεί σε μια γλωσσική κλίμακα S όπου β [0, g ] Έστω i=round(β) και a=β i δύο τιμές τέτοιες ώστε i [0, g ] και a [ 0. 5, 0. 5 ) Το μοντέλο γλωσσικής αναπαράστασης αναπαριστά τη γλωσσική πληροφορία με ζεύγη διπλών αναπαραστάσεων (s i, a i ) s S και a [ 0. 5, 0. 5 ) i i Το s i αντιπροσωπεύει την γλωσσική προέλευση της πληροφορίας Το α i αποτελεί μια αριθμητική τιμή, η οποία εκφράζει την απόδοση της μετάφρασης από το αρχικό αποτέλεσμα β στο πλησιέστερο όρο i στο σύνολο γλωσσικών στοιχείων (s i ). Herrera F, Martinez L. (2000)

Προσέγγιση Διπλής Αναπαράστασης [2/4] Μετασχηματισμός Συναρτήσεις μετασχηματισμού ανάμεσα στους γλωσσικούς όρους και τη διπλή αναπαράσταση και ανάμεσα στις αριθμητικές τιμές και τη διπλή αναπαράσταση: Δ : [ 0, g ] S [ - 0. 5, 0. 5 ) si, i round( ) Δ ( β ) = ( s i, a ) με a i, a [ 0.5, 0.5) όπου i=round(β) και a i [ 0. 5, 0. 5 ) Υπάρχει πάντα μια συνάρτηση Δ -1, τέτοια ώστε από τη διπλή αναπαράσταση επιστρέφει την ισοδύναμη αριθμητική τιμή β [ 0, g ] Έτσι, ορίζεται η παρακάτω συνάρτηση: -1 Δ : S [ 0. 5, 0. 5 ) [ 0, g ] Δ -1 ( s, a ) = i + a = β i Herrera F, Martinez L. (2000)

Προσέγγιση Διπλής Αναπαράστασης [3/4] Παραδείγματα β=3.25

Προσέγγιση Διπλής Αναπαράστασης [4/4] Αριθμητικός Μέσος Σταθμισμένος Μέσος