ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014



Σχετικά έγγραφα
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

(f(x)+g(x)) =f (x)+g (x), x R

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

(c f (x)) = c f (x), για κάθε x R

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

P A B P(A) P(B) P(A. , όπου l 1

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

P(A ) = 1 P(A). Μονάδες 7

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ +ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

μιας παρατήρησης όπου λ. Αν για το πλήθος Ν(Ω) των σφαιρών που υπάρχουν στο κουτί ισχύει 64<Ν(Ω)<72, τότε λ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηματικός Περιηγητής σχ. έτος

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ(ΟΜΑΔΑΣ Β )

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

x. Αν ισχύει ( ) ( )

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

c f(x) = c f (x), για κάθε x R

(f(x) + g(x)) = f (x) + g (x).

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

Transcript:

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του ορισμού της παραγώγου ότι ( cf ( x ))' = cf '( x ), για κάθε x R Μονάδες 7 Α. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες Α. Πότε μια ποσοτική μεταβλητή λέγεται διακριτή και πότε συνεχής; Μονάδες Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. f' x 0 α) Αν για τη συνάρτηση f ισχύει ( ) 0 =, για x ( α,β) 0, και η παράγωγος της f διατηρεί πρόσημο εκατέρωθεν του x 0, τότε η f είναι γνησίως μονότονη στο (α, β) και δεν παρουσιάζει ακρότατο στο διάστημα αυτό. (μονάδες ) β) Για δύο οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει: ( ) = ( ) ( ) ΡΑ Β ΡΒ ΡΑ Β (μονάδες ) γ) Σε μια κανονική ή περίπου κανονική κατονομή το 95% περίπου των παρατηρήσεων βρίσκονται στο διάστημα ( x s,x+ s), όπου x η μέση τιμή και S η τυπική απόκλιση των παρατηρήσεων. (μονάδες ) δ) Αν x είναι τιμή μιας ποσοτικής μεταβλητής X, τότε η αθροιστική συχνότητα Ν εκφράζει το πλήθος των παρατηρήσεων που είναι μεγαλύτερες της τιμής x. (μονάδες ) ε) Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κυκλικους τομείς, τα εμβαδά ή, ισοδύναμα, τα τόξα των οποίων είναι ανάλογα προς τις αντίστοιχες συχνότητες ή τις σχετικές συχνότητες f των τιμών x της μεταβλητής. (μονάδες )

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Μονάδες 0 ΘΕΜΑ Β Στο παρακάτω σχήμα φαίνεται το ιστόγραμμα συχνοτήτων, το οποίο παριστάνει τις πωλήσεις σε χιλιάδες ευρώ που έγιναν από τους πωλητές μιας εταιρείας κατά τη διάρκεια ενός έτους. Β. Να βρείτε το πλήθος των πωλητών της εταιρείας. Μονάδες 5 Β. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συχνοτήτων της κατανομής των πωλήσεων κατάλληλα συμπληρωμένο, δικαιολογώντας τη στήλη με τις σχετικές συχνότητες f, =,,, Β. α) Να υπολογίσετε τη μέση τιμή των πωλήσεων του έτους. (μονάδες 6)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 β) Να βρείτε το πλήθος των πωλητών που έκαναν πωλήσεις τουλάχιστον,5 χιλιάδων ευρώ (θεωρούμε ότι οι παρατηρήσεις κάθε κλάσης είναι ομοιόμορφα κατανεμημένες) (μονάδες 6) Μονάδες ΘΕΜΑ Γ Ένα δοχείο περιέχει κόκκινες (Κ), άσπρες (Α) και πράσινες (Π) μπάλες. Επιλέγουμε τυχαία μία μπάλα. Η πιθανότητα να προκύψει κόκκινη μπάλα είναι Ρ(Κ)=x, ενώ η πιθανότητα να προκύψει άσπρη μπάλα είναι Ρ(Α)=x, όπου x, x είναι οι θέσεις των τοπικών ακροτάτων της συνάρτησης 7 f( x) = x x + x, x R με x <x Γ. Να βρείτε τις πιθανότητες Ρ(Κ), Ρ(Α) και Ρ(Π), όπου Ρ(Π) η πιθανότητα να προκύψει πράσινη μπάλα. Μονάδες 0 Γ. Αν ΡΚ ( ) = και ΡΑ ( ) =, να βρείτε τις πιθανότητες των παρακάτω ενδεχομένων: Γ: «η μπάλα που επιλέγεται τυχαία να είναι κόκκινη ή άσπρη» Δ: «η μπάλα που επιλέγεται τυχαία να είναι ούτε κόκκινη ούτε άσπρη» Ε: «η μπάλα που επιλέγεται τυχαία να είναι άσπρη ή να μην είναι πράσινη». Γ. Αν οι άσπρες μπάλες είναι κατά τέσσερις () λιγότερες από τις πράσινες μπάλες, να βρείτε πόσες μπάλες έχει το δοχείο. Μονάδες 6 ΘΕΜΑ Δ Θεωρούμε ένα κουτί σχήματος ορθογωνίου παραλληλεπιπέδου με βάση ορθογώνιο και ανοικτό από πάνω.

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Το ύψος του κουτιού είναι 5dm. Η βάση του κουτιού έχει σταθερή περίμετρο 0dm και μία πλευρά της είναι x dm με 0<x<0 Δ. Να αποδείξετε ότι η συνολική επιφάνεια του κουτιού ως συνάρτηση του x είναι Ε(x)= -x +0x+00, x ( 0,0) και να βρείτε για ποια τιμή του x το κουτί έχει μέγιστη επιφάνεια. Στη συνέχεια θεωρούμε τα σημεία A (x, y ), όπου y =E(x ), =,,, 5 με 5=x <x < <x <x 5 =9 Δ. Αν το δείγμα των τετμημένων x, =,,,5 των παραπάνω σημείων A (x, y ) δεν είναι ομοιογενές έχει μέση τιμή x=8 και τυπική απόκλιση s τέτοια, ώστε s -5s+=0 τότε: α) να αποδείξετε ότι s= β) να βρείτε τη μέση τιμή των x, με =,,, 5 t = Δίνεται ότι: s = t = (μονάδες ) (μονάδες ) Δ. Επιλέγουμε τυχαία ένα από τα παραπάνω σημεία Α(x, y ), =,,, 5. Να βρείτε την πιθανότητα του ενδεχομένου: Β={Α(x, y ), =,,, 5 τέτοια, ώστε y >-x +9R+}, όπου R είναι το εύρος των y =E(x ), =,,, 5 Μονάδες 9 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία σχολικού βιβλίου σελίδα 0

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α. Θεωρία σχολικού Βιβλίου σελίδα Α. Θεωρία σχολικού Βιβλίου σελίδα 59 Α. α. Σωστό β. Λάθος γ. Λάθος δ. Λάθος ε. Σωστό ΘΕΜΑ Β Β. ν = ν + ν + ν + ν = + 8 + + 6 = 0 Β. Κλάσεις Κεντρικές Συχνότητα Σχετική x Τιμές x Συχνότητα f [,) 0,0 6 [,6) 5 8 0,0 0 [6,8) 7 0,5 98 [8,0) 9 6 0,5 5 Σύνολο 0 8 f 8 0,0 = = = 0,0 0 0 6 = = = 0,5 f = = = 0,5 0 0 = = = f f x 8 = Β. α) x = = = 5,7 χιλ. ευρώ. 0 Β) Το πλήθος των πωλητών με πωλήσεις τουλάχιστον,5 χιλιάδων ευρώ είναι 8 6 6 + + = ΘΕΜΑ Γ Γ. f ( x) = x x+, x R f ( x) = 0 x x+ = 0 x= ή x =

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Το πρόσημο της f φαίνεται από τον παρακάτω πίνακα: x + f (x) + + f(x) Γνησίως αύξουσα Γνησίως φθίνουσα Γνησίως αύξουσα Στο x = η f παρουσιάζει τ.μέγιστο και στο x = η f παρουσιάζει τ.ελάχιστο. Άρα PK ( ) =, PA ( ) = 5 P( Π ) = = 7 Γ. ΡΓ ( ) =ΡΚ Α ( ) =ΡΚ ( ) +ΡΑ ( ) = 5 ΡΔ ( ) = P( Π ) = 7 ΡΑ Π ( ) =ΡΑ ( ) + P( Π ) ΡΑ Π ( ) = P( A) + P( Π) P( A) = P( Π ) = Γ. Έστω x οι πράσινες και x οι άσπρες και ν όλες οι μπάλες x x + Ρ( Α ) = = x = 5 5 P( Π ) = x x x = = + 5 Άρα = + = 5 = = = 8 ΘΕΜΑ Δ Δ. Αν y dm η άλλη διάσταση της βάσης τότε: x + y = 0, οπότε y = 0 x Ex ( ) = x(0 x) + 5(0 x) + 5x= x+ 0x+ 00, x (0,0) E ( x) = x+ 0, x (0,0)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 x 0 5 0 E (x) + E(x) Γνησίως αύξουσα Γνησίως φθίνουσα Ολικό μέγιστο Για x = 5 dm το κουτί έχει την μέγιστη επιφάνεια Δ. Αφού το δείγμα δεν είναι ομοιογενές τότε: s s CV > > > s > 0,8 0 x 0 8 0 Έχουμε s 5s+ = 0 s= ή s = (απορρίπτεται) Άρα s = t t = = β) s = t t x ( x) = = = = Άρα x = s + ( x) = + 8 = 68 Δ. Επειδή η Ε γνησίως φθίνουσα στο [5,0) και αφού x < x τότε 5 E( x ) > E( x ) οπότε R= E( x ) E( x ) = E(5) E(9) = 5 09 = 6 5 5 Έχουμε y > x + 9R+ x + 0x + 00> x + 9 6+ x + x 5 > 0 5 < x < 9, =,..., B= A( x, y ), =,,..., Οπότε { } N( B) PB ( ) = = N( Ω) 5 ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΗΘΗΚΕ Ο ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ ΚΟΥΣΗΣ Π. ΣΙΦΝΑΙΟΣ Δ. ΤΖΩΡΤΖΙΝΗΣ Ι. ΦΙΛΙΟΓΛΟΥ Ε. ΦΛΩΡΟΠΟΥΛΟΣ Α.