ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις



Σχετικά έγγραφα
Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

P(A ) = 1 P(A). Μονάδες 7

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

P(A ) = 1 P(A). Μονάδες 7

= +. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α. Μονάδες 7.

P(A ) = 1 P(A). Μονάδες 7

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

P A B P(A) P(B) P(A. , όπου l 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

(f(x)+g(x)) =f (x)+g (x), x R

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΠΑΡΑΣΚΕΥΗ 20 ΜΑΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

,,, και τα ενδεχόμενα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

x. Αν ισχύει ( ) ( )

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

Transcript:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Μαθηματικών www.othisi.gr

2

Παρασκευή, 20 Μαΐου 2016 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α1. Αν A και A είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου Ω, να αποδείξετε ότι για τις πιθανότητές τους ισχύει: P(A )=1 P(A) Μονάδες 7 Α2. Να δώσετε τον ορισμό της διαμέσου (δ) ενός δείγματος ν παρατηρήσεων. Α3. Έστω f μία συνάρτηση με πεδίο ορισμού το Α. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό ελάχιστο στο xo A; Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Α Β, τότε για τις πιθανότητές τους ισχύει P(A) P(Β). β) Ο σταθμισμένος αριθμητικός μέσος ή σταθμικός μέσος είναι μέτρο διασποράς. γ) Αν οι συναρτήσεις f και g είναι παραγωγίσιμες, τότε ισχύει ότι: (f(x) g(x)) = f (x)g(x) + f(x)g (x). δ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποιοτικής μεταβλητής. ε) Αν μία συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει f (x)>0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως φθίνουσα στο Δ. Μονάδες 10 ΑΠΑΝΤΗΣΗ Α1. Θεωρία σχολικού βιβλίου σελ. 150 151 Α2. Θεωρία σχολικού βιβλίου σελ. 87 Α3. Θεωρία σχολικού βιβλίου σελ.14 3

Α4. α) Σ β) Λ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β Δίνεται η συνάρτηση f με τύπο f(x)= x 3 5 x 2 + 6x 1, x R. 3 2 Β1. Να βρείτε τα ακρότατα της συνάρτησης f. Μονάδες 9 Β2. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης f στο σημείο της A(0,f(0)). Μονάδες 8 f'(x) 12 Β3. Να υπολογίσετε το όριο lim. x 1 x+ 1 Μονάδες 8 ΑΠΑΝΤΗΣΗ Β1. Είναι f(x)= x 3 5 x 2 + 6x 1, x R 3 2 H f είναι παραγωγίσιμη ως πολυωνυμική στο R με f (x)=x 2 5x+6, x R f (x)=0 x=2 ή x=3 f (x)>0 x<2 ή x>3 x 2 3 + f + + f Η f παρουσιάζει (τοπικό) μέγιστο στο 2 το f(2)= 3 8 10+12 1= 3 11 και (τοπικό) ελάχιστο στο 3 το f(3)= 2 7. Β2. Η ζητούμενη εξίσωση είναι της μορφής: y=f (0)x+β με f (0)=6 και f(0)= 1. Άρα είναι y=6x+β και αφού το σημείο επαφής είναι το Α(0, 1) τότε για x=0 και y= 1 έχουμε β= 1. Άρα η εφαπτομένη είναι η ε: y=6x 1. 2 2 f'(x) 12 x 5x+ 6 12 x 5x 6 (x+ 1)(x 6) Β3. lim = lim = lim = lim = lim(x 6) = 7 x 1 x+ 1 x 1 x+ 1 x 1 x+ 1 x 1 x+ 1 x 1 4

ΘΕΜΑ Γ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 Μεταξύ των οικογενειών με τρία παιδιά επιλέγουμε τυχαία μία οικογένεια και εξετάζουμε τα παιδιά της ως προς το φύλο και ως προς τη σειρά γέννησής τους. Γ1. Να προσδιορίσετε το δειγματικό χώρο Ω του πειράματος χρησιμοποιώντας ένα δενδροδιάγραμμα. Γ2. Να παρασταθούν με αναγραφή των στοιχείων τους τα ενδεχόμενα που προσδιορίζονται από την αντίστοιχη ιδιότητα: A: «τo πρώτο παιδί είναι κορίτσι» Β: «ο αριθμός των κοριτσιών υπερβαίνει τον αριθμό των αγοριών» Γ: «τα δύο πρώτα παιδιά είναι του ίδιου φύλου». Μονάδες 6 Γ3. Υποθέτουμε ότι ο δειγματικός χώρος Ω αποτελείται από ισοπίθανα απλά ενδεχόμενα. α) Να υπολογίσετε την πιθανότητα των παρακάτω ενδεχομένων: Δ=Α Β, Ε=Α Β, Ζ=Γ Ε (μονάδες 9 ) β) Να υπολογίσετε την πιθανότητα των παρακάτω ενδεχομένων: Η: «δεν πραγματοποιείται κανένα από τα Α,Β» Θ: «πραγματοποιείται ακριβώς ένα από τα Α,Β». (μονάδες 6 ) Μονάδες 15 ΑΠΑΝΤΗΣΗ Γ1. Αν Μ είναι το ενδεχόμενο να γεννηθεί αγόρι και το ενδεχόμενο να γεννηθεί κορίτσι τότε προκύπτει το παρακάτω δενδροδιάγραμμα. Μ Αρχή : Αγόρι, : Κορίτσι 1 ο Παιδί 2 ο Παιδί 3 ο Παιδί Άρα Ω={ΜΜΜ, ΜΜ,,,,,, } Γ2. A={,,, } 5

B={,,, } Γ={ΜΜΜ, ΜΜ,, } Γ3. α) Είναι: Δ=Α Β={,,} με Ν(Δ)=3. Ν(Δ) 3 Άρα Ρ (Δ) = =. Ν(Ω) 8 Ε=Α Β={ Μ,,,,} Ν(Ε) 5 Άρα Ρ (Ε) = =. Ν(Ω) 8 Ζ=Γ Ε={ Μ Μ,Μ} Ν(Ζ) 2 1 Άρα Ρ (Ζ) = = =. Ν(Ω) 8 4 β) Η=(Α Β) ={ Μ Μ,Μ,} Ν(Η) 3 Άρα Ρ (Η) = =. Ν(Ω) 8 ΘΕΜΑ Δ Θ=(Α Β) (Β Α) Α Β={ Μ} B A={ Μ } Άρα Θ={ Μ,Μ}, οπότε Ν(Θ) 2 Ρ (Θ) = = = Ν(Ω) 8 Οι χρόνοι (σε λεπτά) που χρειάστηκαν ν υπολογιστές για να τρέξουν ένα πρόγραμμα, έχουν ομαδοποιηθεί σε 4 ισοπλατείς κλάσεις πλάτους c, όπως στον παρακάτω πίνακα: Χρόνος Κεντρική Τιμή Συχνότητα (σε λεπτά) xi νi [8, ) 20 [, ) 14 15 [, ) 10 [, ) ν4 Σύνολο ν=. Δ1. Να αποδείξετε ότι c=4. Δ2. Αν η μέση τιμή των χρόνων είναι x =14 να αποδείξετε ότι ν4 = 5 (μονάδες 4) και στη συνέχεια να μεταφέρετε στο τετράδιό σας τον παραπάνω πίνακα κατάλληλα συμπληρωμένο (μονάδες 2). Μονάδες 6 Δ3. Αν οι παρατηρήσεις είναι ομοιόμορφα κατανεμημένες σε κάθε κλάση, να βρείτε πόσοι υπολογιστές χρειάστηκαν τουλάχιστον 9 λεπτά για να τρέξουν το 6 1 4

πρόγραμμα. Μονάδες 5 Δ4. Να αποδείξετε ότι η τυπική απόκλιση των χρόνων είναι s=4 και να εξετάσετε αν το δείγμα των χρόνων είναι ομοιογενές. Μονάδες 6 Δ5. Αντικαθιστούμε τον επεξεργαστή κάθε υπολογιστή με έναν ταχύτερο και βρίσκουμε ότι κάθε υπολογιστής τρέχει τώρα το πρόγραμμα στο 80% του χρόνου που χρειαζόταν πριν. Να εξετάσετε ως προς την ομοιογένεια το καινούργιο δείγμα χρόνων. ΑΠΑΝΤΗΣΗ Δ1. Επειδή το κάτω άκρο της πρώτης κλάσης είναι 8 ενώ η κεντρική τιμή της δεύτερης κλάσης είναι x2=14, ισχύει ότι: c 3 c 8+c+ =14 = 6 c=4. 2 2 Σxiνi Σxi νi Δ2. Για τη μέση τιμή των χρόνων ισχύει x= είναι =14 (1) ν ν Καθώς το πλάτος c της κάθε κλάσης είναι c=4 οι κλάσεις είναι [8, 12), [12, 16), [16,20),[20,24) με αντίστοιχες κεντρικές τιμές x1=10, x2=14, x3=18, x4=22 Συνεπώς η (1) γίνεται: 10 ν1 + 14 ν2 + 18 ν3+ 22 ν4 10 20+ 14 15+ 18 10+ 22 ν = 14 4 = 14 200+210+ ν 20+ 15+ 10+ ν 180+22 ν4=(45+ν4) 14 590+22 ν4=630+14 ν4 8ν4=40 ν4=5. Ο πίνακας είναι: Κεντρική Τιμή Συχνότητα Χρόνος [8,12) 10 20 [12,16) 14 15 [16,20) 18 10 [20,24) 22 5 Σύνολο 50 Δ3. Α τρόπος Οι συχνότητες του δείγματος έχουν ως εξής: ν1=20, ν2=15, ν3=10, ν4=5 και οι αντίστοιχες αθροιστικές είναι Ν1=20, Ν2=35, Ν3=45, Ν4=50 και το αντίστοιχο πολύγωνο αθροιστικών συχνοτήτων είναι: xi vi 4 7

Νi 50 45 35 20 Δ x Δ Δ Β Γ Ε 8 9 12 16 20 24 Τα τρίγωνα ΑΒΓ ΑΔΕ είναι μεταξύ τους όμοια, συνεπώς: ΑΓ ΒΓ 9 8 x = = x= 5 ΑΕ ΔΕ 4 20 Άρα τουλάχιστον 9 λεπτά χρειάστηκαν 45 υπολογιστές. Β τρόπος Αφού οι παρατηρήσεις θεωρούνται ομοιόμορφα κατανεμημένες και το 1 1 1 διάστημα 8 9 είναι το της πρώτης κλάσης, ν1 = 20 = 5 υπολογιστές 4 4 4 χρειάστηκαν το πολύ 9 λεπτά. Άρα, 50 5=45 υπολογιστές χρειάστηκαν τουλάχιστον 9 λεπτά. xi Δ4. Επειδή η μέση τιμή του δείγματος είναι x= 14, είναι: 2 1 2 s = Σ(xi x) vi = v 2 2 2 2 (10 14) 20+ (14 14) 15+ (18 14) 10+ (22 14) 5 = 50 16 20+ 16 10+ 64 5 320+ 160+ 320 80 = = = = 16 50 50 5 Άρα s 2 =16, οπότε s=4. s 4 2 2 και τότε CV= = = > = 0. 1, άρα το δείγμα είναι ανομοιογενές. x 14 7 20 Δ5. Προκύπτει νέο δείγμα τιμών yi=0.8xi, i=1, 2,,50 άρα από εφαρμογή σχολικού είναι y= 0,8x και sy=0,8sx. Άρα για την ομοιογένεια CVy του νέου δείγματος ισχύει ότι: sy 0.8sx 2 CVy= = = CVx = y 0.8x 7 Άρα ο συντελεστής μεταβολής του δείγματος δεν αλλάζει συνεπώς και το νέο δείγμα δεν είναι ομοιογενές. 8

ΑΞΙΟΛΟΓΗΣΗ Το κύριο χαρακτηριστικό των σημερινών θεμάτων είναι ότι εξετάζουν βασικές γνώσεις από όλα τα κεφάλαια της ύλης, με τρόπο διακριτό χωρίς συνδυασμό δεδομένων. Τα ερωτήματα είναι διατυπωμένα με σαφήνεια και στηρίζονται στην ασκησιολογία του σχολικού βιβλίου. Αυτό που θα καθορίσει τις υψηλές βαθμολογίες είναι η ικανότητα του υποψηφίου στη διαχείριση του υπολογιστικού μέρους κάθε ερωτήματος. 9