ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α).

Σχετικά έγγραφα
2. ** ίνεται η συνάρτηση f (x) = logx. α) Να εξετάσετε αν ισχύουν οι προϋποθέσεις του θεωρήµατος µέσης τιµής στο [1, 20] για τη συνάρτηση f.

Κεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Ασκήσεις Επανάληψης Γ Λυκείου

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Ερωτήσεις πολλαπλής επιλογής

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

Γενικές ασκήσεις σχ. Βιβλίου σελίδας

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

Πανελλαδικές εξετάσεις 2015

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Ρ Υ Θ Μ Ο Σ Μ Ε Τ Α Β Ο Λ Η Σ

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

= x + στο σηµείο της που

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη

1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα.

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. e = 2. e, x ο. e f ( ln 2 ) = όταν : 4

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ- ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

Ασκήσεις στις κινήσεις

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1.

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Λύκειο Παραλιμνίου Σχολική Χρονιά Γενικές ασκήσεις επανάληψης Γ κατ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

Ανακρίνοντας τρία διαγράμματα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ρυθμός μεταβολής = παράγωγος

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΘΕΩΡΗΜΑ ROLLE Θ.Μ.Τ. ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

Ερωτήσεις πολλαπλής επιλογής

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης

Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ)

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

20 επαναληπτικά θέματα

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου. Ενδεικτικές Λύσεις. Θέµα Α

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2.

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

Transcript:

Ερωτήσεις ανάπτυξης. ** Για να υπολογίσει κάποιος την (0 ) χρησιµοποιεί για + προσέγγιση τον αριθµό +, ενώ ένας άλλος τον αριθµό. 3 α) Να εκτιµήσετε ποια από τις δύο προσεγγίσεις δίνει το ελάχιστο (απόλυτο) σφάλµα για τις τιµές του : i) στο διάστηµα [0, 0,3], ii) στο διάστηµα [0,95 ]. β) Να κάνετε στο ίδιο σύστηµα αξόνων τις γραφικές παραστάσεις των + συναρτήσεων f () =, g () = +, h () = 3 ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α). και να. ** ίνεται η συνάρτηση f (t) = χιλιάδες ως προς το χρόνο t. 5t t + 9 + 4 του πληθυσµού µιας πόλης σε α) Να δείξετε ότι ο πληθυσµός θα µειώνεται, και όσο περνά ο χρόνος θα πλησιάσει τους.500 κατοίκους. β) Να βρείτε την οριζόντια ασύµπτωτη της C f στο +. 3. ** Το κόστος παραγωγής υλικού για την κατασκευή βάσεων κυλινδρικού δοχείου είναι 3 δρχ./cm, ενώ για την κατασκευή της παράπλευρης επιφάνειας είναι δρχ./cm. Να βρείτε τη σχέση της ακτίνας της βάσης και του ύψους του κυλινδρικού δοχείου ώστε να έχουµε το ελάχιστο κόστος, µε την προϋπόθεση ότι ο όγκος θα είναι σταθερός. 6

4. ** α) Θεωρούµε τις συναρτήσεις f () = 4 + + και g () = f () ηµ, R. Να αποδείξετε ότι οι γραφικές παραστάσεις των f, g δέχονται κοινή εφαπτοµένη σε κάθε κοινό τους σηµείο. β) Να εξετάσετε την ισχύ της παραπάνω πρότασης στη γενική περίπτωση που η f είναι τυχαία παραγωγίσιµη συνάρτηση µε f () > 0 και g () = f () ηµκ, R. 5. ** Να αποδείξετε ότι για κάθε R ισχύει: ηµ 6 + συν 6 + 3ηµ συν = µε τη βοήθεια των παραγώγων. 6. ** α) Να βρεθεί η πλάγια ασύµπτωτη της γραφικής παράσταση της συνάρτησης f () = στο +. + β) Να δείξετε ότι οι τιµές της f () για > 00 προσεγγίζονται από την g () = - µε σφάλµα που δεν ξεπερνά το 0,0. 7. ** Ένα κινητό ξεκινά από σηµείο Α και κινείται ευθύγραµµα. Πέντε λεπτά µετά την εκκίνηση φτάνει στο σηµείο Β που απέχει 5 km από το Α και σταµατά. Ας υποθέσουµε ότι η απόσταση του κινητού από το Α τη χρονική στιγµή t δίνεται από µια τριτοβάθµια πολυωνυµική συνάρτηση s (t). Να βρεθούν: α) ο τύπος της s (t). β) η µέγιστη ταχύτητα που ανέπτυξε το κινητό γ) τα διαστήµατα στα οποία η κίνηση ήταν επιταχυνόµενη ή επιβραδυνόµενη. 8. ** ίνεται η παραβολή µε εξίσωση y =. Ένα σηµείο Μ (, y) κινείται πάνω στην παραβολή. Να βρεθεί η θέση του σηµείου αυτού, όταν οι ρυθµοί µεταβολής των συντεταγµένων του είναι ίσοι. 63

9. ** Αν η συνάρτηση κόστους µιας επιχείρησης για ποσότητα παραγωγής q είναι C (q) = q 3 - q + 53q + 000 και η συνάρτηση εσόδων είναι R (q) = - 3q + 0q + 300, να προσδιοριστεί το µέγιστο κέρδος και οι τιµές του κόστους και των εσόδων που πραγµατοποιείται το µέγιστο κέρδος. 0. ** Για ποιες τιµές του κ η συνάρτηση f () = 3 + κ + έχει σηµείο καµπής για = ;. ** Για ποια χορδή ΒΓ παράλληλη προς την εφαπτοµένη ενός κύκλου σ ένα σηµείο του Α, το εµβαδόν του τριγώνου ΑΒΓ είναι µέγιστο;. ** Είναι γνωστό ότι αν f, g δύο παραγωγίσιµες συναρτήσεις σε ένα διάστηµα τότε (f g) = f g + f g. Συχνά γίνεται το λάθος να εφαρµόζεται η ισότητα (f g) = f g. Είναι όµως η ισότητα αυτή πάντα λανθασµένη; Αν f () = e 3 να βρείτε µια µη µηδενική συνάρτηση g για την οποία να ισχύει (f g) = f g. 3. ** Εξηγήστε γιατί η χρήση του κανόνα του L Hospital δεν δίνει την πραγµατική τιµή του ορίου: (η πραγµατική τιµή είναι - 3 5 ). lim 3 + - 3-5 + 4 = lim 3 + - 5 = lim 6 = 3 4. ** Η ενέργεια, που καταναλώνεται κατά την κίνηση σωµατιδίου, δίνεται από τον τύπο Ε (υ) = [ (υ - 35) + 750], υ > 0, όπου υ είναι η ταχύτητα του υ σωµατιδίου, υ > 0. α) Να βρείτε την ταχύτητα που πρέπει να έχει το σωµατίδιο ώστε να καταναλώνει την ελάχιστη ενέργεια. β) Πόση είναι η ελάχιστη αυτή ενέργεια; 64

5. ** Στο σχήµα φαίνεται τµήµα παραβολής µε εξίσωση y y = 4 (48 - ), και το ισοσκελές τρίγωνο ΟΒΓ µε Γ Β ΟΒ = ΟΓ. α) Να βρείτε τα σηµεία Β, Γ για τα οποία το εµβαδόν του τριγώνου ΟΒΓ γίνεται µέγιστο. 0 β) Ποιο είναι αυτό το µέγιστο εµβαδόν; 6. ** Έστω f η συνάρτηση της ποσότητας κάποιας ουσίας στο αίµα, σε σχέση µε το χρόνο t. Αν ο ρυθµός µεταβολής της f είναι ίσος µε α) Να βρείτε τον τύπο της f, αν ισχύει f (3) = 4. β) Μέχρι ποια χρονική στιγµή θα ισχύει f (t) > ;, t > : t - 7. ** Έστω f () = (3 - ), όπου η f µετρά την αντίδραση του οργανισµού σε ποσότητα µιας ουσίας (αύξηση πίεσης, πτώση θερµοκρασίας σώµατος κ.λπ.). Να βρείτε την τιµή του για την οποία η αντίδραση έχει τη µέγιστη τιµή. Ποια είναι η µέγιστη τιµή; 8. ** Η γραφική παράσταση C f της παραγώγου µιας συνάρτησης f είναι η παραβολή που φαίνεται στο διπλανό σχήµα. α) Να κατασκευάσετε πίνακα µονοτονίας της f. β) Να βρείτε τον τύπο της f, αν f (0) =. y 4 0 9 4 5 4 y=f () γ) Να κάνετε πρόχειρη γραφική παράσταση της f. 65

y 9. ** Η γραφική παράσταση C f µιας συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήµα. Να λυθούν: α) f () = 0 β) f () < 0 γ) f () > 0 - - 0 0. ** Έστω η συνάρτηση f () = α, α > 0. Στο σηµείο Μ της C f µε τετµηµένη > 0 φέρνουµε εφαπτοµένη (ε) που τέµνει τον στο Τ. Θεωρούµε τα σηµεία Ρ, Ν πάνω στον ώστε ΜΡ και ΜΝ (ε). α) Να δείξετε ότι: i) ΟΡ = ΤΡ ii) ΤΡ = iii) ΡΝ = f ( ) f ( ) iv) ΤΜ = f ( f ( ) f ( ) f ( ) ) + f ( ) ( ) β) Να δείξετε ότι για τη συνάρτηση f () = e το ΤΡ είναι σταθερό. Για ποια εκθετική συνάρτηση ισχύει ΤΡ = ; γ) Το κοµµάτι ΑΒ της πίστας δοκιµών αυτοκινήτων που αναπτύσσουν µεγάλες ταχύτητες είναι τµήµα παραβολής µε κορυφή στο Α. Στο σηµείο Κ, που απέχει 40 µέτρα από το προστατευτικό διάζωµα ΑΠ, το αυτοκίνητο Κ εκτρέπεται λόγω της πολύ µεγάλης oλισθη- B Κ A Π ρότητας, κινείται σχεδόν ευθύγραµµα κατά τη διεύθυνση της εφαπτοµένης. και προσκρούει στο διάζωµα ΑΠ σε απόσταση 8 µέτρα από το Α. Ποια θα µπορούσε να είναι η εξίσωση του τµήµατος ΑΒ; 66

Σηµείωση: Η προηγούµενη άσκηση µπορεί να χρησιµοποιηθεί σαν βάση για ανάπτυξη και άλλων ερωτηµάτων όπως για παράδειγµα αν ισχύουν οι ίδιες σχέσεις και για παραβολή της µορφής y = α (y = κ ).. ** Στο σχήµα (α) να υπολογίσετε τη γωνία ω και στο σχήµα (β) να υπολογίσετε τον αριθµό α. (Σε καθένα από τα παρακάτω σχήµατα η (ε) είναι εφαπτοµένη της C f ). y 0 A (ε) ω y=ln y A 0 45 y=α (ε) (α) (β). ** Ένα κέντρο έρευνας για την ασφάλεια των αυτοκινήτων εξετάζει το διάστηµα s που διανύει ένα αυτοκίνητο από τη στιγµή που ο οδηγός θα διακρίνει ένα εµπόδιο µέχρι την ακινητοποίησή του. Οι ερευνητές κατέληξαν ds σε µια σχέση της µορφής 3Κ - e t s = 0 όπου t ο χρόνος που µεσολαβεί dt από τη στιγµή που ο οδηγός αντιλαµβάνεται το εµπόδιο µέχρι να πατήσει το φρένο, Κ µια σταθερά που εξαρτάται από το µοντέλο και παριστάνει το διάστηµα που θα διανύσει το αυτοκίνητο από τη στιγµή που ο οδηγός θα πατήσει φρένο µέχρι την ακινητοποίησή του (υποτίθεται ότι στην έρευνα χρησιµοποιήθηκε για όλα τα αυτοκίνητα ταχύτητα 80 km/h). α) Να βρείτε τη συνάρτηση s (t) χρησιµοποιώντας µια κατάλληλη αρχική συνθήκη. β) Να µελετήσετε τη µονοτονία της συνάρτησης και να ερµηνεύσετε τα αποτελέσµατα. 67

γ) Κάποιος γνωρίζει ότι ο χρόνος αντίδρασής του είναι 0,8 sec. Πόση απόσταση πρέπει να κρατά από ένα προπορευόµενο αµάξι όταν τρέχει µε υ = 80 km/h; 68

3. ** Ο W. Estes έχει ασχοληθεί µε την καµπύλη εκµάθησης ενός πειραµατόζωου. Το πειραµατόζωο µέσα σε έναν ελεγχόµενο χώρο έπρεπε να επιλέξει τον κατάλληλο µοχλό ώστε να πάρει το φαγητό του. Με την πάροδο του χρόνου ο αριθµός των σωστών επιλογών r (σε µια εβδοµάδα) βρέθηκε 3 ότι δίνεται από τον τύπο r (t) = + 5e -0,4t (t εβδοµάδες εκπαίδευσης). α) Να εξετάσετε αν το πειραµατόζωο θα βελτιώνει συνεχώς τις επιδόσεις του. β) Τι θα συµβεί αν το πείραµα συνεχιστεί για µεγάλο χρονικό διάστηµα; 4. ** Ο υπολογιστής τσέπης για να υπολογίσει τις δυνάµεις του αριθµού e, δηλαδή τις τιµές του e, χρησιµοποιεί το άθροισµα + + (στην ουσία χρησιµοποιεί πολύ περισσότερους προσθετέους). + 3 4 + 6 4 α) Να δείξετε ότι για κάθε > 0 η προσέγγιση του υπολογιστή είναι µικρότερη από την πραγµατική τιµή του e. β) Να εξετάσετε αν η εξίσωση 4e = + 4 3 + 4, 0 έχει λύση. γ) Να δείξετε ότι για ολοένα µεγαλύτερες τιµές του e, > 0, έχουµε ολοένα µεγαλύτερο σφάλµα. 5. ** Μια συνάρτηση f έχει f (0) = και f (0) =. Να βρείτε προσεγγιστικές τιµές για τα f (0, ) και f (- 0,05). 69

6. ** ίνεται η γραφική παράσταση της συνάρτησης µε τύπο f () = 3 + κ + + λ, κ, λ R. y A Β 0 Να δείξετε ότι = 3. 7. ** ίνεται η συνάρτηση f () = + ( - 000), R. α) Να βρείτε τα διαστήµατα µονοτονίας της f. β) Να συγκρίνετε τους αριθµούς 000 και 998 +. γ) Να βρείτε τα διαστήµατα µονοτονίας της f () = ( - α) ν + ν, α R και α > 0, ν Ν *, ν = ρ. Να συγκρίνετε τους αριθµούς 0000 00 και 9000 00 + 000 00. 8. ** ίνονται οι παραγωγίσιµες συναρτήσεις f και g µε πεδίο ορισµού το ανοικτό διάστηµα. Να δείξετε ότι αν η h () = f () - g () έχει στο 0 µέγιστο, τότε η f και η g έχουν παράλληλες εφαπτοµένες στο 0. 70

9. ** Το παρακάτω σχήµα παριστάνει την είσοδο µιας σήραγγας του εθνικού οδικού δικτύου. Όταν η κίνηση είναι αυξηµένη παρατηρείται «µποτιλιάρισµα» των αυτοκινήτων στη σήραγγα αυτή. Μια οµάδα συγκοινωνιολόγων µελέτησε τη ροή f των αυτοκινήτων για ένα µεγάλο χρονικό διάστηµα και κατέληξε σε έναν τύπο ο οποίος εκφράζει τη ροή (πλήθος αυτοκινήτων / sec) σαν συνάρτηση της ταχύτητας υ των υ αυτοκινήτων µέσα στη σήραγγα. Ο τύπος είναι f (υ) =. υ υ + + 73 Μήκος 0km 60 km/h α) Ποιες επεµβάσεις προτείνετε στη σήµανση που υπάρχει στην είσοδο της σήραγγας; β) Ποια είναι η µέγιστη δυνατή ροή αυτοκινήτων µέσα στη σήραγγα; 30. ** Να αποδείξετε µε τη βοήθεια των παραγώγων ότι οι συναρτήσεις f () = (e + e - ) και g () = (e - e - ), R, διαφέρουν κατά µία σταθερά. Να βρεθεί αυτή η σταθερά. 3. ** Η κατανάλωση ενός φορτηγού που τρέχει µε σταθερή ταχύτητα υ είναι υ + 300 lt πετρέλαιο την ώρα, το πετρέλαιο κοστίζει 50 δρχ. το lt και η αµοιβή του οδηγού είναι 4.000 δρχ. την ώρα. Να βρείτε την ταχύτητα του φορτηγού για να έχουµε το ελάχιστο δυνατό κόστος µεταφοράς, καθώς και τα έξοδα της µεταφοράς για µια απόσταση 500 km. 7