ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι

Σχετικά έγγραφα
Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο.

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο )

HY118-Διακριτά Μαθηματικά

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

HY118-Διακριτά Μαθηματικά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Στοιχεία Προτασιακής Λογικής

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά

Στοιχεία Προτασιακής Λογικής

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

HY118- ιακριτά Μαθηµατικά

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής

Μη γράφετε στο πίσω μέρος της σελίδας

Μαθηματική Λογική και Λογικός Προγραμματισμός

HY118- ιακριτά Μαθηµατικά

p p p q p q p q p q

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Υπολογιστικά & Διακριτά Μαθηματικά

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός

Στοιχεία προτασιακής λογικής

ΗΥ Λογική. Διδάσκων: Δημήτρης Πλεξουσάκης Καθηγητής

Μη γράφετε στο πίσω μέρος της σελίδας

Λογικός Προγραμματισμός

Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

Σημειώσεις Μαθηματικής Λογικής. Χειμερινό Εξάμηνο Δ. Ζώρος, Ν. Καρβέλας Σύμφωνα με παραδόσεις του Λ. Κυρούση

Μη γράφετε στο πίσω μέρος της σελίδας

ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ. 29 Ιουνίου 2007 ΔΙΑΦΑΝΕΙΑ 1

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

Επανάληψη. ΗΥ-180 Spring 2019

HY118- ιακριτά Μαθηµατικά

ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Μη γράφετε στο πίσω μέρος της σελίδας

Διακριτά Μαθηματικά Ι

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Μαθηματική Λογική και Λογικός Προγραμματισμός

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)

HY118- ιακριτά Μαθηµατικά

Υποθετικές προτάσεις και λογική αλήθεια

HY118-Διακριτά Μαθηματικά

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

\5. Κατηγορηματικός Λογισμός (Predicate Calculus)

Λύσεις Σειράς Ασκήσεων 1

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική

Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός. Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Απόδειξη

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017

5 Σύγκλιση σε τοπολογικούς χώρους

Φροντιστήριο 2 Λύσεις

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 2 ο : Βασικές έννοιες. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού

Μαθηματική Λογική και Λογικός Προγραμματισμός

Τεχνητή Νοημοσύνη ( )

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Λύσεις Σειράς Ασκήσεων 2

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2018

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.

Μη γράφετε στο πίσω μέρος της σελίδας

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

ΕΠΛ 434: Λογικός Προγραμματισμός

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

Σχεσιακός Λογισμός. Σχεσιακός Λογισμός Πλειάδων. σχεσιακά πλήρης γλώσσα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις

x < y ή x = y ή y < x.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 8 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Transcript:

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά δέντρα) τη σημασία (πίνακες αληθείας) Αυτά είναι τα βασικά στοιχεία που συγκροτούν μία τυπική γλώσσα. Ο προτασιακός λογισμός είναι μία τυπική γλώσσα κατάλληλη για δηλωτικές προτάσεις, προτάσεις δηλαδή για τις οποίες μπορεί να δοθεί μία τιμή αληθείας. ΔΙΑΦΑΝΕΙΑ 1

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ενώ ο προτασιακός λογισμός λειτουργεί ικανοποιητικά για προτάσεις με τμήματα not, and, or δεν είναι επαρκής για την περιγραφή άλλων προσδιορισμών που απαντώνται σε φυσικές ή τεχνητές γλώσσες όπως για παράδειγμα υπάρχει (there exists), όλοι (all), μόνο (only) κλπ. Γιανακαλυφθείαυτότοκενόδημιουργήθηκεο κατηγορηματικός λογισμός (predicate logic), που είναι επίσης γνωστός ως λογική πρώτης τάξης (first order logic). ΔΙΑΦΑΝΕΙΑ 2

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ ΠΑΡΑΔΕΙΓΜΑ «Κάθε φοιτητής είναι νεότερος από κάποιο καθηγητή» Στον προτασιακό λογισμό η παραπάνω πρόταση δεν μπορεί παρά να είναι ένας πρωταρχικός (ατομικός) τύπος με συγκεκριμένη τιμή αληθείας, αλλά εμείς ενδιαφερόμαστε να αναδείξουμε μία πιο λεπτομερή εικόνα της λογικής δομής της πρότασης. Για το σκοπό αυτό μπορούμε να χρησιμοποιούμε κατηγορήματα της μορφής: S (Μαρία) που εκφράζει το ότι η Μαρία είναι φοιτήτρια Ι (Παναγιώτης) που εκφράζει το ότι ο Παναγιώτης είναι καθηγητής Y (Μαρία, Παναγιώτης) που εκφράζει ότι η Μαρία είναι νεότερη από τον Παναγιώτη Πρέπει να είμαστε προσεκτικοί στον ορισμό της σημασίας των κατηγορημάτων γιατί θα μπορούσε π.χ. η σημασίατουy να ερμηνεύεται με διαφορετικό τρόπο από τον επιθυμητό. ΔΙΑΦΑΝΕΙΑ 3

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙV Θέλουμε επίσης να μπορούμε να εκφράζουμε κατηγορήματα με προσδιοριστές της μορφής για κάθε ή υπάρχει. Αυτό θα μπορούσε να γίνει αν γράφαμε S ( ) όπου η θα μπορούσε να αντικαθιστάται από το όνομα του κάθε φοιτητή. Αυτό όμως δεν θα βόλευε γιατί θα είχε ως συνέπεια όταν θα θέλαμε να κωδικοποιήσουμε μία πρόταση για την εκτέλεση ενός προγράμματος να πρέπει να γράψουμε την ίδια πρόταση για κάθε κατάσταση του προγράμματος. Γιατολόγοαυτόχρησιμοποιούμεμεταβλητές. ΔΙΑΦΑΝΕΙΑ 4

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ V Οι μεταβλητές γράφονται ως x, y, z,... ή x 1, x 2, x 3 και ουσιαστικά είναι σύμβολα αντικαθιστάμενα από συγκεκριμένες τιμές. Με τη χρήση μεταβλητών μπορούμε να ορίσουμε και τυπικά την σημασία των κατηγορημάτων: S (x) : o x είναι φοιτητής Ι (x) : ο x είναι καθηγητής Y (x, y) : ο x είναι νεότερος από τον y Η χρήση μεταβλητών δεν αρκεί για τον ορισμό κατηγορημάτων, αλλά χρειαζόμαστε και ποσοδείκτες όπως (για κάθε), (υπάρχει), που πάντα συνοδεύονται από όνομα μεταβλητής. ΔΙΑΦΑΝΕΙΑ 5

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ VΙ ΠΑΡΑΔΕΙΓΜΑ «Κάθε φοιτητής είναι νεότερος από κάποιο καθηγητή» «Κάθε φοιτητής x είναι νεότερος από κάποιο καθηγητή y» x (S(x) ( y (I(y) Y(x, y)))) ΠΑΡΑΔΕΙΓΜΑ II «Δεν μπορούν να πετάξουν όλα τα πουλιά» Β (x) : το x είναι πουλί F (x) : το x πετάει ( x (Β(x) F(x))) ή x (Β(x) F(x)) ΔΙΑΦΑΝΕΙΑ 6

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ VΙI Οι δύο προτάσεις του τελευταίου παραδείγματος είναι σημασιολογικά ισοδύναμες. Εκείνο που χρειάζεται είναι μία αποδεικτική θεωρία που να επιτρέπει την εξαγωγή συμπερασμάτων συμβολικά ( ) ή σημασιολογικά ( ). Επίσης, η αποτίμηση τύπων κατηγορηματικού λογισμού είναι αρκετά διαφορετική από τον υπολογισμό με βάση τους πίνακες αληθείας που είδαμε για τον προτασιακό λογισμό. ΔΙΑΦΑΝΕΙΑ 7

ΤΕΧΝΙΚΕΣ ΤΥΠΙΚΗΣ ΕΠΑΛΗΘΕΥΣΗΣ Ι Τυπική επαλήθευση βάση απόδειξης Η περιγραφή του συστήματος δίνεται ως ένα σύνολο τύπων Γ σε κάποια γλώσσα λογικής και η ιδιότητα που πρέπει να επαληθευτεί δίνεται από κάποιο τύπο έστω φ. Η μέθοδος επαλήθευσης αποσκοπεί στο να βρεθεί μία απόδειξη ότι Γ φ. Τυπική επαλήθευση βάση μοντέλου Στις προσεγγίσεις που βασίζονται σε μοντέλα το σύστημα περιγράφεται από ένα πεπερασμένο μοντέλο M κατάλληλο για κάποια γλώσσα λογικής. Η ιδιότητα επίσης εκφράζεται από κάποιο τύπο φ και η επαλήθευση είναι ένας υπολογισμός που εξακριβώνει αν ένα μοντέλο Μ ικανοποιεί τον τύπο φ (Μ φ). Αυτόςοέλεγχοςγίνεταισυνήθωςαυτόματα. ΔΙΑΦΑΝΕΙΑ 8

ΤΕΧΝΙΚΕΣ ΤΥΠΙΚΗΣ ΕΠΑΛΗΘΕΥΣΗΣ ΙΙ Μία αποδεικτική θεωρία όταν λέμε ότι είναι καλά ορισμένη (sound) και πλήρης (complete) και αυτό πρέπει να μπορεί να αποδειχθεί, εννοούμε ότι Γ φ αν και μόνο αν Γ φ, όπου το τελευταίο σημαίνει ότι για όλα τα μοντέλα M αν Μ Γ, τότε Μ φ. Άρα δυνητικά η τυπική επαλήθευση βάση μοντέλου είναι απλούστερη από την τυπική επαλήθευση βάση απόδειξης γιατί βασίζεται σε ένα μόνο μοντέλο και όχι σε ένα πιθανά άπειρο σύνολο μοντέλων. ΔΙΑΦΑΝΕΙΑ 9