ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ



Σχετικά έγγραφα
Πρόλογος. «ΚΙ ΟΜΩΣ, ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΔΥΟ ΑΝΤΙΣΤΡΟΦΩΝ ΣΥΝΑΡΤΗΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y=x»

Περιεχόμενα. Εύρεση των ριζών της πλήρους τεταρτοβάθμιας εξίσωσης Τελικά συμπεράσματα Παραδείγματα... 57

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

f(x) = 2x+ 3 / Α f Α.

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΣΥΝΕΠΕΙΕΣ Θ.Μ.Τ. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΕΥΡΕΣΗ ΣΥΝΑΡΤΗΣΗΣ

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης

f(x) = και στην συνέχεια

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. x, τότε ισχύει f(4) f(2). x τότε ισχύει. αν 1.

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ ΜΑΪΟΣ 2012

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Άρθρο στους Μιγαδικούς Αριθμούς. χρήση της στην εύρεση ακροτάτων.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ - ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΝΟΣ ΠΕΡΙΕΧΟΜΕΝΑ. Τίτλος Θεματικές Ενότητες Σελίδες. Δυο λόγια προς τους μαθητές.

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Σημειώσεις Μαθηματικών 1

Θέμα «Η διδασκαλία και η αξιολόγηση των Μαθηματικών στις Πανελλαδικές Εξετάσεις νέοι δρόμοι και αλλαγή φιλοσοφίας»

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος

Συνάρτηση, Τιμές συνάρτησης, Πίνακας Τιμών. Τι ονομάζουμε πίνακα τιμών μιας συνάρτησης;

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ windowslive. com.

4.3 Δραστηριότητα: Θεώρημα Fermat

Μαθηματική Εισαγωγή Συναρτήσεις

Φίλη μαθήτρια, φίλε μαθητή,

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

ΟΙ πιο πάνω έννοιες εκφράζουν όπως λέμε τη μονοτονία της συνάρτησης.

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,.

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

Μεθοδολογία Παραβολής

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις

ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

Διδασκαλία στο 2ο Πειραματικό Λύκειο (Αμπελοκήπων)

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Μαθηματική Εισαγωγή Συναρτήσεις

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)

Συγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα:

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΟΡΙΣΜΟΣ 2 (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις)

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

Σας εύχομαι καλή μελέτη και επιτυχία.

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ProapaitoÔmenec gn seic.

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Συναρτήσεις. Ισότητα - Πράξεις Συναρτήσεων Σύνθεση συναρτήσεων Αντίστροφη συνάρτηση. Φιλεκπαιδευτική Εταιρεία Αρσάκεια - Τοσίτσεια Σχολεία

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση

Φίλη μαθήτρια, φίλε μαθητή,


ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

1 ης εργασίας ΕΟ Υποδειγματική λύση

Transcript:

1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2007

5 Περιεχόμενα Πρόλογος... 7 Ίσες συναρτήσεις και συναρτήσεις 1 1... 11 Ορισμός αντίστροφης συνάρτησης... 12 Η μόνη συνάρτηση που είναι ίση με την αντίστοφή της είναι η ταυτοτική... 14 Συμπεράσματα... 15 Ιδιότητες αντίστροφων συναρτήσεων... 17 Τα κοινά σημεία των γραφικών παραστάσεων δύο συναρτήσεων... 19 Εύρεση των κοινών τους σημείων... 20 Τα κοινά σημεία των γραφικών παραστάσεων δύο αντίστροφων συναρτήσεων... 21 Εύρεση των κοινών τους σημείων... 22 Σημαντική Παρατήρηση... 23 Διανυσματική προσέγγιση... 25 Διανυσματική εξίσωση συνάρτησης... 25 Διανυσματικές εξισώσεις αντίστροφων συναρτήσεων... 26 Γεωμετρικός σχολιασμός των καμπύλων C ( f ) και C ( f 1 )... 29 Παραδείγματα... 31 Σύνθεση συναρτήσεων και αντίστροφες συναρτήσεις... 36 Παραδείγματα... 38 Συνήθεις ερωτήσεις... 48

7 Πρόλογος Στις 12 Νοεμβρίου 2006, εισηγήθηκα στην ΔΕΥΤΕΡΗ ΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ που πραγματοποιήθηκε στα ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΦΡΥΓΑΝΙΩΤΗ στη Θεσσαλονίκη το θέμα «ΚΙ ΟΜΩΣ, ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΔΥΟ ΑΝΤΙΣΤΡΟΦΩΝ ΣΥΝΑΡΤΗΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y=x» Υπήρχαν δύο λόγοι που με «προκάλεσαν» να εισηγηθώ το παραπάνω θέμα. Ο πρώτος λόγος ήταν, ότι θα απευθυνόμουν κυρίως σε Καθηγητές Μαθηματικών Δευτεροβάθμιας Εκπαίδευσης, άρα είναι ένα ενδιαφέρον θέμα γι αυτούς, σκέφθηκα, καθότι περιλαμβάνεται στην διδασκόμενη ύλη της Τρίτης Λυκείου. Ο δεύτερος και κύριος λόγος ήταν η διαπίστωση που έκανα, ότι σχεδόν σε όλα τα βοηθήματα των μαθηματικών της Τρίτης Λυκείου, αλλά και σε αρκετά άρθρα του περιοδικού «ΕΥΚΛΕΙΔΗΣ Β» της Ελληνικής Μαθηματικής Εταιρείας, γράφτηκε με απόλυτη βεβαιότητα, ότι ισχύει το αντίθετο από αυτό που δηλώνει ο τίτλος της εισήγησής μου. Δηλαδή ότι υπάρχουν αντίστροφες συναρτήσεις με κοινά σημεία των γραφικών τους παραστάσεων εκτός της διχοτόμου y = x. Επιπλέον μετά από συζητήσεις με συναδέλφους της Δευτεροβάθμιας Εκπαίδευσης διαπίστωσα, ότι αυτή η εσφαλμένη άποψη, διδάσκεται σχεδόν σε όλα τα Λύκεια. Ήταν δε τόσο σίγουροι οι συνάδελφοι για το αληθές των απόψεών τους, που μερικοί φίλοι με προειδοποίησαν, ότι είναι ρίσκο αυτό που πάω να κάνω και να προσέξω να μην εκτεθώ! Φυσικά η προσωπική μου επιστημονική άποψη διατυπώνεται με απόλυτη σαφήνεια στον τίτλο της εισήγησής μου.

8 Είναι προφανές και γνωστό σε όλους, ότι το ίδιο πιστεύει και όλη η ακαδημαϊκή κοινότητα στην Ελλάδα και το εξωτερικό. Επίσης την ίδια άποψη συναντά κανείς και στην διεθνή βιβλιογραφία, καθώς και στα άρθρα και παρουσιάσεις στο διαδίκτυο. Εξάλλου το θέμα της αντιστροφής μιας συνάρτησης δεν είναι τίποτε άλλο 2 παρά ένα πρόβλημα γραμμικού μετασχηματισμού του συνόλου R με πίνακα È0 1 μετασχηματισμού τον A = Í 1 0. Συγκεκριμένα πρόκειται για τον γραμμικό Î 2 2 μετασχηματισμό R '( x, y) Æ ( y, x) ŒR. Το σύνολο των αναλλοίωτων σημείων του μετασχηματισμού αυτού είναι το K = {( x, x)/ xœr }. Προφανώς τα στοιχεία του συνόλου αυτού απεικονίζονται στα σημεία της ευθείας y = x. Αυτό σημαίνει ότι τα αναλλοίωτα σημεία των συνόλων C( f) = { M( x, f( x))/ xœd( f )} και -1 C( f ) = { N( f ( x), x)/ xœd( f )} είναι αυτά για τα οποία ισχύει ( x, f( x))œk, δηλαδή είναι f( x)= x, που σημαίνει ότι ανήκουν στην ευθεία y = x. Το κύριο πρόβλημα που είχα να αντιμετωπίσω δεν ήταν η ορθότητα των απόψεών μου, αλλά με ποιο τρόπο θα παρουσιάσω το θέμα μου, ώστε να μην θίξω τους συναδέλφους συγγραφείς, οι οποίοι γράφουν το αντίθετο στα βιβλία τους, καθώς και τους συναδέλφους που το διδάσκουν εσφαλμένα, εδώ και χρόνια. Πιστεύω ότι με τις εξηγήσεις που έδωσα στο ακροατήριο δεν προέκυψε τέτοιο θέμα. Μετά την εισήγησή μου στην ημερίδα, μου υποβλήθηκαν αρκετές ερωτήσεις, οι οποίες σχεδόν όλες είχαν αφετηρία την μη κατανόηση του γεγονότος, ότι δύο αντίστροφες συναρτήσεις μπορεί να έχουν το ίδιο πεδίο ορισμού και τον ίδιο τύπο και να μην είναι ίσες. Επίσης από τις ερωτήσεις που μου υποβλήθηκαν, προέκυψε, ότι δεν είναι σαφές, τι ονομάζεται κοινό σημείο των γραφικών παραστάσεων δύο αντίστροφων συναρτήσεων. Επιπλέον συγχέεται η έννοια του κοινού σημείου των γρα-

9 φικών παραστάσεων δύο αντίστροφων συναρτήσεων, με το γεγονός ότι οι γραφικές παραστάσεις δύο αντίστροφων συναρτήσεων μπορεί να διέρχονται από το ίδιο σημείο του επιπέδου, χωρίς το σημείο αυτό να είναι κοινό τους σημείο. Μετά την ημερίδα και για δέκα περίπου ημέρες δέχθηκα ένα πολύ μεγάλο αριθμό μηνυμάτων αλλά και τηλεφωνημάτων από συναδέλφους. Πολλοί από αυτούς διαφωνούσαν μαζί μου, άλλοι συμφωνούσαν, και άλλοι ήθελαν διευκρινήσεις και εξηγήσεις στην προσπάθειά τους να καταλάβουν το πρόβλημα. Αφού συγκέντρωσα τις βασικές απαντήσεις, που έδωσα σε διάφορους συναδέλφους, συνέταξα ένα κείμενο, το οποίο έστειλα σε όσους μπόρεσα και «ώ του θαύματος», άρχισα να παίρνω μια σειρά από μηνύματα που έλεγαν, «ναι, τώρα έγινε πλήρως αντιληπτό τι συμβαίνει με τις αντίστροφες». Ήταν για μένα μια πολύ σημαντική στιγμή, διότι οι συνάδελφοι κατανόησαν, γιατί συμβαίνουν όλα αυτά τα «παράξενα» με τις αντίστροφες συναρτήσεις, τα οποία δεν ισχύουν για δύο άλλες τυχαίες συναρτήσεις. Μετά από όλα αυτά, αποφάσισα να γράψω αυτό το τεύχος με τις απόψεις και θέσεις μου πάνω στο θέμα των αντίστροφων συναρτήσεων. Προσπάθησα, να παρουσιάσω με όσο γίνεται μεγαλύτερη πληρότητα το θέμα, ώστε ο μελετητής να βρει ότι χρειάζεται και ότι πρέπει να γνωρίζει. Περιέχονται μια σειρά προτάσεων, ιδιοτήτων και συμπερασμάτων που αφορούν τις αντίστροφες συναρτήσεις, τα οποία προέκυψαν από την μακρά μου ενασχόληση με τα μαθηματικά. Πιστεύω, ότι μερικά από αυτά δεν υπάρχουν στην βιβλιογραφία τόσο αναλυτικά και τόσο διεξοδικά παρουσιασμένα. Στο τεύχος λοιπόν που κρατάτε στα χέρια σας, δίνονται αποδείξεις και εξηγήσεις σε βασικά θέματα όπως Γιατί δύο αντίστροφες συναρτήσεις οι οποίες ενώ έχουν το ίδιο πεδίο ορισμού και τον ίδιο τύπο δεν είναι ίσες. Μοναδική προφανώς εξαίρεση αποτελεί η ταυτοτική συνάρτηση. Τι ονομάζεται κοινό σημείο των γραφικών παραστάσεων δύο αντίστροφων συναρτήσεων.

10 Πως βρίσκoυμε τα κοινά σημεία των γραφικών παραστάσεων δύο αντίστροφων συναρτήσεων και γιατί αυτά βρίσκονται μόνο πάνω στην διχοτόμο y = x. Πως συνδέεται η σύνθεση δύο τυχαίων συναρτήσεων με το θέμα των αντίστροφων συναρτήσεων. Ποια είναι η «μαθηματική» σημασία της εναλλαγής των μεταβλητών x, y στον τύπο της αντίστροφης συνάρτησης, και πότε δεν πρέπει να γίνεται αυτή η αλλαγή. Τέλος, περιέχονται αρκετές λυμένες ασκήσεις, για την καλύτερη κατανόηση όλων των εννοιών, που έχουν σχέση με τις αντίστροφες συναρτήσεις. Πρέπει να ευχαριστήσω και δημόσια τoν φίλο και συνάδελφο Αθανάσιο Π. Φρυγανίωτη διευθυντή και ιδιοκτήτη των ΕΚΠΑΙΔΕΥΤΗΡΙΩΝ ΦΡΥΓΑΝΙΩ- ΤΗ, για όλα όσα έκανε και προσέφερε για την έκδοση του τεύχους αυτού και τον διαβεβαιώνω ότι η φήμη ενός σχολείου διαμορφώνεται από το σύνολο της προσφοράς του, τόσο στο επίπεδο της παρεχόμενης εκπαίδευσης στους μαθητές του, όσο και στο επίπεδο της επιστημονικής έρευνας και της συμμετοχής σε επιστημονικές δραστηριότητες. Ανδρέας Λ. Πετράκης Aριστούχος Μαθηματικός Διδάκτωρ των Μαθηματικών Καθηγητής του Γενικού Τμήματος Θετικών Επιστημών του ΤΕΙ Δυτικής Μακεδονίας