Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση

Σχετικά έγγραφα
Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΠΟΛΥΩΝΥΜΩΝ Παραγοντοποίηση μιας αλγεβρικής παράστασης είναι η μετατροπή αυτής σε γινόμενο παραγόντων

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

2ay κλάσµα πρέπει πάντα ο παρανοµαστής να είναι διάφορος το µηδενός δηλαδή στο παράδειγµα

ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

2.2 ιαίρεση Πολυωνύμων

ΜΕΘΟΔΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

x. 8α 4 x 3-12α 3 x 2 + 6α 2 x 4-10α 2 x

Μαθηματικά Γ Γυμνασίου

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Α. ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

Ορισμένες σελίδες του βιβλίου

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ

Εξισώσεις πρώτου βαθμού

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις

2.3 Πολυωνυμικές Εξισώσεις

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

Πράξεις με πραγματικούς αριθμούς (επαναλήψεις - συμπληρώσεις )

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» stvrentzou@gmail.com

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

4.1 ΕΝΝΟΙΑ ΠΟΛΥΩΝΥΜΟΥ -ΒΑΘΜΟΣ-ΙΣΟΤΗΤΑ-ΡΙΖΕΣ. ΛΥΣΗ 1 2 =κ κ κ 1+43κ κ = =0

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ

9 Πολυώνυμα Διαίρεση πολυωνύμων

( ) λ( ) ( ) ( ) 2. 3α β 27αβ 10. x x αx αy βx βy x y y x x x x. 4 x x x y x y x y y. B Να παραγοντοποιηθούν οι παραστάσεις: x y x y x x y a x a x

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ. ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ. Τελευταία ενημέρωση 16 Μαρτίου w w w. c o m m o n m a t h s. w e e b l y. c o m

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Περιεχόμενα μεθόδευση του μαθήματος

x x και µε P το γινόµενο x1 x2 2α 2α α

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού

2.2 ιαίρεση Πολυωνύμων

1 ης εργασίας ΕΟ Υποδειγματική λύση

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

1.3 Εσωτερικό Γινόμενο

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

x y z xy yz zx, να αποδείξετε ότι x=y=z.

Μελέτη της συνάρτησης ψ = α χ 2

( ) ( ) ( ) 1. α 0. Η παράσταση. Τα αποτελέσµατα σχετικά µε τις ρίζες της εξίσωσης συνοψίζονται στον παρακάτω πίνακα: Αν = 0

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

απλοποιείται, γιατί οι όροι της είναι γινόμενα και έχουν κοινό παράγοντα το xy. Αν διαιρέσουμε και τους δύο όρους με τον κοινό παράγοντα,

Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης. 14/2/2012

Παράδειγμα 8. Να βρείτε την τιμή της παράστασης:

K. Μυλωνάκης Αλγεβρα B Λυκείου

Transcript:

Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση

1 ΠΑΡΑΔΕΙΓΜΑΤΑ a. 15αχ 12χ + 3χ = 3 5αχ 3 4χ+3= 3 (5αχ 4χ+1) Όταν πάλι έχουμε ίδιες μεταβλητές θα βγάζουμε κοινό παράγοντα την κοινή μεταβλητή (απ' όλους τους όρους) αλλά στον μικρότερο εκθέτη. π.χ. b. 15χ 4 12χ 3 +3χ 2 = 3χ 2 (5χ2 4χ+1) c. 15α 3 β 2 γ 5α 2 β 3 γ 2 20α 4 β 4 γ 3 χ = 5α 2 β 2 γ(3α βγ 4α 2 β 2 γ 2 χ) d. λα 2 + κβα λαβ κβ 2 = (λα 2 λαβ) + (κβα κβ 2 ) = λα(α β) + κβ(α β) = (α β)(λα+κβ) e. 9χ 2 1 Παρατηρούμε την παράσταση και βλέπουμε ότι : έχουμε διαφορά, έχουμε τετράγωνο χ 2, 9=3 2, 1 = 4 2 Άρα η 9χ 2 1 γράφεται: 3 2 χ 2 4 2 =(3χ) 2 4 2 Άρα έχουμε διαφορά τετραγώνων και γράφουμε: (3χ+4)(3χ 4) f. (κ+λ) 2 4 = Παρατηρούμε την παράσταση και βλέπουμε ότι : έχουμε δύο όρους, έχουμε διαφορά,έχουμε τετράγωνο (κ+λ) 2 και 4=2 2 Άρα (κ+λ) 2 2 2 = [(κ+λ)+2][(κ+λ) 2] = (κ+λ+2)(κ+λ 2) g. (χ+2ω) 2 (ψ 2ω) 2 = Παρατηρούμε την παράσταση και βλέπουμε ότι : έχουμε δύο όρους, έχουμε διαφορά, έχουμε δύο τετράγωνα Άρα [(χ+2ω)+(ψ 2ω)][(χ+2ω) (ψ 2ω)] = (χ+2ω+ψ 2ω)(χ+2ω ψ+2ω) = (χ+ψ)(χ ψ+4ω) h. 2αβ+αγ = α (2β+γ) i. 10χ 2 10φ 2 +10ω 2 = 10(χ 2 φ 2 +ω 2 ) ΠΑΡΑΔΕΙΓΜΑΤΑ (i) 9χ 2 +χψ+ψ 2 =(3χ) 2 + (ψ) 2 + 2 3 χψ = (3χ+ψ) 2 (ii) κ 2 χ 2 +ψ 2 2κψχ = κ 2 χ 2 2κψχ+ψ 2 = (κχ) 2 + (ψ) 2 + 2 κχ ψ = (κχ ψ) 2 (iv ) (α+β) 2 2(α+β)χ+χ 2 = (α+β) 2 + ( χ) 2 2 (α+β) χ = (α+β χ) 2 1

2 ΠΑΡΑΔΕΙΓΜΑ: 1. Έστω το τριώνυμο: χ 2 2χ 8 Έχουμε τους εξής συνδυασμούς για το α και το β: α β = 8 1 ( 8) = 8 ( 1) 8 = 8 2 ( 4) = 8 ( 2) 4 = 8 1+( 8) = 7 Απ' αυτούς διαλέγουμε εκείνο που μπορεί να δώσει α+β = 2 ( 1)+8= +7 2+( 4) = 2 ( 2)+4 = +2 Άρα : α =2 και β = 4 τότε γράφεται: χ 2 2χ 8 = (χ+2)(χ 4) 2. Να παραγοντοποιηθεί η παράσταση : 2χ 2-3χ+1 Θέτω 2χ 2-3χ+1=0 Λύνω την εξίσωση: Δ= β 2-4αγ=(-3)2-4.2.1=1>0 οπότε οι ρίζες τις εξίσωσης είναι : Τότε έχουμε: 2χ 2-3χ+1=2(χ-1)(χ-1/2) 3. Να παραγοντοποιηθεί η παράσταση : Επειδή δεν υπάρχει κοινός παράγοντας,αλλά θέλουμε να το εμφανίσουμε στην προηγούμενη μορφή, πολλαπλασιάζουμε και διαιρούμε με τον συντελεστή του χ 2. Θέτω 2χ = y Αντικαθιστώ το y = 2x = = 2

3 Βγάζω κοινό παράγοντα το 2 και έχω = 4. Να παραγοντοποιηθεί η παράσταση : Θέτω όπου παραδείγματος 5. Να παραγοντοποιηθεί η παράσταση : και ακολουθώ την μεθοδολογία του 3 ου θέτω όπου. Να παραγοντοποιηθεί η παράσταση : Ως προς την μεταβλητή χ Αναζητούμε δύο αριθμούς με γινόμενο 4y 9y=3y και 4y + 9y = 13y Άρα και άθροισμα 13y 7. Σε πολλές περιπτώσεις χρειάζεται να βρούμε τους διαιρέτες του σταθερού όρου για να παραγοντοποιήσουμε. Δοκιμάζουμε ποιοί μηδενίζουν το πολυώνυμο και στις τους θέτουμε στο (χ-ρ). Έπειτα κάνω διαίρεση πολυωνύμου και πολλαπλασιάζω το τριώνυμο που προκύπτει με το (χ-ρ). Oι διαιρέτες του είναι : ±1, ±2, ±3, ± Με δοκιμές προκύπτει ότι μηδενίζεται για χ = -2 Άρα (χ+2) Κάνοντας τη διαίρεση προκύπτει και η παραγοντοποίηση δίνει (χ+2) 3

4 8.Να παραγοντοποιηθεί η παράσταση: x 5 +x 4 +x 3 +x 2 +x+1 Έστω y = x 5 +x 4 +x 3 +x 2 +x+1. Τότε (x 1)y = (x 1)( x 5 +x 4 +x 3 +x 2 +x+1) = x 1 =(x 3 ) 2 1 2 = (x 3 1)(x 3 +1) =(x 1)(x 2 +x+1)(x+1)(x 2 x+1). Διαιρούμε και τα δύο μέλη με (x 1) και έχουμε: y=(x+1)(x 2 +x+1)(x 2 x+1) Να παραγοντοποιηθούν οι παραστάσεις: (1) x 7 +x +x 5 +x 4 +x 3 +x 2 +x+1 (2) x 8 +x 7 +x +x 5 +x 4 +x 3 +x 2 +x+1 1. Να γραφούν ως γινόμενα a. 2 α +8 m. b. c. d. e. f. g. h. n. o. p. q. i. j. k. l. + 4

5 r. 1 4( 1) y. z. s. aa. bb. t. cc. u. v. w. dd. ee. ff. x. 2. Να αναλύσετε σε γινόμενο πρώτων παραγόντων τα πολυώνυμα: a. 3αx - 12xψ 2 b. 27x 3 ψ 3-1 c. 5x 2 α - 15xα 3 d. 27α 3 + x 3 e. 12αx - 3αψ - 4αx + αψ f. 3α 2 + 12α +1 g. 5αx + αψ - 15x - 3ψ h. 4x 4 + 1 + 4x 2 i. x (3α - α) + ψ (α - 3α) j. x 2 + 4x -21 k. 12x 5 ψ 4-8x 3 ψ 3 + 1x 3 ψ 2 l. ψ 2-1ψ + 0 5

m. 25x 2-9ψ 4 n. 5x 3-20x 2 + 20x o. 3x 2 ψ - 12ψ 3 p. 2x 3 + 4x 2-1x q. 50x 2-2ψ 2 r. α 2-3αβ + 2β 2 s. 3α 3-12α t. 2α + α 2 - α (α + 2) u. x 3-27 v. x 3 + 3x 2-4x -12 w. x 2-2xψ + ψ 2-1u 2 3. Να αναλύσετε σε γινόμενο πρώτων παραγόντων τα πολυώνυμα: a. 9u 2 - x 2-4xψ - 4ψ 2 b. (α - 2) (1 - u) - (α 2-4) c. (4x 2-9) - 3 (2x + 5) (2x - 3) d. α 2 + 25α 2-10αα - α 2 e. 9x 2 + x + 1 - u 2 f. x 4 + 8x g. 1 - (x 2-8) 2 h. 2αx - αψ + αx - 3αψ i. (x + 5) (3x + 5) - x 2 + 25 j. (α + 3) (α - 1) 2-4 (α + 3) k. (u + 5) (x - 2) 2-9 (u + 5) l. x 2 + x -12 - αx + 3α

7 m. 4x 2 - ψ 2 + 4ψ - 4 n. x 2 - ψ 2 + 2x + 2ψ o. 2x 3-12x 2 + 18x p. 2ux - 5ψ + 2uψ - 5x q. α 2 - α - x + 2αx + x 2 r. αβ 3 - α 3 β s. (α 2-1) (α 2 + 9) - (α 2 α - α) t. xψ 2 + 2x 2 ψ + x 3 u. x 2 (x -3) - (4x +13) (x - 3) - x 2 +9 4. Να λύσετε τις εξισώσεις: a. 3x 2 - x = 0 b. 9x 2 + x + 1 = 0 c. x 2-5x + = 0 d. (u + 3) (u - 1) 2-4 (u + 3) = 0 e. (x - 4) 2-2x = 0 f. 48x 2-3 = 0 g. ψ 2-9 = 0 h. x 3 + 8x 2 + 15x = 0 i. (u - 1) 2-4 = 0 5. Nα παραγοντοποιήσετε τις παραστάσεις a. 3α + β b. 2x 8 c. 8ω 2 + ω d. 8α 2 β + 4αβ 2 e. 2x 2 2xy +2x f. α 2 β + αβ 2 αβ g. 2α 3 4α 2 + α 2 β h. 2 xy 18 y + 8 y 2 7

i. x (α β) + y (α β) j. α(x+y)+β(x + y) l. α 2 (α 2) 3 (2 α) m. 4x (x 1) x + 1 k. (3x 1) (x 2) (x + 4)(x 2) n. 2x 2 (x 3) x(x 3) 2. Nα παραγοντοποιήσετε τις παραστάσεις a. 2x + ω + x 2 + 3xω = b. x 3 + 2x 2 + 4x + 8 = c. x + y + αx + αy = d. x 3 2x 2 x + 2 = e. x 3 3 x 2 + 3x - 1 = f. χ 2-4χ+4 = χ 2-2.χ.2+2 2 =(χ 2) 2 4. x 2 +x+9 = g. χ 2-2χ+1= 5. x 2-4x+9= h. x 2 +4x+4= 7. Nα παραγοντοποιήσετε τις παραστάσεις a. x 2-4 = b. x 2-9 = c. 4x 2-9y 2 = d. 4 x 2 y 9 = e. (x+2α)(x-2α) = 2 f. 4x 9 2x 2 3 3 2x 3 2x 3

g. χ 3 - χ 2 + 9χ = h. χ 3-5χ 2 + 4χ = i. x 3 4x = j. 2x 5 4x 4 + 2x 3 4x 2 = k. x 5 1x =x(x 4-1) = x[(x 2 ) 2-4 2 ]= x(x 2-4)(x 2 +4) =x(x 2-2 2 )(x 2 +4) =x(x- 2)(x+2)(x 2 +4) l. 5x 2-20x +x 2-4 m. αx 2 αy 2 +x y n. (α-β)(χ+y) 2 +(β-α) = (α-β)(χ+y) 2 - (α-β)=(α-β)[(χ+y) 2-1]=(α-β)(χ+y-1)(χ+y+1) o. 3(χ+5)(χ-2) 2-12χ -0 p. (α+1)(α+2) -(α 2-4) q. (4x+y) 2 +1x 2 y 2 r. (x-y)(2κ-λ)+(x 2 y 2 ) s. α(x+y) 2 +β(x+y) 2-4α -4β t. 9x 2-12αx + 4 α 2 = (3x) 2-2.3x.2α+(2α) 2 =(3x-2α) 2 u. α 2 x 2 α 2 β 2 x 2 +β 2

7 8. Να παραγοντοποιήσετε τα πολυώνυμα: a. 2κ-4λ b. 5x - 5ω c. χαω + χβω d. 3x 9α k. x 2-3 l. x 2-81 m. 9x 2-25y 2 n. x 4 - y 2 /4 e. β 8y o. x -y f. x 2 3x g. 12α 2 + 3α h. x 2-5x i. 2x 3 + x 2 p. χ 2-4χ+4 q. χ 2 +2χ+1 r. χ 2 +8χ+1 s. χ 2 -χ+9 j. x 3 21x 2 t. χ 2-4χ+9 9. Να παραγοντοποιήσετε τα πολυώνυμα: α) 3χy²+χ²y+12χ²y², β)1χ²yα-24χy²α²+32χyα. γ) αχ+βy+α-βχ-αy-β, δ) 1-χ+χ²-χ 3 +χ 4 -χ 5 +χ -χ 7. ε) 4x²-(3y-1)², ζ) 9(x+2y)² - 1(2x-3y)². η) 25x²+40xy+1y², θ) 4χ³-20χ²+25χ 10. Να γίνουν γινόμενα παραγόντων οι παραστάσεις: α) (2χ-4)(χ²-1)-(3χ-)(χ-1)² β) χ²+(2α+1)χ+α²+α γ) (α+β+1) 2 - (α-β-1) 2 7

11. Να γίνουν γινόμενα παραγόντων οι παραστάσεις: α) α) 9χ²-25y² β) 49y²-4χ² γ) χ²-4χ+3 δ) χ²+5χ+4 ε) y 2 + 2y+ 1 στ) χ 2 χ - ψχ +ψ + ω ωχ ζ) χ 3 (χ + 1) χ(χ + 1) η) χ(α β) + ψ(β α) θ) 24χ 3 + 81ψ 3 ι) α α 3 κ) 2χ 4 18χ 2 λ) 4χ 4 + 8χ + ψ 3 ψ 2 μ) κ 3 2κ 2 + 27λ 3 + 18λ 2 ν) 2χ(2χ 2 4) + χ 3 2χ