ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

Σχετικά έγγραφα
Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου. Ακαδημαϊκό έτος:


KEΦΑΛΑΙΟ 2 Θεωρία Χαρτοφυλακίου

0,40 0, ,35 0,40 0,010 = 0,0253 1

Η εξίσωση της γραμμής αγοράς χρεογράφων (SML) είναι η εξίσωση του υποδείγματος κεφαλαιακών και περιουσιακών στοιχείων (CAPM)


ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

ΔΕΟ31 Θεωρία Κεφαλαιαγοράς και υποδείγματα αποτίμησης κεφαλαιακών περιουσιακών στοιχείων

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Αξιολόγηση Επενδύσεων

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ

Σχηματισμός χαρτοφυλακίου με χρήση Excel. Θεωρία και πράξη

Β. Τα μερίσματα θα αυξάνονται συνεχώς με ένα σταθερό ρυθμό 5% ανά έτος.

Διαχείριση Χαρτοφυλακίου ΟΕΕ. Σεμινάριο

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:


Αξιολογηση Επενδυσεων Χαρτοφυλακίου

α έχει μοναδική λύση την x α

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας

ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ

ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση )

H τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes

Η ΑΣΤΑΘΕΙΑ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΒΗΤΑ

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Value at Risk (VaR) και Expected Shortfall

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΚΕΦΑΛΑΙΟ 2ο ΑΠΟΔΟΣΗ ΚΑΙ ΚΙΝΔΥΝΟΣ

MANAGEMENT OF FINANCIAL INSTITUTIONS

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Χρηματοοικονομική Διοίκηση

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

Η ΕΚΤΙΜΗΣΗ ΤΟΥ ΒΗΤΑ ΤΩΝ ΜΕΤΟΧΩΝ ΜΕΣΩ ΕΝΟΣ ΥΠΟΔΕΙΓΜΑΤΟΣ ΜΕ ΔΙΑΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ ΠΕΡΙΕΧΟΜΕΝΑ

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

1.Μια εταιρία αναμένεται να αποδώσει μέρισμα στο τέλος του έτους ίσο με D 1=2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ

Χρηματοοικονομική Διοίκηση

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος.

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων

Απόδοση/ Κίνδυνος (Είδη κινδύνου, σχέση κινδύνου- απόδοσης)

ΚΕΦΑΛΑΙΟ 5 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΜΕ ΣΜΕ. 5.1 Γενικά

ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

(f(x)+g(x)) =f (x)+g (x), x R

Σύγχρονες Μορφές Χρηματοδότησης

Α.Τ.Ε.Ι. ΗΠΕΙΡΟΥ «ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΚΑΙ ΑΠΟΔΟΣΗΣ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΩΝ ΠΡΟΪΟΝΤΩΝ» Εμπειρική Ανάλυση σε Αμοιβαία Κεφαλαία ΝΙΚΟΛΟΓΙΑΝΝΗ ΑΙΚΑΤΕΡΙΝΗ

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Εισόδημα Κατανάλωση

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Απλή Παλινδρόμηση και Συσχέτιση

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ & ΚΕΦΑΛΑΙΟΥ

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

Να απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες.

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008

Διαχείριση Υδατικών Πόρων

3 η ΕΡΓΑΣΙΑ , , , , , , , , , , , ,189

σ = και σ = 4 αντιστοίχως. Τότε θα ισχύει

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

Transcript:

ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΛΕΛΕΔΑΚΗΣ Άσκηση : ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΗ Α ΜΕΤΟΧΗ Β Απόδοση Πιθανότητα Απόδοση Πιθανότητα -0,0 0,50-0,0 0,50 0,50 0,50 0,60 0,50 [ ] Μετοχή Α: Αναμενόμενη Απόδοση: = (0,50 x -0,0 + (0,50 x 0,50 = = -0,05 + 0,5 = 0,0 ή 0% σ = 0,5 x [-0,0-0,0] + 0,5 x [0,50-0,0] = 0,50 x 0,09 + 0,50 x 0,09 = 0,045+0,045=0,09 σ = 0,3 ή 30% Μετοχή Β: Αναμενόμενη Απόδοση: Β = (0,50 x -0,0 + (0,50 x 0,60 = = -0,0 + 0,30 = 0,0 ή 0% σ Β= 0,5 x [-0,0-0,0] + 0,5 x [0,60-0,0] = 0,50 x 0,6 + 0,50 x 0,6 = 0,08 + 0,08 = 0,6 σ Β = 0,4 ή 40% Αναμενόμενη Απόδοση Χαρτοφυλακίου: = (0,60 x 0,0 + (0,40 x 0,0 = = 0, + 0,08 = 0, ή 0%

j j j j σ = 0,60 x 0,30 + 0,40 x 0,40 = = 0,36 x 0,90 + 0,6 x 0,6 = = 0,034 + 0,056 = 0,058 σ = 0,4 ή 4% Άσκηση : Όταν η απόδοση ενός αξιογράφου εκφράζεται με έναν αριθμό δυνητικών αποδόσεων και την αντίστοιχη πιθανότητα να συμβούν, τότε η αναμενόμενη απόδοση ισούται με τον σταθμικό μέσο όρο αυτών των δυνητικών αποδόσεων όπου κάθε δυνητική απόδοση σταθμίζεται από την αντίστοιχη πιθανότητα να συμβεί. Οπότε ισχύει: 3 3 3 0,5 0,44 0,5 0,4 0,5 ( 0,6 0, 0,07 0,04 0,4 4% Αντίστοιχα για τη μετοχή Β: 3 3 3 0,35 0, 0,3 0,5 0,35 ( 0, 0,07 0,045 0,035 0,08 8% Είναι γνωστό ότι ο κίνδυνος μετράται ως η μεταβλητότητα των αποδόσεων γύρω από την αναμενόμενη τιμή τους. Για την περίπτωση των δυνητικών αποδόσεων με κάποια πιθανότητα, ο κίνδυνος μετράται από την ακόλουθη σχέση:

Κίνδυνος μετοχής Α: 3 [ ] 0, 5 (0, 44 0,4 0, 5 (0,4 0,4 0, 5 ( 0,6 0,4 0, 5 0, 09 0, 5 0, 09 0, 045 0, 3, 3% Κίνδυνος μετοχής Β: 3 [ ] 0, 35 (0, 0, 08 0, 3 (0,5 0, 08 0, 35 ( 0, 0, 08 0, 35 0, 044 0, 3 0, 0049 0, 35 0, 034 0, 0785 0,336 3, 36% Με τους παραπάνω υπολογισμούς γνωρίζουμε όλα τα δεδομένα που χρειάζονται για τον υπολογισμό της αναμενόμενης απόδοσης του χαρτοφυλακίου καθώς και του κινδύνου του (σύμφωνα με τις σχέσεις που χρησιμοποιήθηκαν και στο προηγούμενο θέμα. Συνεπώς: Απόδοση χαρτοφυλακίου Ε( = Α E ( Α + Ε( = 0,75 0,4 + 0,5 0,08 = 0,05 + 0,0 = 0,5 Ε( =,5% 3

Κίνδυνος χαρτοφυλακίου 0, 565 0, 045 0, 065 0, 075 0, 6 0, 75 0, 5 0, 3 0, 336 0,0535 0,0009375 0,0063766879 0,03789379 0, 8 8, % Άσκηση 3:. Απόδοση: Ε( = 5% σ = 0%. Απόδοση: Ε( = (0,75 x 0,5 + (0,5 x 0,35 = 0,0 ή 0% σ = (0,75 x 0,0 + 0,5 x 0,40 + x 0,75 x 0,5 x 0,5 x 0,0 x 0,40 / = 0,0 ή 0% 3. Απόδοση: Ε( = (0,50 x 0,5 + (0,50 x 0,35 = 0,5 ή 5% σ = (0,50 x 0,0 + 0,50 x 0,40 + x 0,50 x 0,50 x 0,5 x 0,0 x 0,40 / = 0,449 ή 4,49% 4. Απόδοση: Ε( = (0,5 x 0,5 + (0,75 x 0,35 = 0,30 ή 30% σ = (0,5 x 0,0 + 0,75 x 0,40 + x 0,5 x 0,75 x 0,5 x 0,0 x 0,40 / = 0,36 ή 3,6% 5. Απόδοση: Ε( = 35% σ = 40% 4

Άσκηση 4: Αναμενόμενη Απόδοση Χαρ/κίου: = (0,70 x 0,0 + (0,30 x 0,05 = = 0,4 + 0,05 = 0,55 ή 5,5% Κίνδυνος Χαρ/κίου: j j j j j σ = (0,70 x 0,0 + (0,30 x 0 + 0 = = 0,49 x 0,04= 0,096 σ = 0,4 ή 4% Άσκηση 5: α Απόδοση χαρτοφυλακίου Ε( = Α E ( Α + F F Ε( = 0,70 0,5 + 0,30 0,06 = 0,05 + 0,08 = 0,3 Ε( =,3% Κίνδυνος χαρτοφυλακίου F F F F F 0, 70 0, 0, 084 8, 4% 5

β Ο κίνδυνος του χαρτοφυλακίου προκύπτει ως το γινόμενο του ποσοστού επένδυσης στη μετοχή επί την τυπική απόκλιση (κίνδυνο της μετοχής (λόγω του ότι ο κίνδυνος από την επένδυση στα έντοκα γραμμάτια του Ελληνικού Δημοσίου είναι μηδενικός. Ως εκ τούτου ισχύει: 0, 09 0, 0, 75 Συνεπώς για να είναι ο κίνδυνος του χαρτοφυλακίου 9% θα πρέπει να επενδυθεί το 75% των κεφαλαίων στη μετοχή και το 5% στα γραμμάτια του Ελληνικού Δημοσίου. γ Η αναμενόμενη απόδοση του χαρτοφυλακίου θα προκύψει από τη γνωστή σχέση: Ε( = Α E ( Α + F F Ε( = 0,75 0,5 + 0,5 0,06 = 0,5 + 0,05 = 0,75 Ε( =,75% Άσκηση 6: Θεωρούμε ένα χαρτοφυλάκιο το οποίο αποτελείται από τις μετοχές Α και Β με σταθμίσεις και =-. Αν ο συντελεστής συσχέτισης των δύο μετοχών είναι ρ=, τότε η τυπική απόκλιση του χαρτοφυλακίου θα είναι ίση με: ( και η αναμενόμενη απόδοση του χαρτοφυλακίου θα είναι ίση με: ( Για κάποιο συνδυασμό των και το χαρτοφυλάκιο θα ενέχει μηδενικό κίνδυνο δηλαδή θα έχει σ = 0. Αρκεί λοιπόν να βρούμε από τη σχέση ( το όταν σ = 0 και να το αντικαταστήσουμε στη σχέση ( για να βρούμε την αναμενόμενη απόδοση χωρίς κίνδυνο. Θα έχουμε: 6

0 0 5 5 0 5 0 3 και 0 5 3 3 0 5 35, 67% 3 3 3 Άσκηση 7: Το ποσοστό επένδυσης των στοιχείων που ελαχιστοποιεί τον κίνδυνο είναι αυτό που ελαχιστοποιεί τη διακύμανση του χαρτοφυλακίου Για ρ ΑΒ = 0 δίνεται από τη σχέση: 0,5 0,5 96,5% 0, 0,5 0,6 οπότε για Β = - 96,5% = 3,85%. Άσκηση 8: Μετοχή Α: σ ι = β σ m + σ ε Συστηματικός = β Ασ m = 0,70 x 400 = 96 Μη Συστηματικός = Συνολικός κίνδυνος-συστηματικός Κίνδυνος 7

Μετοχή Β: = 980 96 = 784 Συστηματικός = β Βσ m =, x 400 = 576 Μη Συστηματικός = Συνολικός κίνδυνος-συστηματικός Κίνδυνος = 4800-576 = 44 Άσκηση 9: α = α + β m = 0,4 +, x 0,0 = 0,6 ή 6% Β = 0,04 + 0,9 x 0,0 = 0,3 ή 3% β σ = β σ m + σ ε σ =, x 0,0 + 0,846 = =,44 x 0,04 + 0,08099 = 0,3859 σ = 0,373 ή 37,3% σ = 0,9 x 0,0 + 0,7889 = 0,8 x 0,04 + 0,03 = 0,0644 σ = 0,538 ή 5,38% σ ΑΒ =, x 0,9 x 0,0 = 0,043 σ j = β β j σ m ρ j = σ j /σ σ j ρ ΑΒ = 0,043/( 0,373 x 0,538 = 0,457 γ Η μετοχή Α ενέχει τον μεγαλύτερο κίνδυνο δ Η μετοχή με τον μικρότερο συστηματικό κίνδυνο σ = β σ m + σ ε Συστηματικός Κίνδυνος για την Μετοχή Α = β Ασ m =,0 x 0,0 =,48 Συστηματικός Κίνδυνος για την Μετοχή Β = β σ m = 0,9 x 0,0 = 0,85 ε = α +β m 8

a α = (0,30 x 0,4 + (0,70 x 0,04 = 0,07 β = (0,30 x, + (0,70 x 0,9 = 0,99 = 0,07 + 0,99 x 0,0 = 0,69 ή 6,9% m σ = (0,99 x 0,0 +[(0,30 x 0,846 + (0,70 x 0,7889 ] = 0,067 σ = 4,93% Άσκηση 0: α Σύμφωνα με τα αποτελέσματα του υποδείγματος του ενός δείκτη, οι τυπικές αποκλίσεις σ Α και σ Β των μετοχών Α και Β θα είναι ίσες με: 0,8 30 m e 09,76 34,78% m e, 40 96, 96 47, 93% β Η αναμενόμενη απόδοση του χαρτοφυλακίου θα είναι ίση με: F F 0, 3 3 0, 45 8 0, 5 8 4% Ο συντελεστής β του χαρτοφυλακίου θα είναι ίσος με: F 0 0, 3 0,8 0, 45, 0, 78 Η τυπική απόκλιση των αποδόσεων του χαρτοφυλακίου θα είναι ίση με: 0, 78 0, 3 30 0, 45 40 m e 699, 4656 6,45%. 9