Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις

Σχετικά έγγραφα
Επιχειρησιακά Μαθηματικά

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

Βελτιστοποίηση συναρτήσεων

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Ολοκλήρωμα συνάρτησης

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Επιχειρησιακά Μαθηματικά (1)

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΔΕΥΤΕΡΑ ΑΙΘ.ΖΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Σημειώσεις Μαθηματικών 2

Μαθηματική Ανάλυση Ι

Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ

Κεφάλαιο 2. Τα μαθηματικά της αριστοποίησης ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ. Τιμή μιας παραγώγου σ ένα σημείο. Παράγωγοι

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

9 εύτερη παράγωγος κι εφαρµογές

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΕΝΟΤΗΤΑ ΔΕΟ 13 ΕΡΓΑΣΙΑ 2 Η

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Πραγματικοί Αριθμοί 2

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ και ΘΡΑΚΗΣ Σχολή Διοίκησης & Οικονομίας Τμήμα Λογιστικής και Χρηματοοικονομικής

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

ΔΕΟ34. Ενδεικτική Απάντηση 1ης γραπτής εργασίας Επιμέλεια: Γιάννης Σαραντής

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

Εφαρμογές οικονομικών συναρτήσεων

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β)

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

Πολυμεταβλητές συναρτήσεις, μερικές παράγωγοι και εφαρμογές τους

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,

Επιχειρησιακά Μαθηματικά

Af(x) = και Mf(x) = f (x) x

Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.

4 ΟΛΟΚΛΗΡΩΜΑΤΑ 4.2 ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

Δεύτερο πακέτο ασκήσεων

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΜαθηματικάγιαΟικονομολόγους II-Μάθημα 5 ο -6 ο Όριο-Συνέχεια-Παράγωγος-Διαφορικό

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

Ερωτήσεις-Απαντήσεις Θεωρίας

1 Μερική παραγώγιση και μερική παράγωγος

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x )

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

3. Η παρακάτω συνάρτηση παραγωγής παρουσιάζει φθίνουσες, σταθερές, ή αύξουσες οικονοµίες κλίµακας; παραγωγής παρουσιάζει σταθερές αποδόσεις κλίµακας.

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

Κοιλότητα. Διαφορικός Λογισμός μιας μεταβλητής Ι

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 4 ο Μάθημα: Οικονομικές Συναρτήσεις-Κατάσταση Ισορροπίας

f(x) Af(x) = και Mf(x) = f (x) x

ΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).

Κεφ. 2. Η ζήτηση των αγαθών

ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

Αρχές Οικονομικής Θεωρίας προσανατολισμού

Transcript:

Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις

Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ μέγιστη απόδοση, μέγιστη χρησιμότητα, ελάχιστο κόστος, Θέλοντας να μελετήσουμε μια συνάρτηση χρειαζόμαστε το ρυθμό μεταβολής της σε κάθε σημείο της, που ονομάζεται παράγωγος. Αυτή παριστάνει το οριακό οικονομικό μέγεθος.

Μαθηματικός ορισμός Έστω συνάρτηση f(x):(κ,λ) R και α ανήκει (κ,λ). Αν υπάρχει το όριο: f'(α) = lim h0 f ( a h) h f ( a) τότε λέμε ότι η f είναι παραγωγίσιμη στο σημείο α. Το όριο λέγεται παράγωγος της f στο σημείο α και το συμβολίζουμε με f (α). Γενικότερα η παράγωγος συνάρτηση συμβολίζεται f'(x) = lim h0 f ( x h) h f ( x)

ερμηνεία Η παράγωγος εκφράζει τη στιγμιαία μεταβολή της f(x) στο σημείο x. (ή την οριακή μεταβολή) Η παράγωγος είναι η κλίση της εφαπτομένης στο εν λόγω σημείο x

Εναλλακτικός συμβολισμός για την παράγωγο dy dx df ( x) dx Τα μεγέθη df και dx ονομάζονται διαφορικά της f και της x αντίστοιχα. Έτσι έχουμε τελικά: df(x) = f'(x) dx

Κανόνες υπολογισμού παραγώγων ( a) 0 ( x) 1 ( x ) x 1 a f ( x) a f ( x) f ( x) n f ( x) f ( x) n n1 e x e e f ( x) e x f ( x) f ( x) (ln x) 1 x ln f( x) f( x) f( x) f ( x) f ( x) a f ( x) a ln a f ( x) g( x) f ( x) g( x) f ( x) g( x) f ( x) g( x) f ( x) g( x) f ( x) f ( x) g( x) f ( x) g( x) 2, g( x) g ( x) gx ( ) 0

Παράγωγος σύνθεσης, αντίστροφης Αν y y( u) u u( x) (αλυσωτός κανόνας). dy( x) dy( u) du( x) dy du dx du dx du dx Αν η συνάρτηση g είναι αντίστροφή της f τότε 1 g ( y) f (x) f ( x) y dy( x) 1 dx dx( y) dy

Αύξουσα ή Φθίνουσα συνάρτηση Για να αποδείξουμε ότι μία συνάρτηση είναι αύξουσα ή φθίνουσα σε ένα διάστημα ορισμού της υπολογίζουμε πρώτα την παράγωγο συνάρτηση f (x). Αν η παράγωγος f'(x) μιας συνάρτησης f(x) είναι θετική σε ένα διάστημα τότε σε εκείνο το διάστημα ή συνάρτηση είναι αύξουσα Αντίθετα αν η παράγωγος είναι αρνητική, η συνάρτηση είναι φθίνουσα.

Ελαστικότητα μιας συνάρτησης Η παράγωγος που μετράει το ρυθμό μεταβολής επηρεάζεται πολύ από τις μονάδες μέτρησης των μεταβλητών, οπότε η κλίση αλλάζει αν αλλάξει η μονάδα μέτρησης της ανεξάρτητης μεταβλητής. Ένας ρυθμός μεταβολής που δεν επηρεάζεται από τις μονάδες μέτρησης είναι η ελαστικότητα, η οποία υπολογίζεται ως ποσοστιαία μεταβολή της μιας μεταβλητής σε σχέση με την άλλη. Ο τύπος της είναι : dy y dy x dx dx y x

Ερμηνεία ελαστικότητας Αν η τιμή του Χ μεταβληθεί κατά 1%, τότε η τιμή του Υ μεταβάλλεται (θετικά ή αρνητικά) κατά ε%.

παράδειγμα 1. Να βρεθεί η παράγωγος της συνάρτησης f (x) =7x 5 3x 4 +5x 3 x+4 Λύση: f (x) =(7x 5 ) (3x 4 ) +(5x 3 ) -(x) +(4) = =7*5*x 4-3*4*x 3 +5*3x 2-1 =35 x 4-12x 3 +15x 2-1 2. Να υπολογισθεί η ελαστικότητα της συνάρτησης ζήτησης Q(p)=-3p 2 +4p+60, όταν p=2 Λύση: Q(2)=-3*2 2 +4*2+60=-12+8+60=56 Q (p)=(-3p 2 ) +(4p) +(60) = -6p+4 Q (p)=-6*2+4= -8 Αντικαθιστούμε στον τύπο της ελαστικότητας: dy y dy x dx dx y x = -8*2/56= -0,286

οριακή συνάρτηση Η παράγωγος των οικονομικών μεγεθών, όπως κόστος, έσοδο, ζήτηση, κέρδος κλπ έχει ιδιαίτερη σημασία για την μέτρηση των μεταβολών και ονομάζονται με το ειδικό όνομα οριακό κόστος, οριακό έσοδο, οριακή ζήτηση οριακό κέρδος κλπ. Ιδιαίτερη προσοχή θα πρέπει να δώσουμε στην ανεξάρτητη μεταβλητή ως προς την οποία υπολογίζουμε το οριακό μέγεθος. (π.χ. οριακή συνάρτηση ως προς την ποσότητα ή οριακή συνάρτηση ως προς την τιμή, κλπ) Στην περίπτωση οριακή συνάρτησης, αντί για το συμβολισμό της παραγώγου χρησιμοποιούμε το ΜR(Q), MC(Q), κλπ.

παράδειγμα 1. Αν η συνάρτηση κόστους είναι C(q)=-5q 2 +50q, vα βρεθεί το οριακό κόστος όταν το q=4 Λύση: ΜC(q)=(-5q 2 ) +(50q) = -10q+50 ΜC(4)= -10*4+50=10 Στην περίπτωση που παράγονται 4 μονάδες προϊόντος και επιθυμούμε αύξηση της παραγωγής, η οριακή αύξηση του κόστους θα είναι 10 μονάδες. 2. Να υπολογισθεί η οριακή συνάρτηση εσόδων όταν η συνάρτηση ζήτησης είναι Q(p)= -3p 2 +4p+60 Για ποιες τιμές p η οριακή συνάρτηση εσόδων είναι αύξουσα; Λύση: Εσοδα R(p)=P*Q=p*(-3p2+4p+60)=- 3*p 3 +4*p 2 +60p MR(p)=(-3p 3 ) +(4p 2 ) +(60p) = -9p 2 +4p+60

Ασκήσεις 1. Να βρεθούν οι παράγωγοι των συναρτήσεων (a) f(x)= x 3 -x 2 +6 (b) f(x)= x-2/x (c) f(x)=-4x 4 (d) f(x)=(-2x 3 +4) 6 (e) f(x)=(x+2) 5 (x-3) 6 (f) f(x)= (2x 3-6)/(x+1) (g) f(x)= 3x 2 +8 x -4 2. Η συνάρτηση κόστους είναι C(q)=5q 3-6q 2 +4q+150. Να βρεθεί το οριακό κόστος σε ένα σημείο q. 3. Να υπολογισθεί η ελαστικότητα της συνάρτησης ζήτησης Q(p)= -4p 2 +6p+80 στο σημείο p=3 και να ερμηνευθεί. 4. Να υπολογισθεί η ελαστικότητα της συνάρτησης Υ= 5p- 2 στα σημεία p=3 και p=10 και να ερμηνευθεί. 5. Για τη συνάρτηση f(x)=x 4 +3x+4, να βρεθεί η εξίσωση της εφαπτομένης της στο σημείο (-1,2).

Παράδειγμα ελαστικότητας Εταιρία ενοικίασης αυτοκινήτων διαπιστώνει ότι η ζήτηση ενοικίασης αυτοκινήτων δίδεται από τη σχέση q(p)=2530-50p. όπου q ο αριθμός των ενοικιαζόμενων αυτοκινήτων ανά ημέρα και p η τιμή ενοικίασης. 1. Να βρεθεί ο αριθμός ενοικίασης αυτοκινήτων από τους ενοικιαστές όταν p=50 και στη συνέχεια να προσδιοριστεί η ελαστικότητα ζήτησης για τη συγκεκριμένη τιμή. 2. Να βρεθεί η τιμή του p για την οποία η ελαστικότητα ζήτησης είναι ίση με -1 και να δοθεί η ερμηνεία για την τιμή αυτή. Χρησιμοποιώντας την ερμηνεία της ελαστικότητας υπολογίστε τη μεταβολή της ζήτησης αν η τιμή ενοικίασης των αυτοκινήτων αυξηθεί από την τιμή που βρήκατε στα 30 ευρώ. Υπολογίστε επίσης την ζήτηση με βάση την συνάρτηση ζήτησης. Εξηγήστε τις διαφορές που προκύπτουν μεταξύ των δύο υπολογισμών.

Λύση παραδείγματος 1. Για p=50 έχουμε : q(50)=2530-50x50=30 οπότε 30 αυτοκίνητα ενοικιάζονται την ημέρα με την τιμή των 50. Η ελαστικότητα ζήτησης βρίσκεται από τον τύπο: Για ε d (p)=-1 έχουμε: -50p/( 2530-50p)=-1 p = 25,3 Όταν λοιπόν η τιμή είναι p=25.3 ο λόγος της ποσοστιαίας μεταβολής στην ποσότητα προς την ποσοστιαία μεταβολή στην τιμή είναι 1. Για p = 25,3 η ζήτηση είναι q=2530-50(25,3)=1265 αυτοκίνητα. Η μεταβολή της τιμής από 25,3 ευρώ σε 30 ευρώ αντιστοιχεί σε ποσοστιαία αύξηση (30-25,3)/ 25,3= 18,58% Επομένως η ζήτηση θα μειωθεί επίσης κατά 18,58% δηλαδή κατά 1265 (18,58%)=235,04 αυτοκίνητα και θα είναι 1265-235,04=1029,96 αυτοκίνητα. Με βάση τη συνάρτηση ζήτησης ο αριθμός των αυτοκινήτων που θα ενοικιασθούν όταν η τιμή είναι 30 ευρώ ανέρχεται σε q=2530-50(30)=1030 αυτοκίνητα. Παρατηρούμε ότι το προσεγγιστικό αποτέλεσμα που βρέθηκε με βάση την ελαστικότητα ζήτησης προσεγγίζει πολύ στον ακριβή υπολογισμό της ζήτησης με βάση τη συνάρτηση ζήτησης.