Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,, ] T y z } = ii Αφού αποδείξτε ότι τα στοιχεία [,-,] Τ, [,,] Τ, [,,] Τ του R, εκφράστε το [7,5,5] Τ ως γραµµικό συνδυασµό αυτών iii Για ποιους πραγµατικούς αριθµούς a ισχύει ότι [,, a] T span [,,] T,[,,] T,[,,] Υπόδειξη: Παράδειγµα 4 σελίδα 67 T { } ; αποτελούν βάση i) Tο σύνολο W= { [x,y,z] T z } δεν είναι διανυσµατικός υπόχωρος του R, γιατί αν θεωρήσουµε το [,,] Τ W, τότε [,,] Τ = [,, ] Τ W Tο σύνολο U= { [x,y,z] T y z = } δεν είναι διανυσµατικός υπόχωρος του R, γιατί το µηδενικό διάνυσµα δεν ανήκει στο U ii) Τρία στοιχεία ενός διανυσµατικού χώρου διάστασης είναι βάση αν και µόνο αν αυτά είναι γραµµικά ανεξάρτητα Επειδή det =9, τα δεδοµένα διανύσµατα αποτελούν µια βάση Λύνοντας το σύστηµα που προκύπτει από λ [,-,] Τ + λ [,,] Τ + λ [,,] Τ = [7,5,5] Τ βρίσκουµε λ, λ και λ = 4 = = iii) Σύµφωνα µε την υπόδειξη πρέπει το σύστηµα = λ + λ α + λ
Σελίδα από 8 να είναι συµβιβαστό, οπότε στον επαυξηµένο πίνακα α κάνοντας αφαίρεση στις δύο τελευταίες γραµµές βρίσκουµε τον α +, από όπου συµπεραίνουµε ότι α =
Σελίδα από 8 4 (5 µονάδες) Έστω και E οι παρακάτω διανυσµατικοί υπόχωροι του R, E T {[,,, ] } T {[,,, ], = } E = x x x x x x + x = 4 4 E = x x x x4 x = x4 x x Βρείτε τη διάσταση καθενός από τους υποχώρους E, E, E + E, E E Υπόδειξη: Παράδειγµα 4 σελίδα 75 Έστω [x,x,x,x 4 ] T ένα τυχαίο διάνυσµα του Ε Έχουµε x x x x x = = x + x + x = xn + x n + x 4 n 4 4 x x x x 4 4 ηλαδή τα διανύσµατα n, n, n είναι γεννήτορες του Ε Αυτά είναι και γραµµικά ανεξάρτητα Πράγµατι, (σύµφωνα µε τα σχόλια Β, σελ 7) υπολογίζουµε τον βαθµό του πίνακα µε στήλες τα διανύσµατα n, n, n Έτσι, Γ Γ Γ Γ Γ + Γ4 Ο βαθµός του τελευταίου πίνακα είναι, άρα τα n, n, n είναι γραµµικά ανεξάρτητα Συνεπώς αποτελούν µια βάση του Ε, οπότε dimε = Όµοια διαπιστώνουµε ότι για το [x,x,x,x 4 ] T Ε έχουµε x x x x = = x + x = xu + x n, x x x x 4 άρα Ε = span{u, n } Επίσης τα u, n είναι γραµµικά ανεξάρτητα, οπότε αποτελούν βάση του Ε Άρα dimε = Έχουµε E + E = span{ n, n, n, u } Επειδή είναι γραµµικά ανεξάρτητα Άρα dim(ε + Ε ) = 4 =, τα n, n, n, u
Σελίδα 4 από 8 Χρησιµοποιώντας το Θεώρηµα 4 σελ 7, µπορούµε να υπολογίσουµε τη διάσταση του Ε Ε dim(ε Ε ) = dim Ε + dim Ε dim(ε + Ε ) =
Σελίδα 5 από 8 i ( µονάδες) Με M ( R) συµβολίζουµε τον πραγµατικό διανυσµατικό χώρο των πινάκων που έχουν στοιχεία πραγµατικούς αριθµούς Να βρεθεί µία βάση και η διάσταση του υποχώρου { X M( R ) X = } X Υπόδειξη: Βρείτε πρώτα τη γενική µορφή των πινάκων Χ ii ( µονάδες) Να βρεθούν οι τιµές του πραγµατικού αριθµού a τέτοιες ώστε η διάσταση του διανυσµατικού χώρου των λύσεων του συστήµατος x+ ay+ z = x+ ay+ az = ax + ay + z = να είναι τουλάχιστον ίση µε α γ i) Αν X =, τότε β δ α β Άρα γ δ όπου Α = = α β γ δ α γ = α + β α + γ = γ + δ β δ = α + β β + δ = γ + δ γ = β α = δ α γ α β X = = = α + β = αι + βα, β δ β α, οπότε Χ = span{ I, Α} Οι πίνακες Ι, Α είναι γραµµικά ανεξάρτητοι Συνεπώς η διάσταση του υποχώρου είναι ii) Ένα τετραγωνικό οµογενές σύστηµα έχει µη µηδενική λύση αν και µόνο αν η ορίζουσα του πίνακα των συντελεστών είναι ίση µε µηδέν Έχουµε α α α =4 α( α) (4α4 α ) + 4 α ( α ) = 4 α( α) α 4α Άρα οι ζητούµενες τιµές είναι α =,
Σελίδα 6 από 8 4 ( µονάδες) Έστω φ: R R η γραµµική απεικόνιση της οποίας ο πίνακας που αντιστοιχεί στην κανονική βάση του R είναι ο 5 i Βρείτε την εικόνα φ([,,] Τ ) ii Βρείτε µία βάση και τη διάσταση του χώρου Kerφ Υπόδειξη: Παράδειγµα 5 σελίδα 9 iii Βρείτε µία βάση και τη διάσταση του χώρου φ( R ) iv Αληθεύει ότι υπάρχει [x,y,z] Τ R µε φ([x,y,z] Τ ) = [,,] Τ ; i Επειδή ο δεδοµένος πίνακας αντιστοιχεί στην κανονική βάση, η 5 ζητούµενη εικόνα είναι το γινόµενο = 5 5 5 x ii Λύνοντας το σύστηµα y = βρίσκουµε 5 z ( x, yz, ) = ( z,, z), όπου z R Συνεπώς η διάσταση του Kerφ είναι και µια βάση του Kerφ είναι το σύνολο iii Η διάσταση του φ( R ) είναι dimkerφ = Τα στοιχεία φ([,,] T ), φ([,,] T ), φ([,,] T ) παράγουν τον χώρο φ( R ) Άρα για να βρούµε µια βάση του φ( R ), αρκεί να βρούµε δύο γραµµικά ανεξάρτητα στοιχεία από τα φ([,,] T ), φ([,,] T ), φ([,,] T ) Έχουµε φ([,,] T ) = [-,,] Τ, φ([,,] T ) = [,,5] Τ που είναι γραµµικά ανεξάρτητα iv Το σύστηµα x y = δεν έχει λύση Πράγµατι, ο 5 z επευξηµένος πίνακας του συστήµατος µετά από µια γραµµοπράξη παίρνει τη µορφή Από τη δεύτερη γραµµή συµπεραίνουµε ότι 5 το σύστηµα είναι ασυµβίβαστο
Σελίδα 7 από 8 5 ( µονάδες) Έστω ο πραγµατικός πίνακας A = i Να βρεθούν τα χαρακτηριστικά µεγέθη του Α ii Είναι ο Α διαγωνοποιήσιµος; Αν ναι,να βρεθεί ένας πίνακας Ρ τέτοιος ώστε ο Ρ - ΑΡ να είναι διαγώνιος Υπόδειξη: Παράδειγµα 6 σελίδα 5 iii Χρησιµοποιώντας το ii (ή διαφορετικά) υπολογίστε τον Α 4 i Το χαρακτηριστικό πολυώνυµο είναι x x+ και άρα οι ιδιοτιµές είναι, Τα αντίστοιχα ιδιοδιανύσµατα είναι {[-a,a] T a R" {}}, {[a,-a] Τ a R" {} } ii Επειδή ο Α είναι ένας πίνακας που έχει δύο διακεκριµένες ιδιοτιµές, ο Α διαγωνοποιείται Έστω P = (οι στήλες του Ρ είναι ιδιοδιανύσµατα του Α) Τότε Ρ - ΑΡ = iii Ρ - ΑΡ = 4 P A P= 4 4 4 4 A = P P = 4 5 + + 5
Σελίδα 8 από 8 6 ( µονάδες) Έστω ο πραγµατικός πίνακας Α = Τα παρακάτω ερωτήµατα µπορούν να απαντηθούν µε τη βοήθεια του Θεωρήµατος Cayley Hamilton i Εκφράστε τον πίνακα A ως πολυώνυµο του A Υπόδειξη: Παράδειγµα 66 σελίδα ii Αποδείξτε ότι Α Α = Α A i Τα χαρακτηριστικό πολυώνυµο του Α είναι x x x+ Αφού ο σταθερός όρος δεν είναι µηδέν, ο Α είναι αντιστρέψιµος Από το Θεώρηµα Cayley Hamilton έχουµε A A A+ I = και πολλαπλασιάζοντας µε τον A παίρνουµε A = ( A + A+ I) Με ανάλογο τρόπο παίρνουµε A = ( A+ I + A ) Άρα ( 5 A = A+ I + A + A+ I) = A + 4 4 I ii Η σχέση A A A+ I = γράφεται A A = A I, οπότε 4 A A = A A = = 5 4 A A A A A I = = 6 5 4 A A A A A A κλπ Αποδεικνύεται εύκολα µε επαγωγή στο n ότι n n A A = A A, n Εποµένως A A = A A