Μαθηματικές Συναντήσεις

Σχετικά έγγραφα
µιας µαθηµατικής πρότασης. ( ) ( ) ( ) = ( ) = ( ) ( )

Αν ο θετικός ακέραιος a ικανοποιεί τις συνθήκες:

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

Μαθηματικά προσανατολισμού Β Λυκείου

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

Πανελλαδικές εξετάσεις 2015

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

Μαθηματικά για την B Λυκείου. ισχύει: Q 3. c 3. e 2 e 8. Άρα: Οπότε: Q ,2 10. t N 0,5, όπου t σε ώρες. Άρα: 0. Άρα: Γ)

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

1 x και y = - λx είναι κάθετες

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΣΕΜΙΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μαθηματικά Α Τάξης Γυμνασίου

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

Μαθηματικές Δραστηριότητες: Ο ρόλος τους σε μια διερευνητική τάξη μαθηματικών στο Γενικό Λύκειο

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Ορισμένες σελίδες του βιβλίου

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

1 ΘΕΩΡΙΑΣ...με απάντηση

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Επαναληπτικές ασκήσεις για το Πάσχα.

Μαθηματικές Συναντήσεις

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

Μαθηματικές Συναντήσεις

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

A

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

v a v av a, τότε να αποδείξετε ότι ν <4.

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

y = 2 x και y = 2 y 3 } ή

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0

1ο Κεφάλαιο: Συστήματα

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Α1. Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού. (3 µονάδες)

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

Transcript:

Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 1 / ΟΚΤΩΒΡΙΟΣ 16 Ενδεικτικά θέματα μαθηματικών για τις Α, Β και Γ τάξεις του Γενικού Λυκείου Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμούλου Μαθηματικών Τρικάλων και Καρδίτσας Τα θέματα του παρόντος 1 ου Σημειώματος των Μαθηματικών Συναντήσεων συζητήθηκαν σε επιμορφωτικές συναντήσεις και εργαστήρια διδακτικής μαθηματικών του σχολικού Δ. Ντρίζου με μαθηματικούς λυκείων των Τρικάλων και της Καρδίτσας, κατά το σχολικό έτος 15-16. Βασικές ιδιότητες πραγματικών συναρτήσεων Θέμα 1ο(1ηεκδοχή) Έστω οι συναρτήσεις f( x) = x x + 5x+ και g( x) x α) Να αποδείξετε ότι: f( x) = g( x 1) + 5 ) Να αποδείξετε ότι για κάθε x R ισχύει g( x) g( x) + = + x, x R =, και ότι η g είναι συνάρτηση 1 1 γ) Αν για τους πραγματικούς αριθμούς ακαι ισχύουν: α α + 5α+ 1= και + 5 19=, να υπολογίσετε το άθροισμα α+ δ) Να αποδείξετε ότι: i) α< x α f x = ii) υπάρχει μοναδικός αριθμός ( ) τέτοιος, ώστε ( ), Λύση Τα ερωτήματα α) και ) διεκπεραιώνονται με απλές διαδικασίες αντικατάστασης και εφαρμογής κριτηρίου που εξασφαλίζει την ιδιότητα του 1-1 σε μια συνάρτηση. γ) Από τις υποθέσεις του ερωτήματος γ) και καθώς η g είναι περιττή, διαδοχικά έ- χουμε:

( ) ( ) g( 1 α) = 16 g( 1) = 16 Επομένως g( 1 α) g( 1) ( ) ( ) α α 5α 1 α α 5α 11 + + = + + + = f( α) = 11 + 5 19= 5 1 f( ) = 1 + + = f α 5= 11 5 g( a 1) = 16 g( 1 α) = 16 f 5= 1 5 g( 1) = 16 g( 1) = 16 οπότε α+ = = και επειδή η g είναι 1 1 παίρνουμε 1 α= 1, δ.ii) Πρόκειται περί απλής εφαρμογής του θεωρήματος του Bolzano. Θέμα 1ο(ηεκδοχή) Έστω οι συναρτήσεις f( x) = x x + 5x+ και g( x) x α) Να αποδείξετε ότι f( x) = g( x 1) + 5 ) Να αποδείξετε ότι για κάθε x R ισχύει ( ) ( ) g x + g x = + x, x R =, και ότι η g είναι συνάρτηση 1 1 γ) Αν για τους πραγματικούς αριθμούς ακαι ισχύουν: α α + 4α+ 14= και + 4 18=, να υπολογίσετε το άθροισμα α+ δ) Να αποδείξετε α f x = x έχει μία ακριώς < και, στη συνέχεια, ότι η εξίσωση ( ) ρίζα, η οποία, στον άξονα των πραγματικών αριθμών, απεικονίζεται μεταξύ των ακαι. Λύση Τα ερωτήματα α) και ) διεκπεραιώνονται με απλές διαδικασίες αντικατάστασης και εφαρμογής κριτηρίου που εξασφαλίζει την ιδιότητα του 1-1 σε μια συνάρτηση. γ) Από τις υποθέσεις του ερωτήματος γ) και καθώς η g είναι περιττή, διαδοχικά έ- χουμε: α α 4α 14 ( α α 5α ) α 1 + + = + + + = f( α) α= 1 + 4 18= ( 5 ) f( ) = + + = g( α 1) + 5 α= 1 g( α 1) α= 17 g( 1 α) α= 17 g( 1) + 5 = g( 1) = 15 g( 1) = 15 g( 1 α) + α= 17 g( 1 α) ( 1 α) = 16 g( 1) = 15 g( 1) ( 1) = 16 g 1 α 1 α = g 1 1 :(1) Επομένως ( ) ( ) ( ) ( ) Θεωρώντας τη συνάρτηση ( ) ( ) h x g x x x x = = +, x R,

η σχέση (1) γράφεται h( 1 α) = h( 1) (απόδειξη απλή) θα είναι και 1 1, οπότε από την h( 1 α) = h( 1) 1 α= 1, δηλαδή α+ = και επειδή η h είναι γνησίως αύξουσα δ) Πρόκειται περί απλής εφαρμογής του θεωρήματος του Bolzano. παίρνουμε Θέμα 1ο(ηεκδοχή) Αν για τους πραγματικούς αριθμούς ακαι ισχύουν: α α + 5α+ 1= και + 5 19=, να υπολογίσετε το άθροισμα α+ Λύση Με πρόσθεση κατά μέλη των ισοτήτων της υπόθεσης και, στη συνέχεια, εφαρμόζοντας ασικές αξιοσημείωτες ταυτότητες, διαδοχικά παίρνουμε: α + α + + 5 α+ 6= ( ) ( ) ( ) ( α ) α( α ) ( α ) α ( α ) + + + + 6 + 5 + 6= Η τελευταία με α+ = x, παίρνει τη μορφή πολυωνυμικής εξίσωσης ου αθμού με άγνωστο τον x : x x + 5 α x+ 6α 6=, μία ρίζα της οποίας ρίσκουμε ότι είναι η x=, ( ) οπότε και γράφεται: x x x+ α = :(1) ( )( ) Το τριώνυμο x x+ α έχει διακρίνουσα Δ= 4α 11 η οποία είναι αρνητική, αφού από τις υποθέσεις προκύπτει ότια< και >. α α + 5α+ 1= α α α+ 5 = 1<. Επομένως α<, Πράγματι, ( ) καθώς α α+ 5> ως τριώνυμο με αρνητική διακρίνουσα και θετικό συντελεστή του δευτεροάθμιου όρου. Όμοια έχουμε ( ) + 5 19= + 5 = 19>. Επομένως >, καθώς + 5> ως τριώνυμο με αρνητική διακρίνουσα και θετικό συντελεστή του δευτεροάθμιου όρου. Τελικά, η εξίσωση (1) έχει μοναδική ρίζα την x=, άρα α+ =. [ Η λύση αυτή, της τρίτης εκδοχής, δόθηκε από τον συνάδελφο μαθηματικό Γ. Ρίζο] Θέμα (1ηεκδοχή) Μία συνάρτηση f είναι συνεχής και γνησίως φθίνουσα στο R. Υπάρχει περίπτωση η γραφική της παράσταση να μην τέμνει τον φορέα της διχοτόμου της πρώτης ορθής γωνίας των αξόνων; Να αποδείξετε την εικασία σας.

Θέμα (ηεκδοχή) Μία συνάρτηση f είναι συνεχής και γνησίως αύξουσα στο R. Υπάρχει περίπτωση η γραφική της παράσταση να μην τέμνει τον φορέα της διχοτόμου της δεύτερης ορθής γωνίας των αξόνων; Να αποδείξετε την εικασία σας. Η απόλυτη τιμή πραγματικού αριθμού Θέμα 1 Σε έναν άξονα xx να θεωρήσετε τα σημεία A ( ) και B ( 5). α) Να ρείτε, αν υπάρχουν, και πόσα, σημεία M( x ) πάνω στον xx τέτοια, ώστε: i) MA+ MB= ii) MA+ MB= 1 iii) MA+ MB= 4 ) Χρησιμοποιώντας το σύμολο της απόλυτης τιμής ν α γράψετε τις γεωμετρικές ισότητες i), ii) και iii) ως εξισώσεις με άγνωστο τον x και, στη συνέχεια, να ρείτε τις ρίζες των εξισώσεων αυτών. Θέμα Σε έναν άξονα xx να πάρετε δύο οποιαδήποτε σημεία Α( α ) και ( ) Β, και έπειτα να προσδιορίσετε γεωμετρικά τα σημεία του άξονα στα οποία αντιστοιχούν οι αριθμοί α, α, και α+. Τετραγωνική ρίζα και απόλυτη τιμή πραγματικού αριθμού Θέμα 1 Έστω η εξίσωση x 1x+ 6 x + 4x+ 4=, x R, (1) α) Να λύσετε την εξίσωση (1). Μ x, y καρτεσιανού επιπέδου Oxy που ) Να προσδιορίσετε γεωμετρικά τα σημεία ( ) επαληθεύουν την (1). Θέμα Για τις διαστάσεις α και ενός ορθογωνίου παραλληλογράμου είναι: α= 5 6 και = 5+ 6 Να αποδείξετε ότι το εμαδόν αυτού του ορθογωνίου παραλληλογράμου ισούται με 1 και, στη συνέχεια, ότι η περίμετρός του δεν υπεραίνει τις 7 μονάδες. [Δ. Ντρίζος, "Μαθηματικές Συναντήσεις" / Σημείωμα 6, Απρίλιος Μάϊος 14]

Θέμα Έστω ορθογώνιο τρίγωνο με υποτείνουσα μήκους μήκη κ και λ. Να αποδείξετε ότι μ και κάθετες πλευρές με 4 4 μ κ + μλ + λ + μκ = [Δ. Ντρίζος, Ευκλείδης Β (1997), τεύχη 4 και 5] 1η Ενδεικτική ενότητα θεμάτων Ευκλείδειας Γεωμετρίας 1.1 Σε ισοσκελές τρίγωνο ΑΒΓ, με ΑΒ= ΑΓ, θεωρούμε τα ύψη του ΒΔ και ΓΕ τα οποία τέμνονται στο Ζ. Να εξετάσετε αν ισχύει ΖΔ= ΖΕ. 1. Σε τρίγωνο ΑΒΓ θεωρούμε τα ύψη του ΒΔ και ΓΕ τα οποία τέμνονται στο Ζ. Αν ισχύει ΖΔ= ΖΕ, να εξετάσετε αν το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ= ΑΓ. 1. Σε ισοσκελές τρίγωνο ΑΒΓ, με ΑΒ= ΑΓ, θεωρούμε τις διχοτόμους του ΒΔ και ΓΕ οι οποίες τέμνονται στο Ζ. Να εξετάσετε αν ισχύει ΖΔ= ΖΕ. 1.4 Σε τρίγωνο ΑΒΓ θεωρούμε τις διχοτόμους του ΒΔ και ΓΕ οι οποίες τέμνονται στο Ζ. Αν ισχύει ΖΔ= ΖΕ, να εξετάσετε αν το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ= ΑΓ. 1.5 Σε τρίγωνο ΑΒΓ, με Α= 6, θεωρούμε τις διχοτόμους του ΒΔ και ΓΕ οι οποίες τέμνονται στο Ζ. Να εξετάσετε αν ισχύει ΖΔ= ΖΕ. η Ενδεικτική ενότητα θεμάτων Ευκλείδειας Γεωμετρίας.1 Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ και σημείο Μ που κινείται στην υποτείνουσα ΒΓ. Από το Μ φέρνουμε τα κάθετα τμήματα ΜΚκαι ΜΛ προς τις πλευρές ΑΒ και ΑΓ αντίστοιχα. Να προσδιορίσετε τη θέση του Μ στη ΒΓ, ώστε το μήκος το τμήματος ΚΛ να γίνεται ελάχιστο.. Θεωρούμε τρίγωνο ΑΒΓ και σημείο Μ που κινείται στην πλευρά ΒΓ. Από το Μ φέρνουμε τα κάθετα τμήματα ΜΚκαι ΜΛ προς τις πλευρές ΑΒ και ΑΓ αντίστοιχα. Να προσδιορίσετε τη θέση του Μ στη ΒΓ, ώστε το μήκος το τμήματος ΚΛ να γίνεται ελάχιστο.. Θεωρούμε τρίγωνο ΑΒΓ και σημείο Μ που κινείται στην πλευρά. ΒΓ Φέρνουμε τα τμήματα ΜΚκαι ΜΛ, όπου Κ σημείο της πλευράς ΑΒ και Λ σημείο της πλευράς

ΑΓ τέτοια, ώστε ΒΚΜ = ΜΛΓ = ω, όπου ω γωνία με το ίδιο σταθερό μέτρο για οποιαδήποτε θέση του Μ. Να προσδιορίσετε τη θέση του Μ στη ΒΓ, ώστε το μήκος το τμήματος ΚΛ να γίνεται ελάχιστο. Σχόλιο Η παραπάνω η ενότητα θεμάτων Ευκλείδειας Γεωμετρίας αναδεικνύει την ιδέα της γενίκευσης προλήματος με διαδοχικές μεταολές των υποθέσεων, διατηρώντας το ίδιο ζητούμενο και θα μπορούσε υπό κατάλληλες έαια προϋποθέσεις να θεωρηθεί ενδεικτική μιας πρότασης που στοχεύει να αναδείξει τα μαθηματικά και τη διδασκαλία τους σε προνομιακό πεδίο άσκησης αναλυτικής και συνθετικής σκέψης. Και ένα παράδειγμα με «άρωμα» κύκλου Θεωρούμε έναν κύκλο με κέντρο Κ( α,), α R, και ακτίνα ρ>. Αν f είναι μια παραγωγίσιμη στο R συνάρτηση με f( α ρ) = f( α ρ) + = και η γραφική της παράσταση έχει με τον κύκλο τουλάχιστον ένα ακόμη κοινό σημείο, να ξ, ξ α ρ, α+ ρ τέτοια, ώστε οι εφαπτόμενες της αποδείξετε ότι υπάρχουν 1 ( ) γραφικής παράστασης της f στα σημεία της ( ξ1, f( ξ1) ) και (, ( ) ) ξ f ξ να είναι κάθετες. Σχόλιο Πριν από την επίλυση του παραπάνω θέματος στο πλαίσιο της Ανάλυσης, σάς προτείνουμε να επινοήσετε μια γεωμετρική αναπαράστασή του διαμέσου της οποίας φαίνεται η λύση του θέματος χωρίς λόγια!