Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Σχετικά έγγραφα
ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος

ιάλεξη 7 η, 8 η και 9 η

Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

1 η Επανάληψη ιαλέξεων

ιαλέξεις Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ιάλεξη 3 η komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ιάλεξη 1 η komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος Τρίτη, 7 Σεπτεµβρίου,, 2004 ΠΠΜ 220 Στατική Ανάλυση των Κατασκευών Ι 1

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι

Μέθοδος των Δυνάμεων

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

Ανάλυση Ισοστατικών ικτυωµάτων

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

Κεφάλαιο 1: Εισαγωγή

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

Τάσεις λόγω απλής κάμψης-επίπεδο φόρτισης περιέχει άξονα συμμετρίας της διατομής

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

Παραδείγματα μελών υπό αξονική θλίψη

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

Ενότητα: Υπολογισμός διατμητικών τάσεων

1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

4. Επίλυση Δοκών και Πλαισίων με τις

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

Πειραματική Αντοχή Υλικών Ενότητα:

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

( Σχόλια) (Κείµ ενο) Κοντά Υποστυλώµατα Ορισµός και Περιοχή Εφαρµογής. Υποστυλώµατα µε λόγο διατµήσεως. α s 2,5

Μέθοδος των Δυνάμεων (συνέχεια)

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

Περίληψη μαθήματος Ι

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

Μέθοδος των Δυνάμεων (συνέχεια)

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

Σκοπός της Αντοχής των Υλικών. Αναγκαιότητα του µαθήµατος, ρόλος του σε σχέση µε άλλα µαθήµατα των κατασκευών, προβλήµατα που επιλύει.

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού

11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

Κεφάλαιο 1 Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης

Γενικευμένα Mονοβάθμια Συστήματα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

ΑΣΚΗΣΗ 14. Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα M, Q, για τη δεδομένη φόρτιση.

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Μέθοδοι των Μετακινήσεων

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ

ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

sin ϕ = cos ϕ = tan ϕ =

Transcript:

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

Επίλυση 2 ας Προόδου Βαθµολογία 2ης Προόδου 120 100 80 Ελάχιστος: 5 Μέσος όρος: 54 Μέγιστος: 96 Βαθµός 60 40 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Φοιτητές Στατική Ανάλυση των Κατασκευών Ι 2

ιευκρίνιση για την βαθµολογία Αξιολόγηση και βαθµολόγηση µαθήµατος: Η παρακολούθηση των διαλέξεων είναι υποχρεωτική και αναγκαία για την επιτυχή ολοκλήρωση και την επίτευξη των στόχων του µαθήµατος. Εάν υπάρχει σηµαντική διαφορά µεταξύ της βαθµολογίας των ασκήσεων και των διαγωνισµάτων (προόδων και τελικού διαγωνίσµατος), τότε δεν θα ισχύσει η πιο πάνω βαθµολογική κατανοµή. Στατική Ανάλυση των Κατασκευών Ι 3

Θέµατα Παραµορφωµένες µορφές δοκών και πλαισίων Χρησιµότητα υπολογισµού παραµορφώσεων και µετακινήσεων Συνήθης παραδοχές Εισαγωγή στις παραµορφώσεις και µετακινήσεις Αξονικές παραµορφώσεις Καµπτικές παραµορφώσεις Μέθοδοι υπολογισµού µετακινήσεων Γεωµετρικές µέθοδοι υπολογισµού µετακινήσεων Ενεργειακές µέθοδοι υπολογισµού µετακινήσεων Στατική Ανάλυση των Κατασκευών Ι 4

Παραµορφωµένες µορφές δοκών και πλαισίων µετακινήσεις δοκών και πλαισίων: κυρίως λόγω καµπτικών παραµορφώσεων σχεδιασµός παραµορφωµένης µορφής: κατασκευή διαγράµµατος καµπτικών ροπών ( ΚΡ) καµπυλότητα συµβατή µε ΚΡ συµβατότητα µε δεσµεύσεις στις στηρίξεις συµβατότητα µε συνδέσεις µελών αµετάβλητες σταθερές συνδέσεις κόµβων ευκρινής καθορισµός της φοράς µετατοπίσεων και στροφών της καµπυλότητας (κοίλα) των σηµείων καµπής ισορροπία κόµβων 5

Χρησιµότητα υπολογισµού παραµορφώσεων και µετακινήσεων Έλεγχοι ασφάλειας εντατικών µεγεθών σε σχέση µε τις επιτρεπόµενες αντοχές λειτουργικότητας διασφαλίζονται λειτουργικές ανάγκες µιας κατασκευής (π.x. έλεγχος παραµορφώσεων και µετακινήσεων) αναγκαίος ο υπολογισµός των παραµορφώσεων και µετακινήσεων ενός φορέα κάτω από την επίδραση κάποιων συγκεκριµένων δράσεων ή συνδυασµών δράσεων για σκοπούς ελέγχου λειτουργικότητας Επίσης, απαραίτητος είναι ο υπολογισµός των µετακινήσεων κατά την επίλυση υπερστατικών φορέων για την οποία δεν αρκούν οι εξισώσεις ισορροπίας Οι επιπλέον εξισώσεις προκύπτουν από την διατύπωση της συµβιβαστότητας των παραµορφώσεων και µετακινήσεων του φορέα Στατική Ανάλυση των Κατασκευών Ι 6

Συνήθης παραδοχές Μικρές παραµορφώσεις και µετακινήσεις σε σχέση µε τις διαστάσεις χρήση αρχικής απαραµόρφωτης γεωµετρία και µορφής του φορέα Γραµµική-ελαστική συµπεριφορά του υλικού γραµµική συµπεριφορά: οι τάσεις είναι ανάλογες των παραµορφώσεων ελαστική συµπεριφορά: αν αφαιρεθούν όλα τα φορτία από τον φορέα τότε αυτός θα επιστρέψει στην αρχική αφόρτιστη θέση και γεωµετρία του χωρίς παραµένουσες παραµορφώσεις Αρχή της επαλληλίας. Aρχή της επιπεδότητας των διατοµών (Bernoulli) Για γραµµικά µέλη υπό καµπτικές παραµορφώσεις θεωρείται ότι επίπεδες διατοµές που είναι κάθετες στον άξονα ενός µέλους παραµένουν επίπεδες και κάθετες στον παραµορφωµένο άξονα ενός µέλους µετά την παραµόρφωση έτσι, έχοντας γραµµικά ελαστικό υλικό υπάρχει µια γραµµική µεταβολή των ορθών τάσεων µεταξύ των ακραίων ινών στα πέλµατα ενός µέλους Στατική Ανάλυση των Κατασκευών Ι 7

Εισαγωγή στις παραµορφώσεις και µετακινήσεις Ράβδοι δικτυωµάτων: µόνο αξονικές δυνάµεις και παραµορφώσεις υπολογισµός µετακινήσεων λαµβάνοντας υπόψη µόνο αξονικές παραµορφώσεις οκοί η συνεισφορά των αξονικών και διατµητικών παραµορφώσεων στις µετακινήσεις µίας δοκού ή ενός πλαισίου είναι συνήθως αµελητέα συγκρινόµενη µε τις καµπτικές παραµορφώσεις. στις συνήθης περιπτώσεις δοκών και πλαισίων µπορούµε να λάβουµε υπόψη µόνο τις καµπτικές παραµορφώσεις κατά τον υπολογισµό των µετακινήσεων αλλά και στην διατύπωση των εξισώσεων συµβιβαστότητας των µετακινήσεων, αγνοώντας τις αξονικές και διατµητικές παραµορφώσεις Στατική Ανάλυση των Κατασκευών Ι 8

Αξονικές παραµορφώσεις τα µέλη των δικτυωµάτων καταπονούνται µόνο από αξονικές δυνάµεις Ν, οι οποίες αντιστοιχούν σε οµοιόµορφες ορθές τάσεις: οµοιόµορφες ορθές τάσεις Νόµος του Hooke (συσχετίζει ορθές τάσεις και παραµορφώσεις) (Ε: µέτρο ελαστικότητας/modulus of elasticity) επιµήκυνση L µίας ράβδου µήκους, L διατοµής, Α Στατική Ανάλυση των Κατασκευών Ι 9

Καµπτικές παραµορφώσεις ο άξονας της δοκού παραµορφώνεται µε τέτοιο τρόπο που τοπικά µπορούµε να θεωρήσουµε ότι αποτελείται από τµήµατα κυκλικών τόξων µε συγκεκριµένη ακτίνα καµπυλότητας. Χρήση ΚΡ για τον προσδιορισµό της καµπυλότητας π.χ. στο πιο πάνω παράδειγµα, η θετική ροπή προκαλεί καµπτικές παραµορφώσεις µε εφελκυσµό στις κάτω ίνες και θλίψη στις πάνω ίνες οι παραµορφώσεις κάθετα στον άξονα της δοκού παριστάνονται ιδιαίτερα επαυξηµένες ώστε να είναι πιο ευδιάκριτες είναι απαραίτητο να µπορούν να υπολογιστούν οι βυθίσεις και κλίσεις κατά µήκος του ουδέτερου άξονα, δηλαδή να προσδιοριστεί η ελαστική καµπύλη, ή ελαστική γραµµή, µιας παραµορφωµένης δοκού. Στατική Ανάλυση των Κατασκευών Ι 10

Καµπτικές παραµορφώσεις (συν.) απειροστό τµήµα της δοκού µήκους dx µόνο η ίνα στον ουδέτερο άξονα δεν παραµορφώνεται οι ίνες κάτω και πάνω από την ίνα αυτή θλίβονται και εφελκύονται αντίστοιχα µε την καµπτική ροπή ουδέτερο επίπεδο - ουδέτερος άξονας της δοκού Αρχή του Bernoulli: κατά την καµπτική παραµόρφωση µίας δοκού, επίπεδα τα οποία είναι κάθετα στον άξονα της δοκού πριν από την παραµόρφωση της δοκού, θεωρούνται ότι παραµένουν µετά την παραµόρφωση επίπεδα και κάθετα στον παραµορφωµένο ουδέτερο άξονα της δοκού Στατική Ανάλυση των Κατασκευών Ι 11

Καµπτικές παραµορφώσεις (συν.) καµπυλότητα: η αλλαγή της κλίσης της ελαστικής καµπύλης της δοκού λόγω των καµπτικών παραµορφώσεων µήκος του τόξου παραµορφωµένης ίνας σε απόσταση y l από τον ουδέτερο άξονα: παραµόρφωση σε απόσταση y l : καµπυλότητα: 12

Καµπτικές παραµορφώσεις (συν.) αν το υλικό έχει γραµµική-ελαστική συµπεριφορά καµπτική ροπή µιας παραµορφωµένης δοκού βάσει του ολοκληρώµατος των ορθών τάσεων επί την απόσταση από τον ουδέτερο άξονα στην επιφάνεια της διατοµής: ροπή αδράνειας: 13

Καµπτικές παραµορφώσεις (συν.) ορθές τάσεις: 14

Μέθοδοι υπολογισµού µετακινήσεων γεωµετρικές µέθοδοι: χρησιµοποιούνται για τον υπολογισµό µετατοπίσεων (βυθίσεων) και στροφών (κλίσεων) συγκεκριµένων σηµείων στα µέλη ενός φορέα λόγω καµπτικών παραµορφώσεων παραλείποντας τη συνεισφορά των τεµνουσών και αξονικών δυνάµεων στις παραµορφώσεις. βασίζονται στις προηγούµενες διαφορικές εξισώσεις ( Ε) ενεργειακές µέθοδοι: βασίζονται στο ισοζύγιο της εσωτερικής ελαστικής ενέργειας (ή εσωτερικού έργου) και του εξωτερικού έργου (πραγµατικό ή δυνατό) εξωτερικό έργο: το έργο που παράγεται από τα εξωτερικά φορτία κατά τη µετακίνηση τους λόγω παραµορφώσεων του φορέα εσωτερικό έργο ή αλλιώς ελαστική ενέργεια: η ενέργεια, ή το εσωτερικό έργο, η οποία αποθηκεύεται στο υλικό λόγω τάσεων και παραµορφώσεων. πρακτικά πολύ πιο συστηµατικές και χρήσιµες από τις γεωµετρικές Στατική Ανάλυση των Κατασκευών Ι 15