Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00 από αυτά είχα προσβληθεί και από τη ασθέεια Α και από τη ασθέεια Β Θεωρώτας ότι οι 5000 επααλήψεις είαι αρκετές ώστε α έχει επιτευχθεί η σταθεροποίηση τω σχετικώ συχοτήτω, α υπολογισθεί η πιθαότητα, σε έα ζώο της κτηοτροφικής μοάδας που επιλέγεται τυχαία α διαπιστωθεί ότι έχει προσβληθεί: α) από τη ασθέεια Α β) από τη ασθέεια Β γ) και από τις δύο ασθέειες δ) από τη ασθέεια Α, όχι όμως από τη ασθέεια Β ε) από τη ασθέεια Β, όχι όμως από τη ασθέεια Α στ) ακριβώς από μία από τις δύο ασθέειες Εξετάσθηκα 800 ζώα για α διαπιστωθεί α είαι υγιή ή άρρωστα Επίσης, για κάθε ζώο καταγράφηκε το φύλο του Τα αποτελέσματα τω εξετάσεω φαίοται στο πίακα που ακολουθεί Υγιή Άρρωστα Αρσεικά 50 350 Θηλυκά 80 0 Θεωρούμε τα εξής εδεχόμεα τα οποία ααφέροται στο πείραμα της επιλογής τυχαία εός ζώου από το πληθυσμό που μελετάμε: Α: το ζώο που επιλέχθηκε είαι υγιές Β: το ζώο που επιλέχθηκε είαι αρσεικό Με βάση τα δεδομέα του πίακα και θεωρώτας ότι οι 800 επααλήψεις είαι αρκετές ώστε α έχει επιτευχθεί η σταθεροποίηση τω σχετικώ συχοτήτω, α υπολογισθού οι πιθαότητες τω εδεχομέω: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ, A B AB, AB A B 3 Έας οργαισμός ελέγχου ποιότητος γεωργικώ προϊότω έχει ορίσει τέσσερα επίπεδα ποιότητας α, β, γ και δ Κάθε προϊό κατατάσσεται σε έα μόο από τα τέσσερα επίπεδα Από στατιστικά στοιχεία που έχου συγκετρωθεί, έχει εκτιμηθεί ότι τα δύο πρώτα επίπεδα εμφαίζοται με τη ίδια πιθαότητα εώ το τρίτο και τέταρτο επίπεδο εμφαίζοται με τριπλάσια και πεταπλάσια πιθαότητα από το πρώτο ατίστοιχα Για έα προϊό που επιλέγεται τυχαία, ποια είαι η πιθαότητα α κατατάσσεται, i) στο επίπεδο α ii) στο επίπεδο β iii) στο επίπεδο γ iv) στο επίπεδο δ v) στο επίπεδο α ή β vi) στο επίπεδο α ή β ή δ και vii) στο επίπεδο γ και δ 4 Η πιθαότητα σε έα έτος α συμβεί σεισμός έτασης πάω από 7 βαθμούς της κλίμακας ρίχτερ σε μια συγκεκριμέη περιοχή είαι 0005 Η ατίστοιχη πιθαότητα α πληγεί η περιοχή από έτοες βροχοπτώσεις είαι 00, εώ υπάρχει πιθαότητα 000 σε διάρκεια εός έτους α εμφαισθού και τα δύο φαιόμεα Να υπολογισθού οι πιθαότητες, σε έα έτος η περιοχή α πληγεί α) μόο από σεισμό β) μόο από έτοες βροχοπτώσεις γ) τουλάχιστο από έα από τα δύο φαιόμεα και δ) από καέα από τα δύο φαιόμεα 5 Ο D Alembert, έας από τους επιστήμοες που ασχολήθηκα με τη Θεωρία Πιθαοτήτω στα πρώτα της βήματα, πρότειε τη εξής λύση για το υπολογισμό της πιθαότητας α εμφαισθεί μια τουλάχιστο κεφαλή σε δύο ρίψεις εός ομίσματος: Ως δειγματικό χώρο του πειράματος θεώρησε το σύολο Ω={0,, } όπου τα απλά εδεχόμεα {0}, {}, {} περιγράφου πόσες φορές εμφαίσθηκε Εργαστήριο Μαθηματικώ & Στατιστικής / Γ Παπαδόπουλος (wwwauagr/gpapadopoulos)
Προβλήματα Πιθαοτήτω κεφαλή σε δύο ρίψεις Δεδομέου ότι εδιαφερόμαστε για το εδεχόμεο Α={, }, ο D Alembert ισχυρίσθηκε ότι P ( A) = A = Ω 3 Θα μπορούσε όμως κάποιος α ατιμετωπίσει το πρόβλημα ως εξής: Ο δειγματικός χώρος του πειράματος είαι το σύολο Ω = {ΚΚ, ΚΓ, ΓΚ, ΓΓ} εώ το ζητούμεο αποτέλεσμα ατιστοιχεί στο εδεχόμεο Α={ΚΚ, ΚΓ, ΓΚ} και επομέως 3 P ( A) = A = Ω 4 α) Ο D Alembert έκαε λάθος!! Εξηγείστε γιατί β) Χρησιμοποιώτας το δειγματικό χώρο που όρισε ο D Alembert α υπολογίσετε τη σωστή τιμή της P (A) 6 Το πρόβλημα τω γεεθλίω: Ποια είαι η πιθαότητα σε μια τάξη k φοιτητώ, δύο τουλάχιστο α έχου γεέθλια τη ίδια ημέρα Θεωρήστε ότι το έτος έχει 365 ημέρες και ότι k 365 7 Ποια είαι η πιθαότητα σε μια τάξη k φοιτητώ, έας συγκεκριμέος φοιτητής (από τους k), α έχει γεέθλια τη ίδια ημέρα με κάποιο από τους υπόλοιπους k- φοιτητές Θεωρήστε ότι το έτος έχει 365 ημέρες και ότι k 365 8 Το πρόβλημα του Chevalier de Mere: Ποιο είαι πιο πιθαό, ότι θα φέρουμε έα τουλάχιστο «6» ρίχοτας έα ζάρι 4 φορές ή ότι θα φέρουμε μια τουλάχιστο φορά «εξάρες» ρίχοτας δύο ζάρια 4 φορές 9 Έα τμήμα της αλυσίδας του DNA παριστάεται ως μια σειρά με στοιχεία A, C, G, T που συμβολίζου τις 4 βάσεις αδείη, κυτοσίη, γουαίη και θυμίη ατίστοιχα Πόσες διαφορετικές συθέσεις μπορού α προκύψου για έα τμήμα μήκους r α σε αυτό υπάρχου r στοιχεία ίσα με Α, r στοιχεία ίσα G, r 3 στοιχεία ίσα με C και r 4 ίσα με Τ (r = r + r + r 3 + r 4 ) Ας υποθέσουμε ότι όλες οι ακολουθίες (σειρές, συθέσεις) τέτοιου τύπου έχου τη ίδια πιθαότητα εμφάισης Ποια είαι η πιθαότητα α προκύψει μια ακολουθία, για τη οποία τα στοιχεία που ατιστοιχού σε κάθε μια από τις 4 βάσεις α είαι συγκετρωμέα όλα μαζί (πχ ΑΑΑCC CTT TGG G ή ΤΤ ΤΑΑ AGG GCC C κτλ) 0 Σε μια συγκεκριμέη δασική περιοχή ζου 300 ζώα που αήκου σε προστατευόμεο είδος Μια επιστημοική ομάδα ετοπίζει τυχαία 00 από τα ζώα αυτά, τα σημαδεύει και τα αφήει ελεύθερα Μετά από ορισμέο χροικό διάστημα, ετοπίζοται εκ έου 00 ζώα Ποια είαι η πιθαότητα 0 ακριβώς από τα 00 ζώα α είαι σημαδεμέα; Ας θεωρήσουμε ότι 8 φοιτήτριες και 4 φοιτητές κάθοται τυχαία σε καθίσματα Ποια είαι η πιθαότητα α) όλοι οι φοιτητές α βρίσκοται σε διαδοχικές θέσεις β) καέας φοιτητής α μη κάθεται δίπλα σε άλλο φοιτητή γ) τουλάχιστο έας φοιτητής α κάθεται δίπλα σε άλλο φοιτητή Έα λεωφορείο ξεκιάει από τη αφετηρία με κ άτομα Μέχρι α φθάσει στο τέρμα κάει στάσεις (συμπεριλαμβαομέου του τέρματος) Να βρεθεί η πιθαότητα τουλάχιστο σε μια στάση α κατέβηκα περισσότερα από έα άτομα ( k ) 3 Ρίχουμε έα όμισμα 0 φορές Να βρεθεί η πιθαότητα α φέρουμε κάθε φορά διαφορετική έδειξη από τη προηγούμεη Εργαστήριο Μαθηματικώ & Στατιστικής / Γ Παπαδόπουλος (wwwauagr/gpapadopoulos)
Προβλήματα Πιθαοτήτω 4 Μια επιτροπή συγκροτείται από Γεωπόους και 3 Μηχαικούς που επιλέγοται από 5 Γεωπόους και 7 Μηχαικούς Α όλες οι συθέσεις της επιτροπής που μπορού α προκύψου είαι εξίσου πιθαές, ποια είαι η πιθαότητα α) έας συγκεκριμέος Μηχαικός α συμμετέχει οπωσδήποτε στη επιτροπή β) δύο συγκεκριμέοι Γεωπόοι α μη συμμετέχου στη επιτροπή 5 Σε μια χώρα, η πιθαότητα α ζήσει έας άδρας τουλάχιστο 70 χρόια είαι 085, εώ η πιθαότητα α ζήσει τουλάχιστο 75 χρόια είαι 080 Α διαλέξουμε τυχαία έα 70-χροο άτρα από τη χώρα αυτή, ποια είαι η πιθαότητα α ζήσει τουλάχιστο άλλα 5 χρόια 6 Το δίλημμα του φυλακισμέου: Φυλακισμέος που έχει υποβάλει μαζί με άλλους δύο συγκρατούμεούς του αίτηση αποομής χάριτος, πληροφορείται από έα φίλο του φρουρό ότι δύο από τους τρεις πρόκειται α αποφυλακισθού Επειδή ο φρουρός δε θέλει α αποκαλύψει στο φυλακισμέο α αυτός είαι ο έας από τους δύο που αποφυλακίζοται, ο φυλακισμέος σκέπτεται α του ζητήσει α του αποκαλύψει ποιος από τους άλλους δύο πρόκειται α αποφυλακισθεί Όμως διστάζει γιατί σκέπτεται ότι με τη απάτηση του φρουρού μειώεται η πιθαότητα αποφυλάκισής του από /3 σε / Είαι οι δισταγμοί του φυλακισμέου δικαιολογημέοι; 7 Σε έα αγρόκτημα υπάρχου 0 κουέλια από τα οποία τα 3 είαι θηλυκά Για το έλεγχο του πληθυσμού τω κουελιώ κρίθηκε σκόπιμο α απομακρυθού δύο από τα θηλυκά Έτσι στήθηκε μια παγίδα όπου πιάοτα τα κουέλια το έα μετά το άλλο έως ότου πιαστού θηλυκά Ποια είαι η πιθαότητα α συμβεί αυτό ότα πιαστεί το τέταρτο στη σειρά κουέλι; 8 Από επτά όμοια κλειδιά έα μόο αοίγει μια κλειδαριά Δοκιμάζουμε χωρίς επαάθεση έα-έα τα κλειδιά μέχρι α αοίξει η κλειδαριά Ποια είαι η πιθαότητα α αοίξει η κλειδαριά στη τρίτη δοκιμή; Γεικότερα στη κ δοκιμή; (όπου κ =,, 3, 4, 5, 6, 7) 9 Πολλαπλές γραμμές παραγωγής: Σε έα εργοστάσιο υπάρχου τρεις διαφορετικές γραμμές παραγωγής στις οποίες κατασκευάζεται το 50%, 30% και 0% τω προϊότω του εργοστασίου ατίστοιχα Το 04% τω προϊότω της πρώτης γραμμής είαι ελαττωματικά, εώ τα ατίστοιχα ποσοστά για τις άλλες δύο γραμμές είαι 06% και % Τα προϊότα τω τριώ γραμμώ παραγωγής ααμιγύοται δημιουργώτας μια ειαία σειρά και στη συέχεια προωθούται στο τμήμα ποιοτικού ελέγχου α) Στο τμήμα ποιοτικού ελέγχου επιλέγεται τυχαία έα προϊό Ποια είαι η πιθαότητα το προϊό αυτό α είαι ελαττωματικό; β) Στο τμήμα ποιοτικού ελέγχου επιλέγεται τυχαία έα προϊό και διαπιστώεται ότι είαι ελαττωματικό Ποια είαι η πιθαότητα το προϊό αυτό α προέρχεται από τη πρώτη γραμμή παραγωγής; Ερμηεύστε τις πιθαότητες που υπολογίσατε στα α) και β) με όρους ποσοστώ (δηλαδή τι εκφράζει ως ποσοστό η κάθε πιθαότητα και επί ποίου συόλου) 0 Διαγωστικά τεστ: Το % εός πληθυσμού πάσχει από AIDS Η εξέταση που εφαρμόζεται για τη διάγωση της ασθέειας δίει σωστή διάγωση στο 90% τω περιπτώσεω, ότα το εξεταζόμεο άτομο πάσχει από AIDS, και στο 95% τω περιπτώσεω ότα δε πάσχει από AIDS Επιλέγεται έα άτομο από το πληθυσμό αυτό στη τύχη και υποβάλλεται στη εξέταση α) Ποια είαι η πιθαότητα η εξέταση α βγει θετική, δηλαδή α δείξει ότι πάσχει από AIDS β) Ποια είαι η πιθαότητα λαθασμέης διάγωσης Εργαστήριο Μαθηματικώ & Στατιστικής / Γ Παπαδόπουλος (wwwauagr/gpapadopoulos)
Προβλήματα Πιθαοτήτω γ) Ποια είαι η πιθαότητα α πάσχει πράγματι από AIDS έα άτομο για το οποίο η εξέταση ήτα θετική δ) Ποια είαι η πιθαότητα α είαι υγιές έα άτομο για το οποίο η εξέταση ήτα θετική Διαγωστικά τεστ: Έας γιατρός ακολουθεί τη εξής πολιτική Υποβάλλει τους ασθεείς του σε μια σειρά αρχικώ εξετάσεω σχετικώ με τη ασθέειά τους και α μετά τα αποτελέσματα τω εξετάσεω είαι τουλάχιστο κατά 85% βέβαιος ότι ο ασθεής πάσχει, συιστά χειρουργική επέμβαση Σε ατίθετη περίπτωση συστήει πρόσθετες επώδυες και πολυδάπαες εξετάσεις Ας θεωρήσουμε έα ασθεή για το οποίο ο γιατρός, μετά από κλιική εξέταση, είαι κατά 70% βέβαιος ότι ο ασθεής πάσχει από συγκεκριμέη ασθέεια και συιστά α γίου οι αρχικές εξετάσεις, οι οποίες κάου ορθή διάγωση της ασθέειας πάτοτε Το αποτέλεσμα τω εξετάσεω είαι θετικό και ο γιατρός είαι έτοιμος α συστήσει εγχείριση ότα για πρώτη φορά ο ασθεής το πληροφορεί ότι είαι διαβητικός Η πληροφορία αυτή περιπλέκει τα πράγματα γιατί παρότι δε μεταβάλλεται η αρχική εκτίμηση του γιατρού α πάσχει ο ασθεής (70%), είαι ετελώς διαφορετική η αξιολόγηση που πρέπει α γίει στο αποτέλεσμα τω διαγωστικώ εξετάσεω Ο λόγος στο οποίο οφείλεται αυτό είαι ότι, εώ οι εξετάσεις δε δίου ποτέ θετικό αποτέλεσμα για άτομα που δε πάσχου από τη ασθέεια, για διαβητικά άτομα, υπάρχει 5% πιθαότητα α δώσου θετικό αποτέλεσμα, εώ δε πάσχου από τη συγκεκριμέη ασθέεια Συεκτιμώτας όλα αυτά τα στοιχεία, τι απόφαση πρέπει α πάρει ο γιατρός, πρόσθετες εξετάσεις ή εγχείριση; Διαγωστικά τεστ: Από μελέτες που έγια σε μια χώρα, διαπιστώθηκε ότι το ποσοστό τω γυαικώ που πάσχου από καρκίο της μήτρας είαι % 0 Έα από τα πλέο δημοφιλή τεστ για τη διάγωση της ασθέειας, το τεστ Παπαικολάου, κάει ορθή διάγωση με πιθαότητα 98% Α μια γυαίκα αυτής της χώρας υποβληθεί στο τεστ και βγει θετικό, ποια είαι η πιθαότητα η γυαίκα α έχει πράγματι καρκίο της μήτρας Είαι δικαιολογημέος ο υπερβολικός φόβος της κυρίας μετά το αποτέλεσμα του τεστ; Επίσης, σχολιάστε τη υψηλή «ακρίβεια» (98%) του τεστ σε σχέση με τη τιμή της πιθαότητας που υπολογίσατε 3 Ερωτήσεις πολλαπλής επιλογής: Σε μια εξέταση δίδοται τέσσερις απατήσεις σε κάθε ερώτηση και σωστή είαι μόο μια από τις τέσσερις Η πιθαότητα α γωρίζει ο εξεταζόμεος τη απάτηση μιας ερώτησης είαι 70% Στις περιπτώσεις που ο εξεταζόμεος δε γωρίζει τη απάτηση σε μια ερώτηση, απατάει ετελώς τυχαία διαλέγοτας μια από τις τέσσερις απατήσεις που δίδοται Α ο εξεταζόμεος απατήσει σωστά σε μια ερώτηση, ποια είαι η πιθαότητα α γώριζε τη απάτηση; 4 Αξιοπιστία: Σε έα μηχάημα χρησιμοποιούται δύο εξαρτήματα τα οποία λειτουργού αεξάρτητα το έα από το άλλο Έχει παρατηρηθεί ότι στο 7% του χρόου λειτουργίας του μηχαήματος, καέα από τα δύο εξαρτήματα δε παρουσιάζει βλάβη Όμως, σε έα ποσοστό % του χρόου λειτουργίας, παρουσιάζου βλάβη και τα δύο εξαρτήματα (ταυτόχροα) Για α λειτουργήσει το μηχάημα απαιτείται η λειτουργία του εός τουλάχιστο από τα δύο εξαρτήματα Να υπολογισθεί η αξιοπιστία του μηχαήματος (δηλαδή η πιθαότητα λειτουργίας του μηχαήματος) καθώς και η αξιοπιστία καθεός από τα δύο εξαρτήματα (δηλαδή η πιθαότητα λειτουργίας καθεός εξαρτήματος) 5 Αξιοπιστία: Μια συδεσμολογία μοάδω λέγεται σύδεση σε σειρά (σειριακό σύστημα) ότα το σύστημα λειτουργεί α και μόο α λειτουργού και οι μοάδες του Ατίστοιχα λέμε ότι έχουμε παράλληλη σύδεση (παράλληλο Εργαστήριο Μαθηματικώ & Στατιστικής / Γ Παπαδόπουλος (wwwauagr/gpapadopoulos)
Προβλήματα Πιθαοτήτω σύστημα) ότα το σύστημα λειτουργεί α και μόο α λειτουργεί μια τουλάχιστο από τις μοάδες του 3 Σύδεση σε σειρά Παράλληλη Σύδεση Α όλες οι μοάδες εός συστήματος έχου τη ίδια αξιοπιστία p (0<p<) α δείξετε ότι α) α το σύστημα είαι σειριακό τότε η αξιοπιστία του είαι R σ = p β) α το σύστημα είαι παράλληλο τότε η αξιοπιστία του είαι Rπ = ( p) 6 Αξιοπιστία: Η αξιοπιστία κάθε μίας από τις μοάδες εός σειριακού συστήματος είαι ίση με p (0<p<) Έας τεχικός, για α αυξήσει τη αξιοπιστία του συστήματος, χρησιμοποιεί επιπλέο μοάδες με τη ίδια αξιοπιστία p τις οποίες σκέφτεται α συδέσει στο υπάρχο σύστημα με έα από τους δύο διαφορετικούς τρόπους που φαίοται στα ακόλουθα σχήματα : Συδεσμολογία Ι Συδεσμολογία ΙΙ Να δείξετε ότι η αξιοπιστία του συστήματος με τη Συδεσμολογία Ι είαι = p ( p) και του συστήματος με τη Συδεσμολογία ΙΙ είαι R I R II = p ( p ) Ποια από τις δύο συδεσμολογίες πρέπει α χρησιμοποιήσει; (Υποθέστε ότι όλες οι μοάδες που χρησιμοποιούται λειτουργού αεξάρτητα η μια από τη άλλη) Εργαστήριο Μαθηματικώ & Στατιστικής / Γ Παπαδόπουλος (wwwauagr/gpapadopoulos)
Προβλήματα Πιθαοτήτω ΑΠΑΝΤΗΣΕΙΣ α) 0 β) 06 γ) 004 δ) 06 ε) 0 στ) 08 3, 5, 3, 57, 3,, 7,, 43, 37 80 8 6 80 8 40 6 0 80 80 3,, 3, 5,, 7, 0 0 0 0 0 0 0 4 α) 0004 β) 009 γ) 004 δ) 0976 5 Υπόδειξη: τα εδεχόμεα {0} και {} είαι ισοπίθαα εώ το εδεχόμεο {} έχει διπλάσια πιθαότητα εμφάισης 365 Δ k 6 k 365 k 364 7 k 365 8 Ότι θα φέρουμε έα τουλάχιστο 6 ρίχοτας έα ζάρι 4 φορές! 4! r! r! r3! r4! 9 r! 00 00 0 0 90 300 00 9!4! 8! 9 9 Δ 4 8! Δ α) β) γ) 4!!! Δ k k 3 0 6 3 4 α) β) 7 5 3 5 094 6 όχι διότι P(ελευθερώεται ο Α / ο φρουρός ααφέρει το Β)=/3 7 05 (εφαρμόζουμε το πολλαπλασιαστικό τύπο σε κατάλληλα εδεχόμεα) 8 σε οποιαδήποτε δοκιμή είαι 7 9 α) το συολικό ποσοστό ελαττωματικώ προϊότω που παράγοται από το εργοστάσιο είαι 06% β) το ποσοστό ελαττωματικώ προϊότω που προέρχεται από τη πρώτη γραμμή παραγωγής είαι 3% 0 α) 0067 β) 005 γ) 069 δ) 073 χειρουργική επέμβαση 00048 (ο φόβος της κυρίας είαι υπερβολικός) 3 090 4 098, 08, 09 5-6 τη συδεσμολογία Ι Εργαστήριο Μαθηματικώ & Στατιστικής / Γ Παπαδόπουλος (wwwauagr/gpapadopoulos)