ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 Λύσεις των θεμάτων Έκδοση η (5/5/5, :)
Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς των Επιμελητών των φακέλων του Λυκείου του Δικτυακού Τόπου mathmaticagr με βάση υλικό που αναρτήθηκε στο mathmatica http://wwwmathmaticagr/forum/viwtopicphp?f=33&t=49688 Συνεργάστηκαν οι: Στράτης Αντωνέας, Ανδρέας Βαρβεράκης, Βασίλης Κακαβάς, Γιώργης Καλαθάκης, Φωτεινή Καλδή, Σπύρος Καρδαμίτσης, Νίκος Κατσίπης, Χρήστος Κυριαζής, Στάθης Κούτρας Μίλτος Παπαγρηγοράκης, Λευτέρης Πρωτοπαπάς, Γιώργος Ρίζος, Μπάμπης Στεργίου, Σωτήρης Στόγιας, Αλέξανδρος Συγκελάκης, Κώστας Τηλέγραφος, Χρήστος Τσιφάκης Το Δελτίο διατίθεται ελεύθερα από το δικτυακό τόπο mathmaticagr
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β] Αν η f είναι συνεχής στο [α, β] και f(α) f(β), τότε να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένας τουλάχιστον α,β, τέτοιος ώστε f η Μονάδες 7 A Έστω μια συνάρτηση f και ένα σημείο του πεδίου ορισμού της Πότε θα λέμε ότι η f είναι συνεχής στο ; A3 Έστω μια συνάρτηση f με πεδίο ορισμού A Πότε λέμε ότι η f παρουσιάζει στο A τοπικό ελάχιστο; Μονάδες 4 Μονάδες 4 A4 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α) Αν για δύο συναρτήσεις f, g ορίζονται οι συναρτήσεις f g και g f, τότε ισχύει πάντοτε ότι f g g f β) Η διανυσματική ακτίνα της διαφοράς των μιγαδικών α + βi και γ + δi είναι η διαφορά των διανυσματικών ακτίνων τους γ) Για κάθε ισχύει ότι συν ημ δ) Έστω f μία συνεχής συνάρτηση σε ένα διάστημα [α,β] Αν ισχύει ότι f για κάθε α,β και η συνάρτηση f δεν είναι παντού μηδέν στο διάστημα αυτό, τότε β f d α lim f και f κοντά στο, τότε ε) Αν lim f Μονάδες 3
ΑΠΑΝΤΗΣΕΙΣ Α Σχολικό Βιβλίο σελ 9 Α Σχολικό Βιβλίο σελ 88 Α3 Σχολικό βιβλίο σελ 59 Α4 α) Λάθος Σχολικό βιβλίο σελ 44 β) Σωστό Σχολικό βιβλίο σελ 59 γ) Λάθος Σχολικό βιβλίο σελ 5 δ) Σωστό Σχολικό βιβλίο σελ 33 ε) Σωστό Σχολικό βιβλίο σελ 78 ΘΕΜΑ Β Θεωρούμε τους μιγαδικούς αριθμούς z για τους οποίους ισχύει: z 4 z B Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων αυτών των μιγαδικών αριθμών z είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ = Μονάδες 7 z z B Έστω w, όπου z, zδύο μιγαδικοί αριθμοί του ερωτήματος Β Να αποδείξετε ότι: z z α) Ο w είναι πραγματικός και β) 4 w 4 (μονάδες 4) (μονάδες 7) Μονάδες B3 Αν w 4, όπου w είναι ο μιγαδικός αριθμός του ερωτήματος Β, να βρείτε τη σχέση που συνδέει τους μιγαδικούς αριθμούς z, z και να αποδείξετε ότι το τρίγωνο ΑΒΓ με κορυφές τις εικόνες ΛΥΣΗ: Az,Bz,Γz 3 των μιγαδικών αριθμών z, z και z 3 είναι ισοσκελές Β Ισοδύναμα έχουμε: z 4 z z 4 4 z z 4z 4 4z z zz 4z 4z 6 4 zz z z zz 4z 4z 6 4zz 4z 4z 4 zz 4 z Μονάδες 7 Άρα ο γεωμετρικός τόπος των εικόνων του z είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ = 4
4 Β α Είναι z zz 4 z z Όμοια z 4 z 4 4 z z z z z z z z z z z 4 4 z z z z z z z z z Άρα w β Από την τριγωνική ανισότητα παίρνουμε διαδοχικά: w w z z z z z z z z z z z z z z z z z z z z z z z z w w w 4 4 w 4 αφού w Β3 Είναι Επομένως : Άρα z z z z z z w 4 z z z z z z z z z z z z z z z z (ΑΒ) z z z z z z 3 (ΑΓ) z z z iz z i z - z 5 3 (ΒΓ) z z z iz z i z z 5 3 3 z z z z ΑΓ ΒΓ ΘΕΜΑ Γ Δίνεται η συνάρτηση f, Γ Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα, Μονάδες 6 Γ Να αποδείξετε ότι η εξίσωση 3 f 5 έχει στο σύνολο των πραγματικών αριθμών μία ακριβώς ρίζα Γ3 Να αποδείξετε ότι Μονάδες 8 5
4 f 4 για κάθε > Γ4 Δίνεται η συνάρτηση 4 f tdt, g, Να αποδείξετε ότι η συνάρτηση g είναι γνησίως αύξουσα στο, Μονάδες 4 Μονάδες 7 ΛΥΣΗ: Γ Η συνάρτηση f() ορίζεται σε όλο το και είναι παραγωγίσιμη στο ως πηλίκο των παραγωγίσιμων συναρτήσεων Είναι προφανές ότι, με: ( ) ( ) ( ) f () ( ) ( ) ( ) ( ) f () ( ) για κάθε και επειδή η f είναι συνεχής στο, τελικά η f είναι γνησίως αύξουσα στο Επίσης lim f() lim, αφού lim Οι συναρτήσεις lim lim lim και,, είναι παραγωγίσιμες και lim, lim, και το όριο υπάρχει, όπως φαίνεται παρακάτω, επομένως ισχύουν οι προϋποθέσεις εφαρμογής του κανόνα D L Hospital Άρα lim f lim lim lim Επίσης οι συναρτήσεις,, είναι παραγωγίσιμες και lim, lim, και το όριο lim υπάρχει, όπως φαίνεται παρακάτω, επομένως ισχύουν οι προϋποθέσεις εφαρμογής του κανόνα D L Hospital 6
Άρα lim f lim lim Επομένως το σύνολο τιμών είναι το Γ Είναι : f(r) lim f(), lim f() (, ) 3 3 f ( ) f ( ) f() () 5 Επειδή η f είναι γνησίως αύξουσα, είναι και Επομένως η () είναι ισοδύναμη με την ( ) ( ) f() 3 3 3 3 3 3 Όμως f(r) (, ), οπότε υπάρχει, τέτοιο ώστε f( o) Επιπλέον η συνάρτηση είναι γνησίως αύξουσα, άρα λαμβάνει κάθε τιμή της ακριβώς μια φορά, οπότε η ανωτέρω εξίσωση έχει ακριβώς μια ρίζα, τη Γ3 Η f είναι γνησίως αύξουσα, οπότε για είναι και η ισότητα δεν ισχύει παντού στο [,4] Επομένως t 4 f() f(t) f(4) f(4) f(t) 4 4 4 4 4 [f(4 ) f(t)]dt f(4 )dt f(t)dt f(t)dt f(4)dt 4 4 f(t)dt f(4) f(t)dt f(4) 4 4 4 Γ4 Επειδή ftdt f tdt f tdt άρα 4 ' (4)'f(4) ()'f() 4f(4) f() Η g είναι παραγωγίσιμη στο, ως πηλίκο παραγωγίσιμων συναρτήσεων με 4 4 4 ' ()' 4f(4) f() g (), 4f(4) f() f(4) f(4) f() λόγω της ανισότητας που αποδείξαμε στο ερώτημα (Γ3) Για ισχύει ότι f(4) f() λόγω της μονοτονίας της f Άρα Επίσης είναι lim g() lim 4 f(t)dt f(4) f() g, 7
4 Οι συναρτήσεις f(t)dt,, είναι παραγωγίσιμες, επομένως και συνεχείς Άρα 4 lim f(t)dt f(t)dt, li m 4 f(t)dt και το όριο lim υπάρχει, όπως φαίνεται παρακάτω Επομένως ισχύουν οι προϋποθέσεις εφαρμογής του κανόνα D L Hospital Άρα, 4 4 f(t)dt f(t)dt 4f(4) f() lim g() lim lim lim 4f() f() g(), αφού η f είναι συνεχής Συνεπώς η g είναι συνεχής στο και στο, (ως παραγωγίσιμη σε αυτό) άρα τελικά είναι συνεχής στο, Επίσης g '() για κάθε, άρα τελικά η f είναι γνησίως αύξουσα στο ΘΕΜΑ Δ, Έστω η παραγωγίσιμη συνάρτηση f: για την οποία ισχύουν: f f f για κάθε f() = Δ Να αποδείξετε ότι f ln και Μονάδες 5 Δ α) Να βρείτε τα διαστήματα στα οποία η συνάρτηση f είναι κυρτή ή κοίλη και να προσδιορίσετε το σημείο καμπής της γραφικής παράστασης της f (μονάδες 3) β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f, την ευθεία y = και τις ευθείες = και = (μονάδες 4) Μονάδες 7 Δ3 Να υπολογίσετε το όριο: f (t)dt lim ln f() Μονάδες 6 Δ4 Να αποδείξετε ότι η εξίσωση: 3 f(t )dt 8 3 f (t)dt 3 έχει μία τουλάχιστον ρίζα στο (,3) Μονάδες 7 8
ΛΥΣΗ: f() f() Δ Η δοθείσα σχέση γράφεται (), οπότε f() f() c, c Από την τελευταία, αν θέσουμε, βρίσκουμε c κι έτσι αυτή γράφεται Είναι f() f() f() f() f() f() f() f() f() () f() Έστω H(),, οπότε η σχέση () γράφεται H () Είναι επομένως H() για κάθε και επειδή είναι συνεχής στο, αυτή διατηρεί σταθερό πρόσημο Αλλά H(), όποτε είναι H() για κάθε Επομένως η σχέση () δίνει : f() f() H() f() ln, ' Δα Είναι f'() Η f είναι με τη σειρά της παραγωγίσιμη ως πηλίκο παραγωγίσιμων συναρτήσεων με f, 3 Για είναι f (), οπότε η f είναι κοίλη στο [, ) Για είναι f (), οπότε η f είναι κυρτή στο (,] Στο η f παρουσιάζει σημείο καμπής το σημείο,f() δηλαδή το Ο(, ) Δβ Η εξίσωση της εφαπτομένης της C f στο είναι y f() f ()( ) y Αφού η f είναι κοίλη στο [, ), είναι f() για κάθε με την ισότητα να ισχύει μόνο για Άρα το ζητούμενο εμβαδόν είναι Δ3 Αφού f'() E ( f())d d f()d Έστω L το ζητούμενο όριο, το οποίο γράφεται () f()d f() f ()d f() d f() ln άρα η f είναι γνησίως αύξουσα στο Για είναι f() 9
f (t)dt f (t)dt L lim lnf() lim f()lnf() f() Η συνάρτηση στον εκθέτη είναι συνεχής ως παραγωγίσιμη, οπότε lim f (t)dt f (t)dt, lim f f Το όριο οδηγεί στη μορφή και ισχύουν οι προϋποθέσεις εφαρμογής του κανόνα D L Hospital όπως προκύπτει εκ του αποτελέσματος Είναι λοιπόν : Επίσης είναι f (t)dt f (t)dt f (t)dt f (t)dt f f lim lim lim f() f() f() lim lnf() f()lnf() lim f() lim f() f lim και lim f( ) Έχουμε lnf lnf() και υπάρχει το lim, όπως φαίνεται παρακάτω Έτσι, σύμφωνα με κανόνα D L Hospital, f() είναι : f () lnf() f() lim f()lnf() lim lim lim ( f()) f () f() f () f (t)dt L lim lnf() lim lim f()lnf() f() f (t)dt Άρα το ζητούμενο όριο Δ4 Στο διάστημα (, 3) είναι : 3 f(t )dt 8 3 f (t)dt ( ) 3 3 f(t )dt ( 3) 8 3 f (t)dt Θεωρούμε συνάρτηση
G() ( ) 3 f(t )dt ( 3) 8 3 f (t)dt, [,3] Η G είναι συνεχής στο [, 3], αφού οι εμφανιζόμενοι όροι είναι συνεχείς συναρτήσεις, ως παραγωγίσιμες Είναι G() 3 f (t)dt 8 και Είναι f(t) t,t [,], οπότε Όμοια είναι f(t) t,t [,],οπότε, με την ισότητα να ισχύει μόνο για t Επομένως G(3) 3 f(t )dt f (t) t t f (t), με την ισότητα να ισχύει μόνο για t 8 (t f (t))dt f (t)dt G() 3 f(t ) t t f(t ),t [, ] Άρα (t f(t ))dt f(t )dt G(3) Είναι λοιπόν G()G(3), οπότε σύμφωνα με το θεώρημα Bolzano η εξίσωση G() έχει μία τουλάχιστον ρίζα στο (,3) Συνεπώς και η ισοδύναμη αρχική εξίσωση έχει μία τουλάχιστον ρίζα στο (,3) ΑΛΛΕΣ ΛΥΣΕΙΣ: Β Έστω z yi,,y, οπότε z 4 z yi 4 yi 4 yi yi 4 y y 4 y 4 y 8 6 y 4 y 8 6 y 4 8 4 4y 3 3y y 4 Άρα ο γεωμετρικός τόπος των εικόνων του z είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ = Bβ Αν z yi,z yi,,,y,y με αντίστοιχες εικόνες A(z ),B(z ), έχουμε ότι: w z z yy OA OB OA OB συνaob z z οπότε w OA OB συνaob OA OB απ' όπου OA OB w OA OB 4 w 4,
z z 4 z z z z z z Ββ w 4R z 4 z z z z z z z z Άρα αρκεί να αποδείξουμε ότι 4 4R 4 4R 4 R z z z z z 4 z Όμως άρα ο μιγαδικός z z 4 z άρα κινείται στο μοναδιαίο κύκλο y z y άρα δηλαδή το πραγματικό μέρος του z Γ3 Έστω Θεωρούμε τη συνάρτηση u F(u) f(t)dt,u [,4] z ικανοποιεί την R z Η συνάρτηση f είναι συνεχής στο διάστημα [,4], οπότε η F είναι παραγωγίσιμη σ' αυτό, με F (u) f(u) Από το Θεώρημα Μέσης Τιμής, υπάρχει ένα τουλάχιστον ξ (,4) τέτοιο, ώστε 4 F(4) F() F(ξ) f(t)dt f(t)dt f(ξ) 4 4 4 f(t)dt f(t)dt f(ξ) f(t)dt f(ξ) Είναι ξ 4 και η f είναι γνησίως αύξουσα συνάρτηση, άρα f(ξ) f(4) Επομένως 4 f(t)dt f(4) Δ Όμοια όπως στην πρώτη λύση βρίσκουμε f() f() () Θεωρούμε τη συνάρτηση g() με g'() για κάθε γνησίως αύξουσα στο οπότε και "", άρα η g είναι Παρατηρούμε ότι ln ln g ln Οπότε η () γράφεται: g: g f() g ln f() ln
Δ3 Η συνάρτηση f() έχει παράγωγο f () άρα είναι γνησίως αύξουσα στο έχουμε f() f() συνεπώς f() f() για (, ) Το όριο γράφεται: οπότε για F() F() lim lnf() όπου f (t)dt F() η οποία είναι παραγωγίσιμη με F () f ()F() Όμως διότι F() F() lim F () και επίσης f () lnf() f() lim (lnf()) lim lim ln( ) lim lim ln( ) Δ3 Με f t συνεχή στο (δύναμη συνεχούς και προκύπτει ότι η συνάρτηση είναι μια παράγουσα της f στο άρα συνεχής και με m F m είναι συνεχής στο (άρα και στο μηδέν) οπότε F συνεχή στο προκύπτει ότι η και επειδή f() για άρα (*) θέτουμε u f() οπότε Έτσι έχουμε: f tdt f tdt lim lim ln f lim lnf lim lnu u u limf() f() διότι η f είναι συνεχής f tdt lnf lim ln f lim f tdt Και με τις συναρτήσεις, παραγωγίσιμες είναι lnf (*) 3
f f lnf f f lim lim lim f tdt DL'H lim f tdt f f f lim 3 f tdt f tdt f f f tdt Επειδή οι συναρτήσεις f (t)dt f'(), είναι συνεχείς στο άρα και f f lim f tdt f tdt f tdt f lim lim lim lim f 3f f 3f f 3 f 3 DL'H f tdt lim 3f 3f 3 Οπότε τελικά για το ζητούμενο όριο (από όρια και πράξεις) έχουμε: f t dt f t dt lnf f f lim lim lim lim 3 3 f f f tdt 4