ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(c f (x)) = c f (x), για κάθε x R

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 2013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x)

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

c f(x) = c f (x), για κάθε x R

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,...,

{[ 140,150 ),[ 160,170 ),...,[ 200, 210]

ÏÅÖÅ = = H f παρουσιάζει µέγιστο για x = -1, το f ( 1) = 2 Οπότε : µ + 4 = 9 µ = 5 iii) Ο συντελεστής διεύθυνσης της εφαπτοµένης της C

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

c f(x) = c f (x), για κάθε x R

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

{[ 140,150 ),[ 160,170 ),...,[ 200, 210]

Ασκήσεις στη Στατιστική

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

BIOΣΤΑΤΙΣΤΙΚΗ. ιδάσκων: Τριανταφύλλου Ιωάννης Τ.Ε.Ι. ΑΘΗΝΑΣ

Κάνουμε πρώτα διαλογή και κατασκευάζουμε τον πίνακα συχνοτήτων: και επίσης κατασκευάζουμε το ραβδόγραμμα: Αυτοκίνητο Τραμ Τρόλεϊ Μετρό Λεωφορείο

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ν ν = 6. όταν είναι πραγµατικός αριθµός.

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

(f(x)+g(x)) =f (x)+g (x), x R

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)

Επιτρέπεται η χ ρήση του εκπαιδευτικού υλικού εντός του φροντιστηρίου

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι 1,,, k είαι οι τιµές µιας µεταβλητής Χ, που αφορά Β.1. τα άτοµα εός δείγµατος µεγέθους, όπου k, µη µηδεικοί φυσικοί αριθµοί µε k. α. Τι οοµάζεται απόλυτη συχότητα, που ατιστοιχεί στη τιµή, 1,,,k; β. Τι οοµάζεται σχετική συχότητα f της τιµής, 1,,,k; γ. Να αποδείξετε ότι: ) 0 f 1 για 1,,,k ) f 1 + f + + f k 1. Μοάδες 3 Μοάδες 3 Μοάδες 4 Για οποιαδήποτε ασυµβίβαστα µεταξύ τους εδεχόµεα Α, Β εός δειγµατικού χώρου Ω α αποδείξετε ότι: Ρ (Α Β) Ρ(Α) + Ρ(Β). Μοάδες 8 Β.. α. Να δώσετε το κλασικό ορισµό της πιθαότητας εός εδεχοµέου Α κάποιου δειγµατικού χώρου Ω. β. Να δώσετε τις αριθµητικές τιµές τω παρακάτω πιθαοτήτω: ) P(Ω) ) Ρ ( ). Μοάδες 5 Μοάδες Τεχική Επεξεργασία: Keystne 1

ΘΕΜΑ ο ίεται η συάρτηση f() + 1. α. Να βρείτε το πεδίο ορισµού της συάρτησης f. Μοάδες 4 β. Να υπολογίσετε το όριο lm f() 3. Μοάδες 4 γ. Να βρεθεί η πρώτη παράγωγος της f. Μοάδες 7 δ. Να βρεθού οι εφαπτόµεες της καµπύλης της συάρτησης f που είαι παράλληλες στη ευθεία y + 5. Μοάδες 10 ΘΕΜΑ 3ο Έα προϊό πωλείται σε 10 διαφορετικά καταστήµατα στις παρακάτω τιµές, σε Ευρώ: 8, 10, 13, 13, 15, 16, 18, 14, 14, 9. α. Να υπολογίσετε τη µέση τιµή, τη διάµεσο και τη επικρατούσα τιµή. Μοάδες 6 β. Να υπολογίσετε το εύρος, τη τυπική απόκλιση και το συτελεστή µεταβολής. Μοάδες 6 γ. Α οι τιµές του προϊότος σε όλα τα καταστήµατα υποστού έκπτωση 10%, α εξετάσετε α θα µεταβληθεί ο συτελεστής µεταβολής. Μοάδες 13 ΘΕΜΑ 4ο Έστω Α,Β δύο εδεχόµεα εός δειγµατικού χώρου Ω µε Ρ(Α) + Ρ(Β) Ρ(Α Β). ίεται ακόµα η συάρτηση: f() ( - P(A B)) 3 - ( - P(A B)) 3, R. α. Να δείξετε ότι P(A B) P(A B). Μοάδες 5 β. Να δείξετε ότι η συάρτηση f() παρουσιάζει µέγιστο στο σηµείο P(A ) + P(B). Μοάδες 13 γ. Εά τα εδεχόµεα Α, Β είαι ασυµβίβαστα, α δείξετε ότι f(p(a)) f(p(b)). Μοάδες 7 Τεχική Επεξεργασία: Keystne

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1ο α) Οοµάζουµε απόλυτη συχότητα, το φυσικό αριθµό, ο οποίος δείχει πόσες φορές εµφαίζεται η τιµή της εξεταζόµεης µεταβλητής Χ στο σύολο τω παρατηρήσεω. β) Οοµάζουµε σχετική συχότητα το αριθµό f που προκύπτει α διαιρέσουµε τη απόλυτη συχότητα που ατιστοιχεί στη τιµή µε το µέγεθος του δείγµατος. Ισχύει δηλαδή ότι: f µε 1,,, κ. γ) ) Επειδή είαι 0 για κάθε 1,,, κ προκύπτει ότι 0 1. Άρα 0 f 1 για κάθε 1,,, κ. ) Έχουµε 1 κ 1 + +... + κ f 1 + f + + f κ + +... + 1 Β. 1. Καόες λογισµού τω Πιθαοτήτω Θεώρηµα 1. Σελ. 150 σχολ. βιβλίου. Β. α. Έστω Ω ο δειγµατικός χώρος εός πειράµατος τύχης µε ισοπίθαα απλά εδεχόµεα. Ορίζουµε ως πιθαότητα του εδεχοµέου Α Ω το αριθµό Πλήθος Ευοϊκώ Περιπτώσεω Ν(Α) P(A) Πλήθος υατώ Περιπτώσεω Ν(Ω) Β..β. () P(Ω) 1. () P( ) 0 ΘΕΜΑ ο (α) Πρέπει +1 0, οπότε -1 Άρα A f R -{-1} (β) lm 3 f ( ) lm 3 + 1 6 4 3 ' ()'( + 1) ( + 1)' (γ) f '( ) + 1 Τεχική Επεξεργασία: Keystne 3

+ (δ) Ααζητούµε R { 1} ώστε f '( ) Όµως: f '( ) οπότε: ( + 1) 0 ( + 1) 1 0 + 1 1)( + 1+ 1) 0 ( + ) 0 ( 0 ή ) ( Έτσι τα σηµεία επαφής είαι τα Α(0,f(0)) (0,0) καί B(-,f(-)) (-,4). Οι ατίστοιχες εξισώσεις εφαπτοµέω είαι : Στο σηµείο Α(0,0) y f ( 0) f '(0)( 0) y 0 άρα Στο σηµείο Β(-,4) άρα Σηµείωση: y y f ( ) f '( )( + ) y 4 ( + ) y 4 + 4 y + 8 Ως απάτηση στη εύρεση τω εξισώσεω τω εφαπτοµέω (ερώτηση δ) θα µπορούσε α δοθεί και η ακόλουθη: Έστω y α+β η εξίσωση της εφαπτοµέης της καµπύλης της f στο Α(0,0). Τότε: α f ' (0) και 0 0 - β άρα β 0 Οπότε y Έστω y α'+β' η εξίσωση της εφαπτοµέης της καµπύλης της f στο B(,4). Τότε: α' f ' (-) και 4 (-)+β άρα β 8 Οπότε y +8 Τεχική Επεξεργασία: Keystne 4

ΘΕΜΑ 3ο α) 8 1 8 9 1 9 10 1 10 13 6 14 8 15 1 15 16 1 16 18 1 18 10 130 8 1 130 1. Είαι 13 10 10. Για τη διάµεσο θέτοτας τα δεδοµέα σε αύξουσα σειρά έχουµε: 8 9 10 13 13 14 14 15 16 18 t 5 + t 6 13 + 14 Είαι: δ 13,5 3. Έχουµε δύο επικρατούσες τιµές 13, 14. β) Το εύρος R 18-8 10. Η διακύµαση s είαι: 1 s [( 8 13) + ( 9 13) + ( 10 13) + ( 13 13) + ( 14 13) + ( 15 13) + ( 16 13) + ( 18 13) ] 10 1 10 90 10 [ 5 + 16 + 9 + + 4 + 9 + 5] 9 Άρα s s 3 s 3 και CV 1 13 Περίπου 3%. γ). Έστω y, 1,,, 10 οι τιµές που προκύπτου µετά τη έκπτωση κατά 10% ή ισοδύαµα µε πολλαπλασιασµό κατά 0,9. Η έα µέση τιµή είαι y 0,9, εώ η έα τυπική απόκλιση είαι s y 0,9 s Έτσι ο έος συτελεστής µεταβολής που προκύπτει είαι 0,9 s s CV CV1 0,9 Εποµέως δε θα µεταβληθεί ο συτελεστής µεταβολής. Τεχική Επεξεργασία: Keystne 5

ΘΕΜΑ 4ο α) Από τη υπόθεση έχουµε: P(A)+P(B) P(A B) δηλ. P(A)+P(B) - P(A B) P(A B) P(A B) P(A B) β) Είαι: f '() 3( P(A B) ) 3( P(A B) ) R Ακόµη: f '()0 ( ) ( ) 3 P(A B) 3 P(A B) 0 P(A B) P(A B) ή P(A B) + P(A B) P(A B) P(A B) ή αδύατο P(A B) + P(A B) Επίσης: f ' ()>0 3( P(A B) ) 3( P(A B) ) > 0 ( P(A B) - + P(A B) )( P(A B) + P(A B) ) > 0 ( P(A B) - P(A B) )[ ( P(A B) + P(A B) )] > 0 ( P(A B) - P(A B) )[ ( )] > 0 (1) Όµως: A B A B P(A B) P(A B) και επειδή: P(A B) P(A B) είαι: P(A B) < P(A B) Έτσι: P(A B) - P(A B) < 0 Οπότε: (1) < P(A)+P(B) < Aτίστοιχα προκύπτει ότι: f ' ()<0 > Άρα η f παρουσιάζει ma για γ) Αφού A B P(A B)0 (1) και P(A B) P(A)+P(B) () f P(A) P(A) P(A B) 3 P(A) P(A B) Έτσι: ( ) [ ] [ ] 3 Άρα: f (1),() [ P(A) P(A) P(B) ] 3 [ P(A) ] 3 -P 3 (B) - P 3 (A) P(B) P(A B) 3 P(B) P(A B) ( P(B) ) [ ] [ ] 3 (1),() f(p(a)) f(p(b)). 3 3 [ P(B) P(A) P(B) ] P (B) -P 3 (A) - P 3 (B) Τεχική Επεξεργασία: Keystne 6