! " # $ % # # $ # # "& # $! $! #!! % " # '! $ % "!! $ "!!! # ( #!!! ) #! " *** #
.....5.......9..........9.....4.3....... 9.4. -...3.......36....36......4.3....45.3......46.3......5.3.3....59.3.4.......65
3.....73 3.... 73 3....84 3.3......89 4..... 4..... 4.....3 4.3.....5 4.4.... 39 5...44 5....44 5...... 63 5.3.... 7 5.3..
...73 5.3.. 8 5.4.. 86 6.... 96 6.....96 6..... 96 6... 99 6..3.....5 6..4... 4 6..5....... 6..6...... 6......4 6.3.....38 6.3.... 4 6.3....48 6.4. AgBr... 5 3
7.. 6 7..... 6 7......68 7...... 7 7.. AgBr-AgI 75....87 4
XIX.., -., - 3- [-3]. -,..,,, -. -. -. -. ( ). -,., -. -. 5
. -.. AgBr, -. -,., - -,.. -. -., -, -. - -.,., - -. -.., - - - 6
, -,., -, -.,. - AgBr. -,.. -. AgBr-AgI.,,..,., :... -. : -, 8. - 8..... : 7
, 8. 4. : «- -», -. 8
-..., -. -.. -, ( - TK (terrace, ledge, kik)).,.. - [4]., -,.,. λ,, a / λ, a., -,,. -..... -. 9
. a -, N,., N λ - a, ( N ) ( )! N!! N W, W.,. N... ( - ) : G Δ G G N S T,, - ; ; : S k k, - N ( N )! Sk kb lw kb l, ( )! N! k B., N ( N )! ΔG G N kbt l. (.) ( )! N! N, >>,
(.) ΔG G N k T B l x! x l x x ΔG : [ N l ( N ) l( N ) l N l N ]. (.) ΔG.. ΔG - : ΔG N P, T. (.) N, :, : N G exp. ( N ) k T B a λn, λ G exp. a kbt λ >> a : a G λ exp, kbt,,. λ G λ exp a kbt
-. (.) ( N ) l( N ) l N l lw N l N N N N l l N l. (.3) N (.3), W max N G exp N kbt λn a λ a G lw N max l, a λ kbt. λ >> a a a l. λ λ lwmax S k G lw N max. kbt k lw, B S Nk G T k max B. (.),, ΔG mi k NT. B
, -. -,, - (..) [5]. ϑ, -., - ( ϑ ), - -. λk... T >. -. - ; 3 4 - ; 5, : λ K a G exp K, kbt. G K, - 3
.. - - [6, 7]. -,,. -, -,,. [8] -. -. [6, 7],., -, -,., -. -,,,, -, - 4
[9]. - []., - -, - ( ). ( - ). -., - (..3)...3., : - -, - -, 3 4 - -,,, - -. - 5
. Δ G : G G ΔG, G, G -. ΔG - -. - ( - ): ΔG { G G qϕ( ) kb N! N dx m G ( )!! k B T l M! ( M m )! m! ( M m ) 6 (N)! T l (N )!! qϕ ( m m ) S mgs S M!! m K G! qϕs K K K! k B T l ( ). (.4) K K! K! Mi - Vk ; m m - M Sa V Sk ; K - K ; N N ; M ( ) -
; K - G K K ; G - ; GS G S - - ; G K K ; ϕ ϕ S - ; q ;. K. (.4) ΔG.,, : σ q( m m ). i. -, -, (..3).,, -, : K K σ q K, K K., - - : 7
8 dx K K m m ) (. (.5) (.5), K K K. G - (.5) δ δ δ δ δ dx K m m ) (. : δ δ Δ B B N T k G N T k G G l l ( ) ( ) ϕ ϕ δ δ dx m M m T k G q B S S l ( )( ) δ l m M m M m m T k G G m B S S ( )( ). l δ m M K K K m T k G G K B K K,.. :, δ δ P T G,, δ δ P T G,, δ δ P T m G,, δ δ P T K G. - :
m G G exp ( N )( ) M m kbt ( N )( ) N kbt 9 S qϕ qϕ S, (.6) G exp F, (.7) m m G exp S, (.8) ( M m )( ) M m kbt Km G G exp K S, (.9) ( K K )( M m ) k T B G F G G, G S GS GS., GF. - (..3,.4). Gt. - K ( G K) - ( G S) G t, (..3): G K GS Gt. (.), [4, 5].,,.. Gt -. - Mi Gt -
, G V. V Sk, -. G S (..4, ). - : G G V G, S G G S S GS. (.)..4. - ( ) ( ) - : I ; III Vk V Sk, G S. - - V Sk, G V (..4, ), G G V G, (.) S Vk []. (.), (.) -, G G G. F V V
, [8, ]., - ( D μk T q ), B. (.6) (.9) x ( ),, - x : α G ( N ) exp F k T B, (.3) G qϕ ( ) α N F exp, (.4) kbt ϕ α G q F, (.5) T ( N ) exp kb ΔG G qϕ m α F, (.6) ( M m ) S S exp kbt ϕ Δ α q G m S, (.7) T ( M m ) F exp kb ΔG G G qϕ K α F, (.8) ( K K ) S t S exp kbt
N Δ GF GV GV, α. N << N α /. m, m K (.) (.)., - m m,, [8]. [8] -. ϕ S, - (.5). - ϕs ( M, << N; m, m << ). - ES : d ϕ q dx εε ( ) (.9) x, dϕ σ σ i dx εε dϕ x, ϕ, dx ε ; ε. (.4) (.5) K
qϕ qϕ exp, kbt exp kbt (.9). d ϕ q qϕ ϕ q exp exp. dx εε kbt kbt : ψ qϕ/ kbt, ξ x / D. / D [ εε kbt /(q )]. - : d ψ sh ψ. dξ. ( ψ) sh ψ d dξ dψ dξ dψ dξ dψ d ψ dξ dξ ( ψ) dψ f C, f, C. d d ψ ξ sh ψ dψ C chψ C., C. [] dψ dξ [ ( chψ ) ] sh ψ, (.) : 3
k ψ σ σ BT E sh S i K S, (.) q εε D ψ S qϕs / kbt - k B T. (.), - x exp k ϕ BT D l q x exp D ϕ q th S 4kBT. ϕ q th S 4kBT (.) (.6), (.7) (.8) m,m K,, m, m << M. - : ψ sh S / 8 q a / g exp 4 F g γ ψ exp S K sh S 4M ( β ψ ) th S, (.) q / εε k T ; q B a M / N ; g F g S GF GS k B T. β γ - : β g S Δg F l, Δg l γ g F t. Δ g ΔG k T, g G k T. F F / B t t / B (.). - ( σ >> σ ),. : i K 4
ψ sh / S q gf gs exp sh( β ψs ). (.3) / 8 a (.3), ψ S, β., - -. ψ S >> (.3) - : ψ ψ S S g V g g / 3 V q l, ψ > 3 / S a ( g g ) 4 S q l, ψ < 3 3 / S 3 a F V, (.4) 8. (.5) (.4) (.5) a 5, ε T 4 k B T. - ψs. (.4) (.5) ϕs GF G V, V G ( G ) V G S.,,, σ (.), ψ sh S K 4M / 8 / q g F a exp, i << σ γ ψ th 4 S K.. (.6) - ( K >> K) ( K >> K) >>, (.6) ( th[ ( ψs ) ] ψ S γ ): 5
g K ψ ± F q S l. (.7) / 3 am, σ K ψs σ K < >. - -., -, ψs., [3-5], - Gi G V - G N i G () exp, kbt () N exp V kbt. qϕ S qϕ () exp, kbt () exp S kbt. - G i, G V, GF qϕ S : G G G F Gi GV, q V ϕ i S kbt l, G G F G i qϕs kbt l, G F V qϕs kbt l. (.8) ψ S >>, k B T, - (.4) (.8), GV G Gi, G V V GV...(.9) 3 3 <<, (.5) (.8), : ψ S 6
( GV GS ) Gi GF, 3 G V ( GV GS ). (.3) 3 (.9) G i, - GV - G V. GV..5. K : 7, 4, 3, 4 3, 5 4, 6 5..5 -, (.), K. (.), β ψs >>, ψ >> γ S, th[ ( ψs ) ] 7 γ. (.) G S.
G, 6 [3]. 8 F G i AgBr GV G V. GV, 55,, AgBr [6, 7, 4]. K G V ϕs -, 3 K. K ~ -. - T - ϕs. T - ϕs -., σ - / 4M ( a / q ), K < ϕs. -, (.7), -. [5] - -. (.7) - () g l ( K ~ ) ( G, ), F ( G, 5 [4]). F
.3. - : G F H TS. F H F, S F -., - [3]. -, -. [54]: F ε ( / ) hν, h,,... j. ν j Z ε exp ν j ( / ) h j exp kbt kbt hν j ν h exp kbt exp kbt j exp( hν j / kbt ) hν j sh exp( / ) hν j kbt kbt - hν j Z sh, kbt j. 9
S k B ( T l Z) k T B j hν j hν j ν h j cth l sh. (.3) kbt kbt kbt h ν j << kbt, (.8) - S k [ l( hν / k T ]. B j, -,,.. ( ) ν j j * l( ν j / ν j ) kb l ( ν j / ν S S S k ), F * B, j B j * ν j * j, -. -. (.3)..4. C. -,. -. -.. - [],. - 3
(, ) -,, -.,.,. ( ) -, -... -, -. d ( rϕ) r dr ρ εε, (.3) ρ, : q qϕ ϕ q ρ q( ) exp exp. (.33) εε kbt kbt,. (.3) (.33) - d ( rϕ) q qϕ sh. (.34) r dr εε kbt 3
, -,.. qϕ/ kb T <<. qϕ qϕ sh kbt, kbt (.34) d ( rϕ) rϕ, (.35) dξ r r ξ, εε k T r B. q ξ ; r y rϕ, (.35). d y y dξ. (.36) (.36) (.37) (.36),, y exp(λξ). (.37) λ, λ ±., (.36) y Aexp( ξ) Bexp( ξ). exp( r / r r r A ) exp( / ) ϕ B, r r 3
A B., A. exp( r / r ) ϕ B. (.38) r B : q ρdv, (.39) V q ; dv, - q ρ ϕ. (.4) k T B dv r si θdr dϑdθ. (.4), (.38), (.39), (.4) (.4),, π π q q B siθdθ dϑ exp( r / r ) rdr, (.4) k T B a a,. (.4), q exp( a / r ) B. 4πεε r a / B,,. B (.38), q exp( a / r ) exp( r / r ) ϕ. (.43) 4πεε a / r r 33
a / r <<. exp( a / r ) a / r, (.43) q exp( r / r ) ϕ. (.44) 4πεε r, - q exp( a / r ) exp( r / r ) q ϕ e. (.45) 4πεε a / r r πεε r 4, r a (.45),, q ϕ e( a). (.46) 4πεε r a / r -,, -.,,. - q Δ H qϕ( a). 8πεε r ( a / r ), [, 55] H q DH 4 r (, (.47) πεε a / r ).. H F 34
q exp. (.48) 4πεεr kbt ( a / r ) (.47) - f i : a / r,.. a / r <<., f f q fi exp. (.49) 4πεεr kbt ( a / r ),. -,, 33 []. 35
.. ω ( ) M - [56]., - NaCl.. -, Q, - R, (..)..... x, - Q R, x i -. N i {, N } ( i 36. - V x, x )., x
V ( x, xi ). V ( x, xim), x im x. V x, x ).., - ( im ΔV -. ( ) - ΔV ω νexp, (.) kbt exp( ΔV / k B T ), ν -. -, -. E v, M v M v E i V ( x, xi ), (.) i v i, x x i. ω, Q R, -, a / i i ω i v d v d v....... - d vi dxiw ( x a /, v, xi, vi ) i, (.3) dx d v dx W ( x, v, x, v ) i i i Π d v dx i ; W ( x, v, x i, vi ), - i i i 37
. vi M v / M v / V ( x, xi exp i k T B i ). (.4) (.3) -. v ω πm V ( x a /, xi )... exp Π dxi kbt i. (.5) V ( x, xi )... exp dxπ dxi kbt i T <<., k B (.5) -. V -, Q : uα u β V V ( x, xi ) V ( Q) u αuβ, (.6) α, β uα uβ Q. - V u u α β A,. A(λ) u (λ) - A. (D ) - (.5) u (λ). - 38 Q Q
D V ( Q) A( λ) exp... exp u ( λ) Π du( λ) kbt λ kbt λ V ( Q) 3N πk exp Π B k BT λ A( λ) T / (.7),. (.7) exp( y ) dy π. 3N F V ( S) 3N πk exp Π B k BT k B( k). T /, (.8) F (.5), V (S). x a /, - B 3N -. ω M 3N / Π A( λ) λ ΔV exp. (.9) N Π k T B( k) B k 3 3N Π A( λ) λ C 3N Π B( k) k. -, 39
ΔV ω νexp, (.) kbt ν C / M., ν ~ / M. (.9) - V. - p, pv. H m, Δ V. - H ω ν exp m. (.) kbt (.9) H TS. -,, ν, (.9)., ν : ν ν B Π A( λ) Π B( k) 3N λ 3N k / m m, (.) B ν (.3) M ( ) - Q..,. - (.) S ν ν m exp, (.4) kb 4
S k m B 3N l A( λ) l B λ l B( k. (.5) 3N ) k (.5), - ( )., : G ω ν m exp, (.6) kbt G m H TS. m m,,..., - T >,. - - :,. -. - ν -, -,,. [9, 6, 55]: G S H ω ν exp m νexp m exp m, kbt kb kbt 4
G m ( ); S m H ( W H S T ). m m m - E qex (..).,,,, qer cosθ/. r /,, ; θ. : G θ θ Δω ν m qer cos G m qer cos exp exp kbt kbt cosθ ωsh qre. kbt... x -, qae << k T, -, r cos θ a, : B 4
qae Δ ω ω, k T B : u Δωa qea u ω. k T, - : μ u E 43 B qa ω qa ν S exp kbt kbt k m B H exp m. kbt,, : γ q μ ( b), b μ μ. - []: zq. μ zq, D k T. AgBr - - : C, B Cd. (.7)
: C, / C C. (.8), (.7) (.8): / C C. (.9) - - : γ i qμ( b ), γ i γ : 44 / ( b ) ( b ) γ i b C C. (.) γ ( b)..3. AgBr CdBr., -., b: ( γ ) d i γ. dc CCmi
..3. AgBr CdBr T 75 (), (), 5 (3), 5 (4), 75 (5), 3 (6), 35 o C (7) [9] (.) C, - - C mi ( b ), b γ γ i mi b. b -,..3. -, Ag i 45 [6, 4]. Vk
, -. -, ( - ), -., - - f m - [7]. : -,, - f m,,, [7-]., D, - Ag i..3.. ( ),. -, - R. : AgBr, - []. -, ( [ Ag ]) - i 46
( [ V ]) - k : qϕ qϕ exp, kbt exp kbt, -., K NO3, [K qϕ ] M exp kbt, qϕ [NO 3 ] M exp, kbt M K NO3. -,,, : d x dx ( xψ) sh ψ, (.) ψ qϕ kbt, x r / D r R x r / M r R. M / ( εm ε kbt / q M ). (.). dψ x,, dx, ψ, R x, ψ ψs, D R x, ψ ψs M 47
: x, ψ., AgBr. (.) M ( sh ψ ψ ). (.) : d x dx ( xψ) ψ. (.) (.) []: ( r D ) ( R ) Rsh ψ ψs, r R, (.3) rsh ψ ψ (.3), r ψ S S D R r R exp, r R. (.4) r M : R / ψ D ψs. sh( R / ) D - : Q Q M Q, (.5) S QS σss, σ S - -, S 4πR ; Q - ; Q M,. AgBr : Q R 4 π ρ r dr 8 π q ψ r dr, (.6) R 48
ρ q( ) qψ., ( ), ( ). ψ 49 ψ (.6) ψ (.3), : R R Q 8πqψS RD cth. (.7) D D, R <<, (.7) -, ( R ) V S cth : D D Q ρv V, (.8) ρ qψ ; 3 V 4πR /3.,, : ρ M Q M R 4 π ρm r dr 8 πqm ψ r dr, (.9) q ψ. M ψ (.4) (.9),, : ρ ψ. V q M M S Q M M M R ρ V R M R S, (.3) (.5), : AgBr,.. :
Q Q S. - : σs S S ψ S, ρ V σ S. (.3) q V V,, -, -, S / V., - AgBr,, -, : Δγ γ i ρ μ V γ σs q S V, μ Ag i ; γ q μ AgBr ψ S.. : Q Q. M S : ψ S q M S M σ R ( R ) M, ρ V M σ S R ( R ) M. (.3) (.3) ρv ~ R R M << ρv R R M >>. γ i ~ ρv,, (.3) 5
[7]., - AgBr -..3.. [39]. a a a, a a h, a, h.,. z (..4). : d ψ d ψ d ψ dx dy dz sh ψ. (.33) D (.33) : dψ dx dψ dy dψ dz, (,,) ψ ψ. (.34) (.33)., ψ sh ψ ψ <<, ψ d dx ψ d dy d ψ ψ. (.35) dz (.35). - D ψ X ( x) Y ( y) Z( z). (.36) 5
..4. (.36) (.35) X Y Z, - X d dx X d Y d Z. (.37) Y Z dy dz D (.37) x, y z., (.37) 5
d dx X α D X, d Y dy d Z dz β D γ D Y, (.38) Z. (.37) (.38) α, β, γ - α β γ. (.39) - α, β, γ. (.38) X A exp( αx / D ) A exp( αx / D ), Y B exp( βx / D ) B exp( βx / D ), (.4) Z C exp( γx / D ) C exp( γx / D ). (.34), A A, B B, C C., (.4) (.36), ψ αx βy γz,. (.4) ( x y, z) ψ ch ch ch D D D α, β γ,. α β γ /3. 53
ψ x y z,. (.4) ( x y, z) ψ ch ch ch / / 3 / 3 D 3 D 3 D. z : α β, α γ. / 4 (..5). - OO AB : OO AB. O (, y, z). O : y, z. y, z y z OO, y a h z h. (.43)..5. 54
OO, OO, ( AB O B) a O h B, ah OO. a h (.43), - O : y acos η, z hsi η. (.44) O - x, y, z. zy x η, y (..6)...6. : - 55
x x, y y cosη z si η, z y si η z cosη (.45) (.45) -, (.4) O αx α ψ ψ ch ch D D ( y cosη siη) z γ ch ( y si η z cosη). (.46) D dψ dψ,. dx dz d dx,, sh( ). - ψ x z (.46). : α αsi ηth D γ ( y cosη z siη) γcosηth ( y siη z cosη) : α γ α tg ηth y γ th z. D D, (.44) y z,, - α γ : tg η a / h. αa α tgηth cos D γh η γ th si D D η,, 56
ψ,, - : dv ρ qψ. σ S S ds ρdv, (.47) V. : V a x dv q dx y ρ ψ ch dy 3 D z ch 3 ch dz D 3D a a q ψ 3D sh 3. D : ψ σs ds 3σ S a, σ S cost. S 3 / σsa 3 3 q D sh 3 a / : 3 D a. h a a x y γz αx αy ρdv qψ ch ch dx ch dy dz D D D V h a z q D α γ h z dz hd ψ sh ( ) ch, α D 57
a( h z) a x, h a( h z) a y. h : S σ σ a AB ah SdS σs S. cosη ψ α γahσ S. 3 qi cosη V D I V A A γ h sh αa / γh αa / γh γ D, γh α a γh α A sh sh, D a A sh sh D D D. -,, : Δγ γ i σs q S V, ( ψ S << ). ψ S >>, >>,, (.46), - : S γi μ σ S. (.48) V, γ i γ i ( S / V ): 58
Δγi μ σ Δ( S / V ) S (.49) AgBr. (.4). -, ψ S 3 ( a, a, a) ψ ch / 3 D ψ S, a, ( a a,) ψ ch / 3 D ψ S a αa ( a, a,) ψ ch D ( ) γ η αacos η hsi, acos η, hsi η ψ ch ch D D ψ., - AgBr,. -, ( - ) AgBr [9]..3.3., - ( - ). 59
- ~ ψ >> [3]. D : d ϕ q dx εε ( ) :, d ψ sh ψ. (.5) dξ (.5). - ξ ξ ( ξ D ),, d ψ dξ, ψ ψ, ψ -. ξ ψ ψs. (.5) - [4]: dψ dξ [ ( chψ chψ )], (.5) / σ ± [ ( chψ )] S S chψ, (.5) σ σ S, σ D qd D. - (.5). ξ >> ( ch ψ ) (.5) [, 4] : ψ expξ th 4 ψ l ψ expξ th 4 S S. 6
μ >> μ >> D : qμ μ ( ) γ q i dx dξ ξ. (.53) ξ μ (.53), : γ γ ξ ψ exp 6 S (.54), [exp( ψ / ) ] > S ξ V k. -. (.54). -., AgBr, qϕ S, 6 [5], - ξ < 5 [5]. >> ξ, - (.37),. -,. -, [6]. (.5), ψ ψ / [ (chψ chψ )] dψ ( chψ ) F ( α, k) ξ ξ, (.55) / F( α, k), - : / chψ chψ α arcsi ch, k. ψ ch ψ /
(.38) ( ) exp ψ >> exp. ψ ψ.. (.55), -, - : y exp ψ, expψ y : y y arctg y ( ξ ξ) y, (.56). (.56) / ( ξ ξ) y y y sec, (.57) : ξ ψ ψ ( ξ l sec ξ) y /. (.58) (.56) - ys S y arctg y S / exp ψ. ( y S y ) / ψ : ξ y. (.59) / >> 6
/ ( ) π arctg y. S y,, : y π ξ, π ψ l. (.6) ξ ξ (.59) y ys...7 - (.59). ψ -...7, γ γ i ξ 5 ( y y ) / > S ξ >, 5 ψ -. y π/ ξ ), (.57) : ( π πξ ψ l csc. ξ ξ - V. γ γ i ξ ξ y ydξ ξ ξ sec / [( ξ ξ) y ] dξ. 63
, (.59) : tg ξ γ γ i / y y y ( ys y ξ S / ) /,. (.6)..7. 3 4 ξ (), (), (3), y S ψ 5 (5), ( π / ξ ) (5), (.54) / S ξ (.6), y S >> y >> y / >>, -. y S >> y >> : E qϕ ξ E S l a E kbt, (.6) qϕ S., (.6), 64
. (.6) : μ σ γ S i, (.63),, (.5), y σ / σ ). S y, ( S D qϕ k T l[ y ( σ / σ ) ], (.64) S B S D,,. qϕs y > σ / σ ) - ( S D.3.4. [8, ] AgBr (AgBr ()) ( ) (AgBr ()) ( ), l ξ (..8). (.6) (.5) AgBr () AgBr () qϕs - - σ q.. S S / qϕs S - : Ea 65
/ 3 a G V 48,4 W exp, kbt μ exp, T kbt, G 8 a 5,7748 [9];,6 6, k T, F 8 B AgBr; W, 5 [3]...8. - AgBr : AgBr(), T 98, AgBr(), T 88, - AgBr. -..8, - (.6), : β k B T. β, 57 AgBr (),9 AgBr (). β ~ 3, 3 V ~ ξ,,...9 (.59) qϕs AgBr () AgBr (). 66
..9 (, ), qϕ AgBr -. ( - ) qδϕ q( ϕ ϕ ) 3, 4). S qϕ S ( - qϕs - AgBr AgBr T,K D, 93 88 93 98,34,8,34, qϕ S,,78 [7],3 [3],35 [8],74,7 [7] ( ),6 [3],6 [5] S,,9 3,47 [4],3 5, [4] 93,34,,46 -,,, - [7]: πf ε ε ε Φ ε ε γ m [ M ( M )] i. Φ 67
ε M, Φ...9. qϕ (, ) q Δϕ (3, 4) AgBr., 3 AgBr(),, 4 AgBr().. - AgBr. ε 3, ε M,7 [7], Φ, 7 [8], AgBr (.6) AgBr (). qϕs f m AgBr ()... AgBr. [3], - [8]: AgBr() T 88, AgBr(), T 98 68
.., - - AgBr []., - [7]., [3], ( ) ( 4) AgBr -, ( (.63)) (..) - Br. (.59) (.6) qϕ qϕs -.... - AgBr.,9 () (). [7]:,, 3,3 (3) 69 S
..,. - S <. qϕs -...,5 (),, (),3 (3) ( ) AgBr, [7],.., - S / V.?.,, - [9, 3]., - S / V -,..,., - 7
S / V - [9, 3]. AgBr, - [39, 4]. AgBr - [9, 3]., - AgBr Δψ ψ S ψ <. - ψ : γ γ < > y., i expψ...., ( 3) γ i 6,45 7 γ i. γ 55,, γ,7 8. q ϕ S q ϕ k B 7 ( γ γ ) T l,,,3 [3]. -,, AgBr d, 3, - dy S. 6, -,. -,. -, AgBr - i.
., qϕs S -.,. -.. -,. ΔW q( ϕ ϕ) -., - [9-3]. S 7
3 3.. -,. -, -, : G k r i V k Ag, (I) S Ag N V i Agi 73 V Sk 3 Sk Ag Ag S Vk Ag, (II) 4, (III) 5 S Sk 6 AgSa V Sk 7 8, (IV) AgSa K K, (V) Ag S ; N i - ; ; ; Sa Ag Ag S k V Sk ; ; «/»; / K / K -
«/». (I) - ; (II) (III) ; (IV) - ; (V) - / K., -. -. - - T T - - : G, k r i t d ϕ q d x εε ji G k r x ( ), i, (3.), (3.) -. j i : d, dϕ j, D, ± μ,,. (3.3) dx dx D, Ag i V k, μ k T D i B i, i,. q 74
Ag i Vk AgBr [9]: 48,4,5 exp μ, T kbt μ 6,34 exp T kbt. -, /( ). Ag i Vk Ag i. Vk - -. - - / G ( T ( ) ) N N exp F, ( x,) ( x,) kbt T ; GF ( T ),6 6, 8kBT., N ; N ; G F -. N N, N N, N - 3, N a. a. (3.), (3.). x : dϕ( ) j ( ) j( ),. (3.4) dx 75
, (I) (II), ( x ) : j ) kmn() k () ( m, (3.5) j ( M, (3.6) ) k3mn() k4() M S Ag ; N ( ) - ; N ( ) ; k - ; k - ; k 3 - ; k 4 -., (II) (V), : dm dt dm dt dk dt k5mm k6m m k 7 m ( K K) k8k kmn ) k ( ) 76, (3.7) ( m k3 mn( ) k4() M k ( k K, (3.8) 5 MM k6mm k7m K K) k7m K K ) ( k K. (3.9) 8 M ; k 5 - ; k 6 ; k7 8
; k 8.. -, G G k N N F r exp kbt. -. - Ag i Ag i Vk [5]: - k qμ r. (3.) εε [5], Ag i, - k V, μ >> μ. - r -., - V (r). Ag i,, dv d ( r) J ( r) S D μ S, (3.) dr dr 77
, ( ) Ag i V (r), S - r S 4πr. (3.) (3.) (3.) μ D, - J qd dv d ( r) πr ( r) 4πr D k T dr dr 4 B x r, d ( r) J d qv ( r). (3.3) dx 4πD dx kbt (3.3) qv ( r) C( r)exp. (3.4) kbt (3.4) (3.3), J qv C( r) ( ) exp dx, 4πD kbt 78 x Ag i V (r) x J qv qv ( r) ( ) π exp dx exp, (3.5) 4 D kbt kbt ( )., -, r. r., -, -
, Ag i ) - ( r. J - J β (, (3.6) r ) β. - Ag i r / r J qv qv ( r ) r ) ( ) π exp dx exp. (3.7) 4 D kbt kbt ( (3.6) (3.7), qv ( r β ) ( ) exp kbt J. (3.8) / r β qv r qv dx D kbt kbt ( ) exp exp 4π (3.8), :. (3.8).,, qv ( r ) J kr ( ), kr β exp. (3.9) kbt, k r, - Ag i, - V (r). kr -, β.. (3.8).,, 79
J kr (, ) 4πD k r. (3.) / r qv exp kbt, ( ) (3.9) (3.) -. - : Ag i V k,,, Ag i,. D ( μ ), - ( β ).,, -,. k r β, D ( μ ). Ag i Vk q V. 4πεε r (3.) r,, exp q 4πεεr k B <<. T k r 8
/ r qv exp dx kbt exp q x 4πεε k 8 4πεεk T dx B. T q (3.), (3.) -. (3.), B Ag i V k, ( ). - k σv, r σ 4πr, v. - r, q kbt. 4πεε r r, ( ),. k r 4πr μ E, q E 4πεε r r, -. E -, (3.). (3.) -
, r -, -,.. [5]., (3.7) (3.9), - - : MN () K, m mn () K34, M K k / k., ij i j i << N i. ( - ) K F ( K K N. K F ) () 34 G N exp F kbt., G F GV GV, - G K V G exp, kbt K V 34 exp. (3.) kbt,, m << M, i m m i G K M M S 56 exp kbt. 8
G K S 56 exp. (3.) kbt - K78mK K K, K. (3.3) K78m K78m, ( - ), ( mk / M )exp( G / k T ) K t B. ( m K / M )exp( G / k T ) K,, Ag i ( k ), t G K t 78 exp. (3.4) M kbt B V k ( k 4 ), - ω iωm ( Δ β ) Sa Ag ( k 7 ) - : z k, qμ z k 4, qμ 6 S z k, 3qμ k 7 S, (3.5) εε εε εε z qμ εε z 3/ 4, z / 4, z 3 /, - ; μ S Ag Sa [3]. 83
3.., - -. -,.,, -, -. -. Δ, Δ, E ΔE. (3.) (3.), Δ t Δ t Δ D [( Δ) ] ΔE G k ( )( r Δ Δ ) D x Δ x μ x μ x [( Δ) ] ΔE, (3.6) G k r Δ )( Δ ), (3.7) ( dδe q ( Δ d x εε ). (3.8) - [36]. - Δ α, Δ β, 84
α, β <<. (3.6) (3.8). [8, 37] dα d α D ωm ( α β) ωr ( α β), (3.9) dt dx dβ d β D ωm ( α β) ωr ( α β), (3.3) dt dx dδe q dx εε ( α β), (3.3) ωm τ ; ω r k r. i M i εε τm i, i, q μi. (3.9), (3.3) : α α exp ( ikx iωt), β ( ikx iωt) k β exp, (3.3) k πl / ( l ±, ±,...) ; ω ( - ), -, -. α β (3.3) (3.9) (3.3), - ω : ( a a ) b b a a k ω i ω., (3.33) : ωm ω k D r, a ωm ω k D r a, 85
b ω ( ω ω ), b ω ( ω ω ). M M r r M r (3.3) ω, / a a a a i ± b b. (3.34) - AgBr - : ωr τ M. b b, (3.33) - : ω i( ω ω k D), ω i ωm k D ). (3.35) M M ( > D : (3.5) ω iωm, ω iω, (3.36) M, - -. -, (3.33) μ >> μ : ω iωm, ω ik D. (3.37). - -., 86
, - : d D d μ E D μe. (3.38) dx dx j,, D D μ μ d dx E (3.38). j μd μd d. μ μ dx j μd μ D D a, μ μ. -, AgBr μ >> μ D μ k T q, i i B / μ D μ D μ D a. D D D μ μ μ,, -,,, - :, - τ M,, τa (k D) k. 87
Ag i ( τ ) V k ( τ ). [53]: E () d () a kmn() km () dt d () D μ () E() a[ G kr() () ], (3.39) dx d () a k3mn() k4( ) M dt d () D μ() E() a[ G kr () () ], (3.4) dx - ; a. (3.9) (3.3), - - : a τ, k m a τ. (3.4) k M 4 Ag Sa ( τ S) V Sk ( τ S ). (3.7) (3.8), [ k6m k7 ( K K] τs, (3.4) [ k () k3n() k6m ] τs. (3.43),, (3.37), (3.4) (3.43),, τ M, τ a << τ, τ, 88
τ S, τ S, - -. - :, t) (, t) ( / G N N exp F, (3.44) ( ) k T B -. 3.3. - de q ( ) (3.45) dx εε E ( )., - - [33]. (3.45) - - [34]. - [35]. - 89
ϕ( x ) ϕ( ) Edx ϕ( ) (, ϕ (x) - x ). - : x < i > dx i, i,. -, -. - -,, - Δ T T T.. 3. 3.5. AgBr G G, k, - r.,,, - -., -,.. G, E.,, -, - 9
. 3.. ρ E 3 35 ( ) 35 3 ( ) : 4 ( G, k ) r 9
ρ q ) (. 3. ), - (. -,.. Vk Ag i. -. 3.. - 3 35 (, 3), 3 35 (, 4) 35 3 (, 3 ), 4 3 (, 4 ): 4.,, G, k r Ag i, -, 9
. - (. 3. ).. 3. -,.. 3. (,, ), -,,.. - : q S () t ΔT ϕ ~., t m, - qϕ S (t), - t m / D. - qϕs m,,, qϕs m - (. 3.3). -. : ( x) de q d d dx, dt εε dt dt x, (3.) - x, : 93
d dx dϕ q dt εε [ j ( x) j ( x) ].. 3.3. qϕsm 3 35 (), 3 4 () 35 3 ( ), 4 3 ( ): 4 ( G, k ) r dϕ S / dt,, j j. - (3.3),, x : qϕ Sm D d Dd. μ μ. Δ. μ >> μ : 94
Dd Dd μ μ D dδ μ Δ ( D D ) d d kbt ( μ μ), () q ϕ l Sm kbt. (3.46) (, tm), qϕs m,. -, (, tm ). (3.46) (), : E () T q F Δ ϕ Sm, (3.47) T E F () -. AgBr EF ( ), 6. - (3.47) -,. 3.3.. 3.4 - ( ΔT > ) ( ΔT < ) - (, ') ( -, ')., : - τm 95 τ D, -.,,, - qϕs -,, -.
.. 3.4. Ag i (, 3) V k (, 4) 3 35 Ag i (, 3 ) V k (,4 ) 35 3 : 4 (,, G, k ) r -, -., -, -.,, -,,.. 3.5, 3.5, 96
l D ( τ D ). M / / ΔT > ΔT <.,, - : x >> D -., t) ( ), - : dy y, dτ D ( t y ( t) /, τ ω t M. -. ΔT > ( y ) - : > < y y th τ l. (3.48) y ΔT < ( y ) : y y cth τ l, (3.49) y y /., (. 3.), (. 3.5, 3, 4 3', 4'). 97
. 3.5. ρ E 3 35 ( ) 35 3 ( ) 4 ΔT > Δ T ( 3, 4. 3.). tm τ M. (3.36) (, t ) (3.48), : m - - 98
/ exp( ωm t ) m q ϕsm kbt l, (3.5) / exp( ωm t ) m, >>, (3.4) : ± exp( ωm t ) << m, qϕ k T exp( ω t ), k T. Sm B M m 7 qϕsm.. ΔT < qϕ ~ ΔT ( 3', 4'. 3.)., T Δ T,, : ΔT qϕ Sm, 5,. T Sm B tm < τ M T T. - t m. - > D., -., 99
qϕsm -,.
4 4.. -,, [, 6,, 4]. -. - -, - ϕs -. [6], - - (,, - ).. [6],.,. MX []. [4]. Δ G :
Δ G G, G, G -. -,. -,. - ΔG : N! ΔG G G qϕ( ) kbt l ( N )! G N! N dx mg S mgs qϕs ( m m ) ( )!! M! M! k B T l ( ) ( ), (4.) M m! m! M m! m!, m (, m ) ( ) ; G, G S ( G, G S ) - ( ) ; N, M,, ;. ΔG,., [4].,, m, m :
3 ( )dx m m. (4.), (4.) : { ( ) ( ) ( ) [ ϕ Δ B N N N N T k q G G G l l l ]} dx N N l ) )l( ( S S G m m G ( ) m m q S ϕ ( ) ( ) [ l l l m m m M m M M M k B T l ) )l( ( m m m M m M. G - (4.) ( )dx m m δ δ δ δ : δ δ Δ δ B B N T k G N T k G G l l ( ) ( ) ϕ ϕ δ δ dx m M m T k G q B S S l δ ) )( ( l m M m M m m T k G G m B S S. -, :, δ δδ P T G,, δ δδ P T G,, δ δδ P T m G.
4 - : ϕ ϕ T k q q G G m M N m B S S exp ) )( (, (4.3) T k G G N N B exp ) )( (, (4.4) T k G G m M m M m m B S S exp ) )( (. (4.5) (4.3) (4.5) x : ϕ,,, : ( ) T k G N B V exp, (4.6) ( ) ϕ T k q G N B V exp, (4.7) ( ) ϕ T k q G N B V exp, (4.8) ( ) ϕ T k q G G G m M m B S S exp, (4.9) ( ) ϕ T k q G G G m M m B S S exp, (4.) G G G V - x.
ϕs - (4.), : d ϕ q dx εε ( ), (4.6) (4.) - : N >>,, M >> m, m., (4.3) (4.4) : qϕ qϕ exp, kbt exp kbt.. E S,, x, dϕ q ϕ ϕs, ( m m) dx εε dϕ x, ϕ, dx D E S kbt ψs q sh ( m m), (4.) q εε D / kbt / q ) ( εε ; ψ qϕ k T T. - S S / B (4.) (4.9), (4.) m m,, M >> m, m. : k B 5
/ sh ψ S q g / exp V gs gs a gs gs g g sh ψ. (4.) S q q /( εεkbt ) ; a M / N ; g V, g S, g S, g, g G V, G S, G S, G, G k B T. G G, ; GS G S, -.,, G : - GV GS. : G G V G, G G V GS. (4.3) S. 4.. [], - ( ), -,. : GS G S GS. (4.4) : G kr V a V k, (I) S S 6
V V x a S X Va XS 3 x k S M Vk MS 4, (II), (III) (I) -. - Va S Vk S, - ; G - Va S k r Vk S x X Va S Va. (II) (III) - x M, V k S Vk.. - Va Vk. 4.. - ( i, ): I, II (4.) (4.3) (4.4) : 7
/ sh ψ S q g V gv gs gv g exp V sh ψs. (4.5) a 4 (4.5), ψ S -, g V gv.,, - -.,. (4.5), - -. ψ S >>. ψ S - : ψ S g g < < ψ V V S g V g V gs q l. (4.6) 6 3 a ψ S >. -. ψ S <<, - : g g > > ψ V V S 8
ψ S g V g V gs q l. (4.7) 6 3 a, - -. (4.6) (4.7) a ~ 5 ε T 4 k B T. GV GV - E S : G G V GV qaes, V GV qaes. []. 8, ES > kbt qa gv g V []. (4.) E S, E S g V, a ψ g sh S V gv, D a ψ g sh S V gv, (4.8) D g V, k B T,.,. -,, ( ψ S < ),,, 9
. ( g V gv ) : E S max k T ( g g B V V ). qa g V, gv (4.8) : ψ S ψ ψ 4 a q S ± sh S l, (4.9) 3D 3 a ψ S gv g V gv g g 6 V g 6 S, S, ψ ψ S S > < (4.9) () ψ S > ψ S ( ) <. -., -, - ψ S. [4], NaCl (, 6,k B T ) G V, q, 6., ϕ S G V GV GV GS (4.7) -, GV Cl -., k B T GS, 9.. 4. (4.9) NaCl
qϕ S, 6. T ~ 75 NaCl, -.. 4.. NaCl ( ) -, >> D. [43]: m dx Δ, N Δ., ) dx ( dx dψ dx, sh( ψ / ) -, :
Δ ψ exp ξ exp S g V, (4.) ξ / D. (4.), / N << m / N << a.. 4.3. NaCl - ξ 4 () 45 (). 4.3 - NaCl ξ q,6. ξ 5 ϕ S < NaCl ξ., -. -.
4..,, PbCl PbBr, PbN 6,,, - [44, 45]. -. [5]. -,,. M (X ), [46]. [4]. - - Δ G : Δ G G, G, G -.,.,. ΔG : (N)! ΔG G G qϕ( ) kbt l (N )! G 3
N! dx mg S mgs qϕs ( m m ) ( N )!! (M )! M! k B T l ( ) ( ), (4.) M m! m! M m! m!, m (, m ) ( ) ; G, G S ( G, G S ) - ( ) ; N, N (M, M) - ( ) ;. ΔG, -. (4.) : m m ( )dx. (4.), (4.) : ΔG { G G qϕ( ) kbt[ N l(n) (N ) l( N ) l N l N ( N ) l( N ) l]} dx m G m G q S ( m m ) k B T[ M l(m ) (M m ) S S ϕ l( M m ) m l m M l M ( M m ) l( M m ) m lm]. G, (4.) 4
5 ( )dx m m δ δ δ δ, : δ δ Δ δ B B N T k G N T k G G l l ( ) ( ) ϕ ϕ δ δ dx m M m T k G q B S S l δ l l m M m T k G m M m T k G m B S B S. -. - : ϕ ϕ T k q G G m M N m B S S ) ( exp ) ( ) (, (4.3) T k G G N N B exp ) ( ) (, (4.4) T k G G m M m M m m B S S exp ) ( ) (. (4 5) -.. 4.. - ( ), -,., :
G G S S GS. 3 [47]., - -. G G - : G G V GS, G G V GS, GV G V -. (4.3) (4.5) : ϕ,,, : G exp, (4.6) T ( N ) V 3kB G qϕ ( ) N V / 3 exp, (4.7) kbt G qϕ ( ) N V / 3 exp, (4.8) kbt G / 3 G qϕ m, (4.9) ( M m ) V V S exp kbt G G qϕ ( ) m M m V / 3 V exp S, (4.3) kbt 6
G V G G. - - (4.), - : d ϕ q ( ). (4.3) dx εε - : x, dϕ ϕ ϕs, ϕ ϕ,, (4.3) dx ϕ. -, (4.6) (4.3) : N >>, M >> m m.,,, (4.3) (4.4) : qϕ qϕ exp, kbt exp, (4.33) kbt (4.7) : d ψ expψ exp dξ 7 ( ψ). (4.34) (4.3) : dψ ± dξ [ expψ exp( ψ) expψ exp( ψ )] /. (4.35) (4.35) -. >> ψ, (4.35) [46]: D
/ 3 ( ξ ξ ) ψ l 3cth S, ψ > (4.36) ξs / 3 ( ξ ξ S ) ψ l 3th, ψ < (4.37) : ξ / / ( expψs ) 3 S l. / 3 / / ( expψs ) 3. 4.4. ξ ψ S 5 () ψ S 5 (). 4.4.4.5 - (4.36), (4.37) - - ψ S ± 5., ξ., -. 8
(4.35) ψ., ψ <<., - (4.35), - : ψ ψ ch[ 3( ξ ξ)], (4.39) ψ : ψ ψ S. ch( 3ξ ). 4.5. () () ξ ψ S 5 ( ) ψ S 5 ( ) 9
(4.39) : ψ ψs [ch( 3ξ) sh( 3ξ) th( 3ξ)], ξ (4.38)., ψ S >>. ψ S > ( ) exp ψ >> exp ψ,.. >>.. - (4.35) : dψ [ (expψ expψ) dξ, : / / / ψ. (4.4) y y arctg ( ξ ξ). (4.4) y (4.4) : y y / y sec ( ξ ξ), : ξ ψ ψ / y l sec ( ξ ξ). (4.4) (4.4) - : y arctg y S / y ξ / / ( y / ) >> S y. (4.43)
/ y π arctg S. y, ψs - - : y π, ξ ψ π l. / ξ, (4.4), : Δψ ψ S ψ y l sec ξ /. - ψ << exp( ) exp ψ,.. <<. (4.35) dψ dξ : y ( ψ ) ψ ψ [ exp( ψ) exp( ψ )] / { sec[ ( ξ ξ) ]}, l. (4.44) y exp. - : y ( ψ ) / y y arctg S, (4.45) y / S exp S. [( ys / y ) ] >> ψ - ψ l( π / ξ ). -
: Δ ψ l[sec( ξ y )].. 4.6.4.7 - (4.4), (4.44) - - ψ S ± 5. - ξ (4.43) (4.45) - ψ S 5 5 -., -. ψ S. 4.6. 4.7. 4.6. ξ ψ S 5 () ψ S 5 () ξ. 4.7. () () ξ ξ - ψ S 5 ( ) ψ S 5 ( )
- (4.). ψs, - [46]. -,. ψs,,.. >>. (4.4), : m dx. : ( t) i K m dx. i i, (4.4) ξ, : tg ξ m y / y y S / [ ( y y )] /. (4.46) D S : M m exp g V, ys N, g G k T., (4.4) : V V / B 3
y 4 S a exp g / ( y y ) V C S D, (4.47) a M / N. - y >> y. S / 5 y S C, ψ S g 5 V l a / D. (4.47). y S y Δy. (4.48) S Δ y S << y S. (4.48) (4.47), - ψ S ys y y Δ y S, y 4y 5 5 S ΔψS ψ l 5. (4.49)., -, -,, -.,,,, -, -,. -. < D ψs, -, -., 4
. < D -. - -. <<, ψs : - ΔψS ψ l3. (4.5), :,,, -,,, -. 4.3. -,,..,, M X ( ) - [46]: G kr V a V k, (I) S S 5
V x a S X Va XS x 3 Vk 4, (II) S Vk S M M. (III) (I) -. - Va S Vk S, - ; G - Va S k r Vk S x X Va S. (II) (III) - x M. Vk S X S M S - V a. V k, MX. :, m (, m ) ( ) ; N, N (M, M) ( ). -. - : N N, N N, m M M, m M M. 6
- : () t M m dx M m ( N )dx, (4.5) ( N ) () t M m dx M m ( N )dx, (4.5) m i, i ( N ) T,, T ; - T. (4.5) (4.5), ( t) T ( ) dx m m, (4.53) m m., (4.53) -. - - : i t j i, i,. (4.54) x j i, : d, dϕ j, D, ± μ,,, (4.55) dx dx 7
ϕ ; Di μ i kb T iq, μ i ( i, ) - Va V k. x,, ( ) j. Va V k x. - (4.5) (4.5), - (4.54), : i ( ) dm u[ N ( ) ] j( ), (4.56) dt dm u[ N ( ) ] j( ), (4.57) dt - ; u -. d( t) u. dt (4.56) (4.57),, b( t) b( t) I ( t) f ( x, t) dx, a( t) di( t) f ( x, t) db( t) da( t) dx f [ b( t), t) ] f [ a( t), t] dt. t dt dt a( t) K K. : i 8
( t) i K m dx, i,. i, : i dk dm u ( ) j( ). dt dt dk dm u( ) j( ). dt dt, -, : dk dt dk dt G r k m m, G krm m., - : dm dt ( ) j ( ) r G k m m u, (4.58) dm G krm m u( ) j( ) dt. (4.59), (4.56) (4.58) m, - : u r G k m m. N,, : 9
dm dt dm dt r ( ) G k m m k N m k M, (4.6) r 3 4 ( ) G k m m k N m k M. (4.6) (4.58), (4.6) (4.59), (4.6), - x : ( ) k m N ( u k M ) ( ) j, (4.6) ( ) k m N ( u k M ) ( ) j 3 4. (4.63) - : d ϕ q dx εε ( ). (4.64) x d ϕ dx. - (4.64) - (4.53), x : dϕ q dx εε ( m m ).. (, - NaCl) / 4, / 3/ 4,.,, -,. 3
, -. -, -. -.. - : ξ x / ( t), t t. : x ξ, t t ξ ξ ξ u t t ξ. t (4.54) : i ji t ξ ξ i u. (4.65) ξ [ ; ] [ ;]., -. -., -.,,. - (4.54), (4.64) -. 3
(4.54) (4.6),, - : Δ, Δ, E ΔE. (4.54) (4.64), Δ Δ D μ [( Δ )] ΔE, (4.65) t x x Δ Δ D μ [( Δ )] ΔE, (4.66) t x x dδe q d x εε ( Δ Δ ). (4.67) Δ α, Δ β, α, β <<. α, β <<. (4.65) (4.67). M i ω εε qμ i dα D dt dβ D dt d α ω dx M dδe q dx εε d β ω dx M ( α β) ( α β) ( α β), (4.68), (4.69), (4.7) - ( i, ). - (4.66) : 3
α α exp ( ikx iωt), β ( ikx iωt) k β exp, k πl / ( l ±, ±,...) ; ω ( - ), -, -. α β (4.68) (4.7), - ω : ω ( ω ) ω ω ω ω k k k i ω ω, (4.7) M k 3 M M ω M ωm ωm, ω k ωk ωk, ω ki Di., ωm >> ωk >> D -, - : ω ω 3ω ω ω i k k M k ωm ωk ω ( ωm ωk ) ω i., k ( μ >> μ), μ << μ, ω 3iω k, iωm ω. ω 3iω /, ω iωm. k : D 3k μ μ BT q μ μ a. 33
μ >> μ D a 3D, μ << μ D a 3D /., k Tμ, q D B D kbtμ. q, - :,,,. -,.. -. ( I III). - : N () Km, M N () K34m, M K k / k. ij i j ( i << N i, m i << M i, i, ) 3 3 N 4 KK34m m K V. (4.7) M -, (I), : K S m m. (4.73) 34
(4.73) (4.7), - x : 3 N KK34K S. (4.74) M 4 - : G S K S 3 G 4M exp S, (4.75) kbt. (4.6), (4.74) (4.75), : G K V G exp, kbt K V 34 exp, kbt, G S GS GS. -. (4.9) (4.3) - dϕ q dx εε ( m m ) >> D dψ ± dξ [ expψ exp( ψ) 3] / ψ S : ± [ expψs exp( ψs ) 3] /, 35
8 a q g exp V g V g V / 3 ψ s g sh V gv 3ψ S. (4.76). - σ <, ψ S >,, d ψ / dξ <.. σ >, < d ψ / dξ >.. ψ S,, (4.76), ψ S, g V gv.,, - -. (4.76), -. ψ S >>. ψs g V g V 3 > ψs > g ψ g V q S V l. (4.77) 5 6 5 a ψ S >> - V ks. ψs gv, (4.77) g V., - ψ S <<. ψs g g > 3 > ψ V V S 36
: ψ S g V g V q l, (4.78) 6 4 a VaS., ψ S g V, -. (4.77) (4.78), g V 8 a 5, ε T 3 K, - T k B g A gk k B T. - : () N exp( g ), () N exp( g ). (4.79) A K, : () exp( ψ ), () exp( ψ ). (4.8) S S (4.79) (4.8) g A, g K, gv ψ S : g V g A gk, ψ S ( gk g A). 3 -.,,. ψ S > [47]: D 37
m dx K Δ. N N, N m <<, << a ψ S >>, N : Δ ψ exp ξ exp S g V. 3 ψ S << : m K N dx Δ, Δ exp ξ N ( ψ ) exp V, - ( ψ S < ) -, - ( ψ S > ) -., -. S g 3. 38
4.4. - [45]. - (, - -...) [45] - :,, -. - - lg γ f ( T ). [45] -., -,, - [48].. 4.8, Cu. [45]. Cu -. [49],.. ( ) γ q μ b, i b μ μ - Cu. - - : 39
C, 4. 3. 4.8., - Cu 373 (), 43 () 448 (3): [45], [49] - : 3 C y y, (4.8) C Cu ; y. - : ( ) γ, i q μ b γ i γ : γ γ i b. (4.8) ( b) -,, b >>, C y <<.,, : 4
/. C V k (4.8), b >>, - : / Va γi C. (4.83) γ b C b d ( γ γ ) i dc C C m - : ( γ γ ) m 4C m, 9 i 7 b. 4 ( γ γ ) i m. 4.8 -, Cu., -. (4.8). C > Cm, (4.8) (4.83),. - - ( ): 4
,44 3,5 exp, kbt, 75 μ,7 exp k B T, ( ) μ, 4,4 exp, ( ). k B T. - >> D - [47]: γ i γ ( ) b b D {(expψ S ) 3 / [(exp( ψs ) exp( ψ S )) b 3 ]}. (4.84) - ϕ i μ μ : μ ϕ W W k q l B T l i, (4.85) 3 b 3 3 μ W i ; 4 μ i -. - - dγ dψ : i S ψ l b b 4b / S. (4.85), - qϕ,45, k T,. i 66 B
, q, 45 ( ). ϕ i. 4.9. ψs 3 () 4 (). 4.9 (4.84) - 3 4. -, ψs b >> >> D. ψs 43
5 5.., -,., -, : -, - [57-59]., [57, 59-6],,, -., - -. [63], -., [64, 65], - - - ( ). 44
d dx U q ( ), (5.) εε Agi - : i j i G kr, ( i, ), (5.) x x, - Vk ; G, k r ; U ; ε 3, ; ε ; q ; j i -. (5.) -, - [66]. G k r,, : G G k N N F r exp kbt, N ; N ; G F ; k B ; T. : N N, N N 45, -
N -.. Ag i Ag i : Vk k qμ r. εε ji, -,, d du D, dx dx j μ d du D, dx dx j μ D, μ, -. : μ k T D i B i. q, AgBr, : (, t) j (, t), i,. ji i (5.3).,.. 46
( x ) ( x,)., : U (, t) U, U (, t), G k r U,. - : E(, t) j εε, (5.4) t E (, t) x., -,. [3], AgBr -. AgHal, - Ag i V k,. (5.) (5.), - [33].. (5.) - [34]. - 47
3 3 %. ( ) dx, (5.5) - AgBr: G exp F kbt 3 a, 48,4 W μ exp T kbt 6 W μ exp T kbt /( ), /( ). G 8 a 5,7748 AgBr [9];,6 6, kbt [3]; W, 5, W, 34 F 8 Ag i Vk - 3. T 3 [3]. - -,75 3 4 6, μ 4,87 μ 4 /( ). - AgBr (), - E U. - AgBr -... 5. ( ) - j - 4 48
- τ 6 ( 3).. 5. ( ),,.. -. - j f () t, t m,, E - : t m ~ / E. Ag i, - t d, μe t m.,, -,.. [67], : x E(, t) E( x,) ρdx, (5.6) εε ρ q ) (.. - 49
de dx εε ρ. 5.. j 4 6 AgBr. :,5, E,5 / ; 4, 6 E,5 / ; 3 4 6, E /. : - 4 () () t,5 4 6 (,5, E,5 / ), de ρdx εε (5.7) 5
de E, ρdx. (5.8) εε ( t) E(, t) (5.7) x -,, : d ( xe) Edx xde d. [ xρdx. (5.9) εε ( xe) Edx E(, t) E( x,)] E(, t) (5.8) (5.9), (5.6). (5.6), - (5.5), - : j dρ x dx, dt (5.) : q j x( dj dj). (5.3), : j q ( j j ) dx. (5.) 5
, -. j - Ag i, μ >> μ: qμ j Edx., E E., - E, 6 /., j qμ E -. Ag i, j., (5.),. j qμ E. -.. 5. ( ) AgBr (, )., - ( ).,, -, 5
. ( )., - - AgHal.. 5.. j 4 6 AgBr:,5, E,5 / ; 4, 6 E,5 /. 5. AgBr.. 5.,., - t m -, - : t ~ (. 5.,, )., - 53
-, - Ag i : qd d qd j dx [ (, t) (, t) ]. dx, (, t) (, t) qd j (, t). >>, : - Ag i -. t m m : t td, k D m k πm / ( m,,... ) [68]. - τ >> τm -. τm εε /( qμ) - Ag i. T 3 m τ M,55 4., -. -,. 54
Ag i Vk -,,,. -. - -. 5.3. 5.4.. 5.3 - τ 3 3.. 5.3. - 3 τ 3 : 4, U, ; 4, U, ; 3 4, U, 55
Δc idx, i, (5.) U. (. 5.3, -3), U - Δ c,,, - Δ c.. 5.3,., U, 4 ( 3) -. - AgHal., Ag i.,, -,,.., -.,, -. -., - t r 56
D a. - 4 D a D D D. D tr D 3, -.. 5.4 ( ) - Ag i () V k ().. 5.4 ( ) - U E. - U. -, : exp( ψ), exp( ψ). : d ψ sh ψ. (5.) dξ q( U U / ) ψ. k T ξ ψ ψ qu / k T. B c D B ξ ξ / ψ. ξ ξ / D ψ ψ. 57
. 5.4. - () () ( ), U E ( ) 4, U,. (5.6) (5.) : dψ dξ [ C ( ch ψ ) ] /, (5.3) C dψc dξ, -. d ψ dξ <. 58
ψ C dψ ξ (ch ψ ) c ξ (5.4). ψ <<, ψ ch ψ (5.4). - (5.4) : ψ C sh( ξ ξ). C, ψ ψ ξ., c c ψ C, (5.5) sh ξ ψ : ( ξ ξ) ψ sh ψ c. (5.6) sh ξ (5.6) U, 4 c.. 5.4, -. C dψc dξ (5.5) -.,, (5.6) ψ <<, 59
ψ >. (5.6), ξ, ξc ξ ψ. c., Ag i Vk,. - : c ξc D exp ( ψ) dξ. (5.7) dψ dξ, (5.3),. (5.7) : ξc (5.8) ψ ψ ch( ψ) dψ exp( ψ) dξ. (5.8) C (ch ψ ) ch( ψ) dψ sh ψ F ( ϕ, k) E( ϕ, k), (5.9) C (ch ψ ) C (chψ ) F ( ϕ, k) E ( ϕ,k), : ϕ arcsi (ch ψ ), (5.) C (ch ψ ) k C. (5.), (5.9), c., 6
π 4 ϕ F ( ϕ, ) l tg, ( ϕ, ) si ϕ E. (5.) U, C <<., (5.), -, k. [69]: ϕ ϕ ψ ψ. ψ > - C ( ch ψ ) <<., (5.). : ϕ arcsi ( β), C β sh( ). ψ, ch ψ sh ( ψ / ). β <<,, arcsi( β) [69]:, - ϕ / π π C β sh ( ψ ) (.) :, 4 C F ( ϕ, ) l sh, ( ϕ, ) ψ, E, (5.3) 6
π β tg / β / β <<. - (5.3) (5.9), (5.7) -, (5.4) : ψ C dψ F( ϕ,) ξc. (5.4) (ch ψ ), ψ c ch ξ ξc c, : ψ ψ Δ 4 ch c sh. (5.5) ξ ξ 4 c Δc -. (5.4) (5.5) F( ϕ, ) ψ << >> - ξ c ψ C 4exp( ξ ) sh c, c., (5.5) -. : 6
p / Eg ( QQp ) exp kbt, Q, Q ; E g., -,, -, AgHal, -. 5..,, - [7]., - : Q cρs [ T ( x t) T ], dx, (5.6) c ρ ; S ; ; ( x t) T, x t ; T. (5.6), : 63
dq cρs dt dt dx. (5.7) dt,,, : T T cρ λ qje E ( G k ) t F r, (5.8) x λ ; j ; ; E F -.,,. (5.8) (5.7) : dq dt dt(, t) dt(, t) λs S dx dx [ qje EF ( G kr )] dx. (5.9) Q V S,, - : V dq dt dw dt [ qje EF ( G kr )] dx (5.3), w : w w J w GR,, - -. 64
(5.3),, - (5.) (5.) -., Agi Vk, - - : j, j j. - : J () t qj ( x t), εε E( x, t) t,, (.3) : E(, t) E( x, t) εε qj, ( x, t) εε. (5.3) t t (5.), (5.) (5.3) - T 3. - - AgBr, - (. 5.5). -,, -, (. 5.6,. 5.7).,, 65
Agi V k.,.,. 5.6, - >, -, (. 5.6).. 5.5. () - 5 () t : 4, U,. 5.6. - - () () - 5 t : 4, U, 66
,, μ << μ,. 5.6, <,, - (. 5.6).. 5.7 ( ), w GR ( ) w ( 3) t,3 3. wj. 5.7. AgBr: w, w, 3 w j GR. 5.7, - -, - 67
, w > w, GR J. -., -. Δ w, -. - (. 5.7, ) w wj Δw.,,,., - : εε E(, t) >> εε t E( x, t) t, j εε E t (, t),, - -. : dw dt J j εε Edx E ( x, t) E(, t) dx. t, E(, t) x E ( x, t) dx du, : 68
dw J dt E(, t) εε E. t w J,, : w J ( E ) E S E εε, (5.3) E U /, E S., (5.3), : B 4sh q D / k T ψ ES E(, ) C, (5.33) C / 4 <<, - E S (5.33) : k ψ BT E sh S. q,. (5.3), D dw dt GR E F ( G kr ) dx, w GR E F t ( G kr ) dx dt. : w GR E Δ. (5.34) F c 69
,, - - : w εε E S E EF Δc E. (5.35). 5.8 ( ) AgBr - S ( ). ES. 5.8. E S () - S () U : 4 ES U (5.33), - S U : S (, ) exp kbt 7 U.. 5.8 ( ), U >, 7 6 > B/c. E ES E S
., - AgBr - - - [7]., -, []. S U >, 7 - AgBr (. 5.8, ).., - -., S << N.. 5.9. U ( 4 ) w GR (), w J () w (3) 7
. 5.9 - w GR ( ), w j ( ) w ( 3) -. 3 (5.34), (5.3) (5.35).. 5.9,, -, -.,, - -. 5.3. -,, - [7-74]... [75-77]... - -. -,.., T.,. 7
5.3.. - - - : d T λ je, (5.36) dx dj dx, (5.37) λ ; j γe ; E ; γ, : γ Eγ ( ) γ γ exp. kbt E ; γ () ; k B. (5.36) : ( ) T ( l) T T. (5.38) U, - l E, - : U l Edx. (5.39) (5.36). -. 73
l l T dt T T,. (5.4) dx x,, (5.37), - j, E j, γ (5.36), d T λ dx j. (5.4) γ (5.4) (5.4) - - [78]: Eγ Eγ exp exp kbt kbt exp( ϑ),, k B T <<. [79]: E γ d ϑ δ exp( ϑ), (5.4) dξ dϑ ϑ ( ) ϑ( ),, (5.43) dξ l Eγ kb ξ j δ. (5.44) 4λγ T γ T ; ξ x l ; ϑ, - : 74
Eγ ϑ k ( T T ) BT (5.4) - d ϑ dξ, : d dϑ dξ dξ. dϑ δ exp( ϑ). dξ, dϑ dξ δ [exp( ϑ) a ]. a., a exp( ϑm), ϑ m. : dϑ ± dξ δ[exp( ϑ) a]. dϑ exp( ϑ) a a arctg exp( ϑ) a a ± δ ξ a. a : a arctgb. a : exp( ϑ) a δ arctg a ± ξ arctgb. a 75
exp( ϑ) a δ a tg m ξ arctgb. (5.45) a b. ξ ϑ ϑ m., ( arctg ) tg b, b. (5.45) : / a δ expϑ expϑ m cos ξ. (5.46) ξ ± ϑ. (5.46), / aδ a cos. (5.47),.. - [78]. a σ, : a cos σ. (5.48) (5.46) (5.47) : cos σ σ δ a : /. (5.49) U U j, (5.5) l / dx l exp( ϑ) dξ γ γ 76
77 / / dξ a aδ exp( ϑ) d ξ a tg. aδ cos δ ξ (5.44) - δ (5.5), : ( U / α) a tg δ a / λk α B T. γ E γ, (5.5) (5.5) (5.48) a. : (5.48) (5.5), si U a. (5.5) α U U σ, σ arcsi. α α, σ, cos σ δ (5.5), : ( α / U )arcsi( U / α) j γe, [ ( U / α) ] E U / l -. [7]:
j j ( α / U )arcsi( U / α), (5.53) / [ ( U / α) ] j γe. U / α << U U arcsi, α α j j,... U α j,... U * kbt Eγ λ. (5.54) γ (5.54).., [75]. -., - (5.53) j., - (5.53), : ( ξ) ( α U ) arcsi( U α) ( ϑ) E E exp. (5.55) [ ( U / α) ] (5.46) a δ, [79] cos ϑ l [ ξarcsi( U α) ] ( ) U α. (5.56) (5.56) (5.55), E, [79]: 78
/ E( ξ) [ ( U / α) ] arcsi( U / α). (5.57) E ( U / α)cos [ ξarcsi( U / α) ] (5.57) : () / E [ ( U / α) ] arcsi( U / α). E ( U / α)cos α [ arcsi( U / )], (5.53), (5.56) (5.57),. 5.. 5... 5., U / α ~, 8 -. U / α -,.. 5.. -. 5., -., -. 79
. 5.. () - () U / α, 9, -, -. - (, - ), U / α.,. T -, -. 8
5.3.., - [77, 8].. R - E,., >> R. - : d dt λ r γe, r dr dr dt T ( R) T,. dr 8 r, - : ξ r / R, d dϑ ξ δ expϑ, (5.58) ξ dξ dξ dϑ ϑ (), dξ δ ξ, (5.59) j R Eγ. (5.6) λγ k T B j γe., (5.58),, [8], R. Becker 936 ( ).
d ϑ δ dy y l ξ, : exp (5.6) :, : ( ϑ y). (5.6) ψ ϑ y, (5.6) d ψ δ expψ. (5.63) dy dψ ± dy δ a ( expψ), (5.64) a.. (5.64) ξ ϑ, : dϑ ξ ± dξ δ ( ξ expϑ) a ξ d ϑ dξ, α a. (5.65) δ RE d ψ a exp l ψ ± y lb, a expψ a expψ b. ξ ϑ, :. 8
ξ expϑ a ± ( bξ ) 83 4bξ ( ξ ). ±. ξ ϑ expϑ 4ab. ( bξ ) ( ) (5.66) :. (5.66) 4ab b, (5.67) exp b ϑ bξ l b ϑ bξ, (5.68). (5.69) b γ γ bξ. (5.7) b (5.67): b a ± a. (5.7) a, (5.7), (5.63), * / a, a, a a *, b.
δ * j R Eγ λγ kbt. (5.7) * E * U,, (5.7), : E * α R λkbt γ E γ, R U * E. (5.73) R * α, - [78]. ϑ * - * m * ϑ, δ, : * * ϑ l, ϑ m l, 386. ξ. I R b b. (5.74) ξ E rdr ER π γ πγ dξ πγ ER ( b) I * * * ( b ) πγ αr πγe R. -. (5.74), I I b, b. πγ ER πγ ER (5.65) (5.67), : 84
i u, (5.75) i * u U /U, * i I / I., (5.75), - (. 5.). i <, i >, -,, u() i -., : du, di u, i, m., -. l m ( b) ϑ, (5.7), δ < - : ϑ ϑ. ( ), * ( ) [8]. δ δ (5.58). *, δ δ - : δ * > δ (5.58) -, δ < δ * - 85
. ( ). - δ -, [8].. 5.. - [8],,,, [8]. 5.4., [8-84], -. [85].. 86
, -, [86]. -, -., -, -. - j - U. - μ: d ϕ q dx εε, (5.76) dϕ j qμ (5.77) dx : ϕ ( ) U, ϕ( ), ( ). (5.78) (5.76) (5.77), : ( ) α εε μ dϕ d ϕ αj, (5.79) dx dx. (5.79), : dϕ dx αj( x c ), (5.8) 87
c., (5.8), : 3/ ϕ αj [( x c ) c], (5.8) 3 c. (5.8), (5.8), -, d ϕ dx <. (5.78) (5.8) : 3 / 3/ U αj ( c c), ( c) c, (5.8) 3, 3 / 3/ U αj[( c ) c ]. (5.83) 3 (5.58), (5.8), : j qμ α( x ). (5.84) (5.83) (5.84), -, c j c, α( qμ ). - : U U 3 j j / j j 3/ j j 3/. (5.85) 88
q μ j, εε q U. εε (5.85) -. ( U / U << ) ( j / j << ). -, (5.85), : U U 3 j j /, 9 εεμu j. (5.86) 8 3, - -. ( U / U >> ) ( j / j >> ). - (5.85) : U U 3 j j / j j 3/ j j 3/ j j 3 /. 3/ / ) ( j j. : U j j. (5.87) U 4 89
, (5.87), / 4. - : U j. qμ, - (5.86) (5.87) (. 5.3). -. (x) -. x. 5.3. ( (5.85)) (x), (5.84), : ( x). (5.88) jx j 9
(5.88), (x) - ( x)., -,, -,., -, : d ϕ q dx εε ( ) v, (5.89) dϕ j qμ. (5.9) dx cost - v,. -., (5.9) - dϕ j dx qμ (5.89), c / : dc c dx ( c γ) J. (5.9) (5.9) (5.78) : c dc x. c ( c γ) J γ v /, J j / j., : 9
c γ l γ c c γ c x. J, : c( γ) x l. (5.9) γ c γ c γ J : x γ c c ( γ) l c γ γ, (5.93) J c ( ) /.., (5.9) d dx d / dx, (5.9) : U jj dϕ qμ c dc. (5.94) 3 c ( c γ) (5.94), : V U U J c ( γ) l 3 γ c γ γ c c. (5.97) c γ c (5.97) (5.93) c - V J, - 9
. c.. 5.4 (5.97) - γ.. 5.4, - γ, - -.. 5.4. - γ, ();,6 ();, (3); 5, (5) ( - (5.97)) γ << -. 5.3. γ. γ <, γ >. γ, 93
-. γ.. 5.5. γ, J, ();, ();, (3);, (5). 5.6. γ J, ();,5 ();, (3); 5, (5). 5.5 5.6 - - γ. γ < (. 5.5) 94
x.. γ > (. 5.6) x,. ( γ > γ < ), -. 95
6 6.. 6... -,.,, - [7, 87, 88]. -. -,,.,,, -,,... - E g, -. -,,.., - 96
,. -, -.,,. p v. - m h λ, (6.) v m h. (6.) - : m v h E. m λ E ( k) k π, (6.) λ h k h k, (6.3) 8π m m h h / π. (6.3),. -. k (6.3) de kh dk m 97
, (6.), : de v. (6.4) h dk, F : (6.4) (6.5), : de vfdt. (6.5) dk dt F. (6.6) h k. (6.4) :, (6.6), dv dt h d E dk dk dt dv d E F. (6.7) dt h dk h * m d E dk (6.8), - (6.7),, -. -,,., -,, - 98 * m.
.., -. -, h * m p d E dk. * m p : E, -., -. 6... - - E g. - (. 6.) [89]. - g * m p v. - p * m E E. (6.9) 99
. 6.. - dz, E E de,., p - c v. de, (6.9), : p p dp m de. (6.) p dp * - 4π p dp., 4πp dp dz, (6.) v
v.. -, : Δ x Δp h., h. [7]: v 3 dxdydzdpx dpydpz h. (6.) v (6.) (6.), : F. F. F -, -. 4πp dp dz. 3 h (6.9) (6.), p ( E ) * E g m, pdp m * de. : W dz 4π 3 3 g. (6.3) de h * ( E) ( m ) ( E E ), E T, - : f ( E), (6.4) F E exp kbt
, T k F E B >> ( ) T k F E E f B exp, (6.5), -,. [89]: ( ) ( )de E E W f E g (6.6), (6.5). - (6.3) (6.5) (6.6), : ( ) π de T k F E E E m h g E B g exp 4 3 * 3 ( ) η η η π 3 * 3 exp exp 4 d T k F E T k m h B g B π T k F E h T k m B g B exp 3 *, (6.7) T k E E B g η exp π η η η d.
p. f f p - f, p f. : f p ( E). (6.8) F E F E exp exp kbt kbt F E >> k T : F E ( ) f p E exp. (6.9) kbt ( ). -, : B p E. * m p - (6.3) : W p 4π 3 3 h p. (6.) * ( E) ( m ) ( E) 3
,, (6.7), : p f p ( E) W ( E)dE p * πm pk h B T 3 F exp. (6.) kbt - : Eg F F Q exp, kbt p Qp exp, (6.) kbt Q 3/ * πm kbt, h Q 3/ * πm pkbt p. h Q Qp -. Q Qp : Q Q 3/ * 3/ 9 3,5 m T, m e 3 3/ * 3/ 9 3,5 mp T p, m e 3 m e. -, : p, 4
* * m p m * E g 3 mp F k l BT. 4 * m -.. * * m p m <, - 6..3.,.,. c, -,,,,,,. ( ). ( ) [4]., -.. 6.. - D A. [9, 9]. - 5
, -.. 6.. - ( << Q ) -, -. -, Q -. - [9, 9]: ( Q ) W!. (6.3) ( Q ), Q -.!, -. 6
: p ( Qp) Wp. (6.4) p!, [9, 93].,.. -,.. - N A A N A : A A A A N A!. (6.5)!( N )! - -. -, -. p N ), ( N ( A A A A A. (6.5). -, - : W A ) ( N ) N! A A A. (6.6)!( N )! A - [9, 93]. - A A 7
,,.. -, D., D N D W D N! D D. (6.7)!( N )! ( - ) - : D p D A D D W W W W W. (6.8) (6.8) : g A A D ( E E ) U E E, (6.9) g N p, (6.3) A EA E D - (. 6.).. (6.3), - p. - W. l W [4 4]: D D 8
lw lw lw lw δl W δ δp δa δd (6.3) p, A δn δ δa δd δp, (6.3) D ( E E ) δ δu E δ E δ. (6.33) (6.3) (.63) g A A g D D α β -, (6.3), : lw p α, (6.34) lw α β 9 E g lw α βe A lw α β l W, x >> : : D A, (6.35), (6.36) ( E E ) g l x! x l x x. D. (6.37), - l W p l Q p l p p, (6.38) p p l W l Q l, (6.39) lw lw ( N ) l N l N l A A A A A A A D ( N ) ( N ) l, (6.4) A A D l ND l ND D l D A A
( N ) ( N ) l. (6.4) (6.38) (6.4) (6.34) (6.37), : D D D D lw p lw lw p lw p p l Q l Q p l p, (6.4) l, (6.43) lw A lw A A l l A l ( N ) A A, (6.44) lw D lw D D l l D l ( N ) D D. (6.45) (6.4) (6.45) (6.34) (6.37), : p Q p expα, (6.46) ( α β ) Q exp E g, (6.47) A D N exp exp A ( α βe ) N D A [ α β( E E )] p p p D A D g, (6.48) pa : D. (6.49) - N N A A A, (6.5) exp[ ( α βea)] N D D exp N D [ α β( E E )] g D. (6.5)
- W, W p, WA W D. p,, A D (6.46 6.49) (6.38 6.4) - : lw D N D lw A l W p αp p, l W ( α βe ), g N l[ exp( α βe )] p ( α βe ), A l{ exp[ α β( E g E D A )]} D A [ α β( E g A E, - : lw m p α( N N ) β( U E N ) N A l[ exp( α βe )] A A A A D )]. N l{ exp[ α β( E E )]}. (6.5) D, : g S k B lw m. (6.53) A ( ) A U TS, T : lw. (6.54) m k BT U V, N F : A lw F k m BT. (6.55) N N V, T V, T D
(6.54) (6.55) -. β. (6.54): β α β α α U N N U E U U p U W T k A g N V m B ) ( l, α β α β β )] ( exp[ )] ( exp[ ) ( D g D g D A A E E E E N U N E U β α U E E U D g ) ( β α α β α β U E U E E N A A A A ) exp( ) exp(. : ( ) α β ) ( [ D g D g A D A B E E E U p p N N T k U U N E E p A A A A β ]. (6.56) (6.56) U (6.9) N (6.3),., k B T β. (6.57) α. (6.55): α α β α α N N N N E N N p N W T k F A g T V m B ) ( l, β N N E U A A ) ( β α N E E N D g D ) ( β α N E N A A. : ( ) α α g A A A D A B E N E U N p p N N T k F [
3 N E p E E A A D g D β ] ) (. (6.58) (6.58). : T k F B α. (6.59) (6.46) (6.5) ( ) - α (6.57) β (6.59) : T k F Q p B p exp, (6.6) T k F E Q B g exp, (6.6) T k F E N B A A A exp, (6.6) T k F E E N B D g D D ) ( exp, (6.63) T k E F N p B A A A exp, (6.64) T k E E F N p B D g D D ) ( exp. (6.65) : D A p p.
[94]. 6..4. - - [9]. :, - : D D e ; (I),, : A A h ; (II) : e h. (III) : A A D D. (IV) : K K D A p D E Q D exp, D kbt p A E Q A p exp, pa kbt K AD A p p A D D E exp 4 A E k B D T E g, 4
Eg Kp p QQ p exp. kbt, -. -, - - [86, 95]. (I) : d dt D γ ( N ) α, (6.66) D D D γ ( - ), α -. d D dt (6.66) : D N D. α γ, D N ( E exp α g D ED) k T B E γexp. F D, : g ED F. kbt, 5
Eg F Q exp, kbt : α ED γ Q exp γkd kbt. (6.67) σ, γ σ v, - v, v 8k T. πm (II). - : γ p dp dt A p B * γ p( N ) α p, (6.68) A ( ), α p p -. dp A dt (6.68) : p A N A. α p γ p, p p A 6
p α A N A F E exp kbt γ p 7 A. p A, : F E p exp kbt, σ p, α A F p Qp exp, kbt p γ p p Q p γ σ v,. EA exp γ kbt p p p K A. (6.69) - v p, v p 8k T. πm - - (6.67), (6.68), (6.7) (6.7) -, -., - -, - [86]. B * p
(III). -. - : d dp G k p dt T r dt, G T -, kr -. - k r. G k p k K. (6.7) T,, (6.7) GT r -. [86]: ν α ν E exp D kbt r p, ν γq.., -. -,,. - : 8
α p ν : E exp A kbt p, ν p γ pqp. α α p τ, τ p. α α p, -,, - [94, ]. -,. - σ i ~. -, 5 σ i ~. : 8 σ i ~., - -,, -. -. -. 9
:, ( - ), : R e R, R h R. :, ( - ): R h R, R e R. -.. 6..5. -, [7], - E.. 6.3 -. -.. 6.3 q U 4πε ε qex, (6.7) x ε. :
du dx x x m,, q 4πε ε xm qe. q 4πε ε x m. E x m (6.7), : qe U ( x m ) q. πε ε. 6.3. -, Δ E β E, F F
β F q q πε ε. ( - ),,. -,, -,. : j j exp( β E ), j... - 3 /. 4 F 6..6. -. ω,, - : h ω E g.. -, -
. -. -. ΔW, [7]. ΔW - E Δx : Δ W qeδx. : Δx Δp Δx Δp h. Δ p. - ΔW : h ΔW qe. Δp Δ W Δp. * m : * q E h ΔW m 3. Δ W, 3
6.. (AgHal)., - Vk 4 Agi [6, 7]. -,. AgHal -, - [7]: i k p [Ag ] [V ], p,. -,, i k ] [Ag i ] >> p [V k >>, [Ag ] [V ], - AgHal. - - : [Ag i ] [Ag i ] [Vk ] [V k] (6.7) (6.7), - :
i k [Ag ] p [V ]. (6.73), - ( V k ) - ( Ag i ). AgHal : [Ag i ] << [Ag i ], [V k ] << [V k] - Agi V k. -, : E F t exp, (6.74) kbt F E p t exp, (6.75) kbt E, E -. - (6.74), (6.75), [95, 96],.,, [94],,,. : [Ag ], [V ], t [Agi ] pt [Vk ]. i k : Eg F Q exp, (6.76) kbt 5
F p Qp exp. (6.77) kbt, : g, p Q 3/ *,, πm pkbt g p, p.. (6.74) (6.77) - (6.73),, : h Eg k T Q N expe F B p l, (6.78) Q N expe N, e E / kbt, e E / k B T, E Eg E Ag i -. (6.78),,, - : E F g k BT Q l Q p, - : E E F. (6.78) AgBr - (. 6.4). - 6
AgBr: E g Eg ( ) βgt Eg ( ) 3, 5 3 β g,7 / [9], E ( β T E (), 3 [97], E ( β T E ) E ) E (),7 [98], g, g [9]. - []: β,6 4 /, p E() E β β g () () 5 E β β 5,4 /. * * m p, m,7m, m [9]. - AgBr : G 8 N G exp F kbt / 3 a, a 5,7748 [9];,6 6, k T, F 8 B AgBr.. 6.4, -,., - -. - : ( t ) dx m ( p pt ) m dx, (6.79) 7
, m [Ag ] S, S Ag, m [Br ], - S Br S.. 6.4. - AgBr. 6.5 AgHal., -.,,, - : qϕ exp N, kbt qϕ exp p p, kbt qϕ exp N, kbt qϕ exp, kbt (6.8) (6.8) p F Qp exp kbt, 8 Eg F Q exp kbt,
ϕ.. 6.5. AgBr AgHal Ag i V k, t ~, p t ~ p (6.74), (6.75) : (6.79) : m E F N t exp, (6.8) kbt F E p N t exp. (6.83) kbt t J m pt pj, (6.84) 9
J exp ( qϕ kbt )dx, J exp ( qϕ kbt )dx. (6.85), -., -,. AgHal - o. Ag S Br S : E S, E S S 3 E F qϕ m M S S exp, (6.86) kbt F E qϕ m M S S exp, (6.87) kbt Ag S Br, M [Ag ], M [Br ]; ϕ S. - (6.8) (6.83), (6.86), (6.87) (6.84), - [5]: k F T l M M exp( es ψs ) N exp( e) QpJ exp( e ψ ) N exp( e ) Q J exp( e B S S E e k T, E e S S k T, E e S S k T, Eg eg. k T B B B B S g S, (6.88) )
,,., -, Ag S Br S., -, [99],,, - AgBr, -,45,6. [], AgBr -..3. pe «-». E S, ES - ( ) (6.84) : m m,, (6.86), (6.87), : Ag S Br S. E ϕ E k T M F q S S B l S, (6.89) M. M 5 M M a ~. M M. - M, [3, 7],., F, (6.88), -. AgHal, >>, p, ϕ 3
- : d ϕ q ( dx εε ). : d ψ sh ψ, (6.9) dξ ξ x / D, ψ qϕ / kbt, D, - : / εε k BT D. q N (6.9). - ξ ξ d ψ dξ, ψ ψ, ξ / D, ψ qϕ / kbt. ξ ψ ψs, ψ S qϕs / kbt. (6.9) [4]; >> dψ dξ ξ ( ψ, ch ψ ) (ch ψ ch ψ). (6.9) (6.9) - [4]. ( i, ) : J i ξ J i D exp( ψ) dξ [ exp( mψ) ] dξ m,, (6.9) ξ >> : dψ dψ d ξ. (ch ψ ) sh( ψ ) 3
, : ys exp ψ. >> S ψ S / J D ( y S ), (6.9) / S J D ( y ), (6.93) J, / D ys J., -,. ξ (6.9) : ψ ψ dψ (chψ chψ ) F( α, k) chψ ξ ξ, (6.94) F( α, k), - : ch ψ ch α arcsi, ch ψ k ch ψ. (6.94) - exp ψ >> exp( ψ ). ψ.. (6.94). - - 33
y exp ψ, exp ψ y : y y arctg y y y ( ξ ξ) y /, (6.95). (6.95) y, ( ξ sec ξ) : ξ ψ ψ ( ξ l sec ξ) y /. (6.96) (6.95) - y arctg y S / / ψ : ξ y. (6.97) (6.96) (6.85)., : J y J D ξ ( y S y y S ) / D ( ys y), (6.98) (6.99) y >> y : S J, / J D ys. y (6.88) F AgBr (. 6.6). > 3 D J, J (6.9), 34
(6.93). < 3 D J, J (6.98), (6.99). (6.97) qϕ. - - : q, 5, ES, 45 βs T, E, β T (. 6.6, ). S g S S 3 S E E E ϕ S Ag S -. - : Ag S BrS - Eg () E β g S () E () S βs β S - F - q, 3 E S (), (. 6.6, - ϕ S 4)., -, D., (. 6.7).. 6.6, -, - (6.78). F, (6.89)., Ag S, -, F, (. 6.6,, ). «-».. 35
. 6.6. AgBr T 3 : E S (), 3, qϕ S, 5 ; E S (),, qϕ S, 5 ; 3 E S (), 3, qϕ S, 3 ; 4 E S (),, q, 3 ϕ S. 6.7 -, -,,., : N J < >, N J < >, J < >, p J < p >.. 6.7 (, ), -, -.,, -. 36
. 6.7., -, - AgBr: < >, < >, 3 m, 4 < >, 5 < p >, 6 p t, 7 m, 8 t (. 6.6, ), - ( Br S ) ( Ag S ) (. 6.7, 3, 7)., AgBr. < > Ag i (. 6.7, 4, 8), 37
< p > V k ( 5, 6).,. F,,,, - -.,,,, -,, -,, -. ϕ 6.3. - ( Pb(N 3 ) ) [5] - p-. 38 γ p, ±, F, [, 3]. E ~ 3,5. Pb(N3 ) g -. 6S -, P-, - [4]. N 3
Ag Cu, % Pb(N 3 ), (. 6.8),,,,,,, -.. 6.8. 3 ) Pb(N % Ag (), Pb(N 3 ) (), Pb(N 3 ) % Cu (3) [58].., - Pb(N 3). - Va 39 V a V k, -. -
- Ag Cu [, 3]: γ p[pb(n3) ] γ p[pb(n3) γ[pb(n ) ] γ[pb(n ) 3 3 Ag Ag,Cu,Cu ] cost, (6.99) ],,., [5]. 6.3.., Ag Pb - -,. Ag Pb(N 3 ), Va V k [3]., : k k a C [V ] [V ] p [V ], (6.) ; [Vk ] -.,, - : 4
[V a ] >> p, k ], C >>, [Vk ], (6.) [V k a C [V ] [V ], (6.) (6.). F - (6.),, : ([Vk ] [Vk ] [Vk ]) C [Va ] [Va ], (6.3) [Vk ] - ; [Va ] -. (6.3), (6.) - : a k [V ] p [V ] [V k ], (6.4).,., -,, - [45,, 3, 5], - : [V a ] >> [Va ]; k ] >> [Vk ] >> [Vk ], (6.5) [V - Va V k. 4
- -,. - : E F [V a ] [Va ]exp, (6.6) kbt F E [V k ] [Vk ]exp, (6.7) kbt [V F E k ] [Vk ]exp 3 kbt F E E [ Vk ]exp 3, (6.8) kbt E, E E 3 V a, V k Vk -.. 6.9 -. : Eg F F Q exp, kbt p Qp exp. (6.9) kbt F (6.), (6.4), (6.6) (6.9) : K S k ] [Va ] [V K, (6.)., Pb(N 3 ) [63]: K S 66, 9 3,38 exp,. kbt 4 S
. (.64) p- (6.5) : [V a ] p [Vk ]. (6.) (6.) - (6.6), (6.7), (6.9), - E [V ] exp( / ) E k BT k Qp E kbt F l. (6.) [Va ]. 6.9. - (6.)., 43
E [V k ] >> Qp exp, kbt - :, E E k T F B l. (6.3) E [V k ] << Qp exp, kbt (6.) : K S () E S E ES / 3 k BT Qp F l / 3, (6.4) [ K ()] ;. -, (6.4) - E S / 3 > E. (6.3) (6.4), - -. - (. 6.8, ) - γ p., V k : E < E S / 3 44,4. Pb(N 3 ). - : S
[V a ] C, K S k [V ] C, / 3 C >> K S. (6.), : E k BT C F l, (6.5) Qp / E p ( CQp) exp, (6.6) kbt, -, c C, -.. - [], : F, 87, F, (6.5) (6.3),., T k B Pb(N 3) : Pb(N 3 ) Ag ( F ) Pb(N 3) ( F ) - - E F, E E F., - E ~, 74, - E ~, 6. E3,,. -, V k 45
,, - [97].,, -, [5, 7],,, -, V k -, -.. (6.), (6.4), (6.6) (6.).. 6. 6. ( - ). - 4 β g 3,75 /K β- [8].. E3 Vk Vk 46,. - -. - - [9, ].. 6.. - ( ). - ([Ag ] 6 9 3, 5). 6 - :
[Ag ] [ V a ].. 6.. : [Ag ] 4 (), 6 (), 7 (3), 8 (4), 9 (5), -3 (6) (. 6., ), - -. 47
6.3.. -., Cu,,., [, 3],. : a [V ] [Cu ] [Cu ] p [V ] [V ]. (6.7),, Pb(N3) (6.5), : k C [Cu ] >> [Cu ] >> [Cu ]. (.7) k Ag, [Va ] [Cu ] p [Vk ], (6.8) [Cu ] E F C exp 4, (6.9) kbt E 4 Cu -. : E F E k T [Vk ] Q B p l [Va ] C exp exp( E ) kbt [ ( E E ) k T ] 4 B. (6.) 48
. : Cu,, - K [ V k ], [ V a ] S, (6.) C 49 / -, - - V k V a Cu Cu. - -, E 4 > E,,. (6.) : : E E k BT C F l 4 K p Q p K C S 3 / 4 3 S, E E exp (6.) kbt. (6.) : Cu C E E F 4 (6.3) -., (. 6.8, 3), -
T ~ 49 [, 3]. [Cu Vk ],.,, [].. 6.. : [Cu 4 ] 6 7 8 9-3 (), (), (3), (4), (5) Cu -. -,5. (6.3) ( E ~, 6 ), E 4, 84. 5
(6.), (6.6) (6.), (6.8) (6.9).. 6.. 6., 3.. 6.. Pb(N 3) Ag (), Pb(N 3) (), Pb(N 3) Cu -3 (3). 6.. ( 4) -. 5 - : [Cu ] ] [Vk. - (. 6., 3), - - -. 5
, -., - Pb(N 3 ) Ag Cu, -., [6, 7], - []. 6.4. AgBr -, - (, ) []. - -, (, ) ( -, ),. -. AgBr,. - [3]. AgBr -. - ϕ S 5
qϕ S (. 6.3). -, : / εεk T B D. (6.4) q.. 6.3. AgBr. 6.4. AgBr (6.4) AgBr (. 6.4). -,,,. - 53
, - [3, 4]. z. -. [3, 4]: k x, h E m ( k) ( kx k y ) E j Ψ * p ( x y, z) ψ ( z) exp[ i( k x k y) ] j j x, (6.5),, (6.6) k y. E j j y ψ (z) - ϕ (z). : * p ψi h d q[ ϕs ϕ( z)] ψ m dz i E ψ. (6.7) (6.7) -. ϕ(z), : d ϕ q qϕ ϕ q exp exp. dz εε kbt kbt i i 54
[]: q d ϕ k T dz B D qϕ sh. (6.8) kbt (6.8) : dϕ z, ϕ ϕs, z, ϕ,. dz (6.8) : q dϕ k T dz sh B D qϕ. kbt : k T exp( z / ) th( qϕ / 4k T ) ϕ( z) B l D S B. (6.9) q exp( z / D ) th( qϕs / 4kBT ) (6.7). (6.9) - z. - : ϕ U ϕ z S S ϕ( ) z. (6.3) D, z > F S ϕ, ( z ) -, S D 55
qf U ( z), S z, z >, z. (6.3), z, ψi ( z) (6.3), z. (6.3) (6.7) [3, 4]: h m * p d ψi dz qϕ S D zψ i E ψ. (6.33) i i z / 3 * E m pqf i S Z z, qf S h (6.33) : (6.33) : d ψi ( Z) Zψ ( Z) i. (6.34) dz ψ i C Ai( Z) C Bi( Z), (6.35) Ai(Z) Bi(Z ) -, Z > Ai( Z ), Bi(Z ). C C. Z < Ai(Z) Bi(Z) - -. (6.3)., C. : 56
ψ ( z) C i * mpqf Ai h S / 3 E z i qf : S. * / 3 () Ai E mpqf ψ i S i C. qf S h, : Ei / 3 q F S * mp h E α i i, (6.36), : α, 338, α 4, 88 α 3 5, 5. [3]: i S E z i. (6.37) qf. 6.5. : E, E, 3 E 3. 57
. 6.5 (6.36) E, E E 3 - AgBr.. 6.5 Ei k B T.,. 6.6. E, E E 3, (6.37). z 8.. AgBr, q, 3 ϕ S [3] m p,7m, m - [9].. 6.6. : E, E, 3 E3,, AgBr, 58
, k B T. 59
7 7.. -. -,, - [5]. -., -. - -. -,., a b, b a a >,5, [5]. a b [6]. - (). () a (b), ( 4 / 4). a ( b ). 6
() Nc : () ΔN c - ( ) ( ) N c, ΔN c. a b a b. () -, [], ( ) -,..,, ( ) a b. a. b a, ab ΔS b a ( ),. -, () b a ΔN. ab. - :, E g,, - 6
.., -,,. - [5, 7, 8]. -, p - -. - (. 7.,, ), E. Φ Φ. χ χ,,.,... (. 7., ) -,. - ϕ c, - : q Φ. (7.) ϕ c Φ qϕ c qδϕ q, δϕ q δϕ, q δϕ ( ). 6
ϕ (x) E qϕ( ), x, -.. 7.. ( ), - ( ) ( ) 63
E, χ χ.., χ χ, x, Δ c E χ. (7.) χ -, E g E. x g, ΔEv χ Eg) ( χ Eg) Eg Eg ( ΔE. (7.3) (7.) (7.3), Δ E ΔE E E. v c g g,,...,. 7., -,, Δ W qϕ ΔE, ΔW p qδϕ. c c c 64
-, -. [5].,.. -,, Φ., ( ), - qϕ c Φ Φ q q δϕ δϕ Φ. (7.4) ΔEc ΔEv Φ. [5]. : d ϕ ρ, (7.5) dx ε ε ρ. : ρ q p ) q( p D ). (7.6) ( A,,. - - 65
, -.,, [5]: ) ; ), ; 3), ; 4) x x -. (7.6) - : pd ρ( x) q q, (7.7) A p..,., - ( A). -, - ( p ) D - -. x ( x ). ϕ, 66
ϕ. : ϕ d dx ϕ d dx q ±, x x, (7.8) ε ε q ± ε, x x ε 67. (7.9). (7.8) (7.9) [5]: ) dϕ E dx ( x x x ): dϕ dx dϕ x x dx x x ; (7.) ) D ε εe - - : dϕ ε ε dx dϕ ε ε dx x x σ ; (7.) 3) - ϕ c : ϕ ϕ x ) ϕ ( ) (7.) c ( x
ϕ ) (). (7.3) ( ϕ (7.8) (7.9) - (7.) (7.3) : - [5]. 7... [5]. p -, -. : ϕ x. x (7.8) (7.9) - (7.) (7.), - : x x : x x : q E ( x x ε ε ), (7.4) 68 q ϕ ; (7.5) ϕc ( x x ) εε E q ( x ), (7.6) ε ε x q ϕ. (7.7) ( x x) εε (7.4) (7.7) -,.
: - x q Q qδϕ q[ ϕc ϕ()], (7.8) ε ε ε ε x q Q qδϕ qϕ(), (7.9) ε ε ε ε Q qx, Q qx (7.) -. (7.4) (7.6) E ( ) E () : q E i i ( ) xi, i,. (7.) ε ε (7.4) (7.7) -. 7.. i. 7.. - 69
(7.8) (7.9),, (7.4): Q Q. (7.) qεε ϕc qεεϕc Q Q - : Q Q : Q / i ( qεεiiϕc ), i,. (7.3) Q Q σ. (7.4) (7.). (7.) (7.4) : f Q σ m ( Q Q σ ), (7.5) f f f Q σ ± ( Q Q σ ), (7.6) f f f ε. ε ( p -, - ). Q Q, (7.8) (7.9), (7.) -. σ (7.4) (7.6) : 7
7 Q Q, (7.7) / ε ε ϕ ε q Q Q c. (7.8) (7.8) (7.8) (7.9) : f q q c ϕ δϕ, f f q q c ϕ δϕ. (7.9) (7.3) (7.5) (7.7) : ε ε ε ϕ x x q c, (7.3) (3.) x x. (7.3) (7.3), (7.3) : / δϕ ε ε i i i i q x,., i (7.3) (7.8) (7.9). (7.3), - : / ) ( ) ( ϕ ε ε ε ε ε Σ c q x x x. (7.33)
7... [5]. -, - -., : ϕ c δϕ. 7 δϕ, -. ϕ c δϕ. (7.34) δϕ E g > Eg, Φ > Φ, χ > χ -. (7.8) (7.9) : ϕ d dx ϕ d dx q, x x, (7.35) ε ε q ε, x x ε. (7.36) - : ϕ x. x (7.35) (7.36) (7.) (7.) : x x :
q E ( x x ε ε ), (7.37) q ϕ ; (7.38) ϕc ( x x ) εε x x : E q ( x ), (7.39) ε ε x q ϕ. (7.4) ( x x) εε. 7.3. - : - x q Q qδϕ q[ ϕ() ϕc], (7.4) ε ε ε ε 73
x q Q qδϕ, (7.4) ε ε ε ε Q qx, qx Q (7.43) -. (7.37) (7.39) E() E () : q E i i ( ) ± xi, i,. (7.44) ε ε i, i. - (7.39) (7.4) -. 7.3. (7.4), (7.4) (7.34), Q qε ε ϕ c i Q qεε ϕc. (7.45) Q Q : Q / i ( qεεiiϕc ), i,. (7.46) Q Q : Q Q σ. (7.47) (7.45) (7.47) : f Q σ m ( σ Q Q), (7.48) f f 74
f Q σ ± ( σ Q Q). (7.49) f f ( σ <, σ > Q > Q. > ) 7.. AgBr-AgI - -,. - - ( ) : AgBr-AgI [9-3]., -,,,. AgI -. AgI.. AgBr.5.4. AgBr, AgI []. - AgBr AgI [],,,., ( ) -,, -, - AgBr AgI,,., 75
, -.,. -, «-». [4]. [5],,5%,. AgBr a 5, 77, AgI a 6, 74,. -, -... 7.4. AgBr-AgI. 7.4 ( ) 76
AgBr-AgI. ψ c ; δψ AgBr AgI; δψ AgI AgBr; ψ AgBr; ψ - AgI; ψ, AgBr -, ; h AgBr. ψ c, δψ, δψ, ψ, ψ ψ k B T / q. AgBr AgI. -. -. : Δ( ψc ψ ψ) sh( ψc ψ ψ), (7.5) Δ ψ sh( ), (7.5) ψ Δ ξ m i d ξi dξi m d dξi, i,,. i,, i -. ξ x / l, i i «-» l i : 77 / ε ε ikbt l i. (7.5) q i i -. m,,, -.
(7.5 7.5). : ξ, dψ. dξ (7.53),. 7.4 ψ () ψ c. (7.54) : ψ h / l ) ψ ( h / ). (7.55) ( l (7.5) : dψ dψ q l ql σ, (7.56) dξ dξ σ, -. Δ h >> l. ψ : 78 ξ, ψ. (7.57). -. (7.5), (7.5) Δ( ψ ψ c ψ ψ) ψc ψ, (7.58) Δ ψ. (7.59) ψ. AgBr, - AgI. m (7.58), (7.59) :
d dξ ( ψ ψ ψ ) ψ ψ ψ, (7.6) c c d ψ ξ d ψ. (7.6) (7.6), (7.6): ψ ψc ψ A exp ξ A exp( ξ), (7.6) ψ B exp ξ B exp( ). (7.63) ξ. (7.53), (7.54), : ψ ξ ) ψc ψ ( ch ). (7.64) ( ξ ψ ξ., B. : ψ( ξ) B exp( ξ ). (7.65) B (7.55) : h ψ ψ h B c ch exp. (7.66) l l AgBr-AgI: δψ ψc ψ( h / l) ψ[ch( h / l ) ]. (7.67) δψ ψc. (7.68) δψ (3.56), : h q ψ l sh( h / l) qlb exp σ. (7.69) l 79
ψ (7.67) δψ (7.69). - (7.69), δψ ψ h / ), - : ( l sh( h / l) q l δψ qlδψ σ. (7.7) ch( h / l ) (7.68) (7.7) δψ δψ, - : δψ ψ δψ ψ α[ σ /(qlψ α ( l / l ) th( h c ( l c c )], (7.7) / l ) / l) th( h / l) ασ /(qlψc ), (7.7) α ( l / l ) th( h / l ) ( h l ) α. ch h >> l, : δψ ψ l σ /(qψ ) c c l l, δψ ψ l σ /(qψ ) c c l l, (7.73) ψ. ( σ ): δψ δψ l l ε ε. (7.74) (7.7) (7.7) - h σ. : l, 85, 8
l,9, ε, 5, ε 7, 5, 4 4,57 3 6 3 4,5.. 7.5. AgI. - m : d d ξ ( ) c c dξ dξ ( ψ ψ ψ ) ξ ψ ψ ψ ξ ( ψc ψ ψ), (7.75) ξ d ψ dψ ξ ξ ψ dξ dξ. (7.76). 7.5. AgBr-AgI: δψ / ψc 3; δψ / ψ c ' 3' (, ' σ/ ψc ;, ' 9 9 σ/ ψ,6 / ; 3, 3' σ/ ψ,6 / ) c c (7.75) (7.76) : 8
ψ ψc ψ A I( ξ) A K( ξ), (7.77) ψ ( ξ B I ξ ) B K ( ), (7.78) I ( ξ ), K ( ξ ) i i. A, A, B B., K (), (7.77) A. (7.54), : ψ ψc ψ[ I( ξ)]. (7.79) (7.53), I ( ) I(). ψ ξ. I ( ). B. ψ B K ( ). (7.8) ξ B, (7.55), : ψ [ ( r / l)] B c ψ I, (7.8) K ( r / l ) r. -, - : δψ ψ c δψ ψ c K σ ψ ( r / l) / K( r / l) /(ql c), (7.8) K ( r / l ) / K ( r / l ) γ K γ σ /(qlψc ), (7.83) ( r / l ) / K ( r / l ) γ l γ l I( r / l). I ( r / l ) 8
r >> l, l K ( r / l) K ( r / l ) I, ( r / l), I ( r / l ) (7.8) (7.83) (7.73). (7.8) (7.83) - r - σ.. 7.6.. 3.7. AgBr-AgI: δψ / ψc 3; δψ / ψc ' 3' (, ' σ/ ψc ;, ' 9 9 σ/ ψ,6 / ; 3, 3' σ/ ψ,6 / c c r AgI. m : ξ d dξ [ ξ ( ψ c ψ ψ )] ( ψ c ψ ψ ), (7.84) 83
ξ d ( ξ d ψ ) ψ. (7.85) ξ (7.84) (7.85) - (7.53) (7.54), : ψc ψ sh ξ, (7.86) ξ ψ ψ B ξ ξ exp( ). (7.87) B (7.55) : l ψ ψ r r r B c ch exp. r l l l, : δψ ψ c δψ ψ c [sh( r σ ψ / l) r / l][ /(ql c)], (7.88) sh( r / l ) r / l β β ( σ / q ψ l c)[sh( r / l) r / l], (7.89) sh( r / l ) r / l β l β [ch( r l) ( l r )sh( r l )]. l r >> l, l (7.88) (7.9) - (7.73). (7.88) (7.89) - σ.. 7.7. 84
. 7.7. - AgBr-AgI: δψ / ψc 3; δψ / ψc - 9 ' 3' (, ' σ/ ψc ;, ' σ/ ψ,6 / ; 3, 3' σ/ ψ c,6 9 / ) c,. 7.5 7.7,, AgBr AgI. h > -, r 3l. - AgBr AgI. AgBr AgI. -. AgBr -,. AgI, -.. 85
AgBr-AgI,., -,,, -. 86
.....:, 975. 59.....:, 96.. 3...,....:, 977. 75. 4.,.. //. 946.. 6,... 39-5. 5... /...:, 969.. -77. 6. P R.., ake J. M. Origi of equilibrium space charge potetials i ioic crystals // Surf. Sci. 969. V. 5. N 3.. 57-53. 7. Blakely J. M., Dayluk S. Space Charge regios at silver halide surfaces: effect of divalet impurities ad haloge pressure // Surf. Sci. 973. V. 4, N 4.. 37-6. 8...,..,.. - // - 99. 6.. 65-7. 9.....:, 97. 4.... - //. 99.. 66,.. 337-344....,.. //. 99.. 64, 9.. 44-87
49.....:, 969. 657. 3. Starbov N., Buroff, Maliowski A. J. Surface Ioic Coductivity, attice Disorder, ad Space Charge Regio i Thi Silver Bromide ayers // Phys. Stat. Sol. (a). 976. V. 38. P. 6-7. 4....:, 98. 67 c. 5. Dayluk S., k J. M. Space charge regios at silver halide surface experimetal results for udoped AgCl // Surf. Sci. 974. V. 4.. 359-37. 6...,....:, 979. 4. 7. Ohzeki K., Urabe S., Tai T. A Study of Properties of Tabular Silver Bromide Grais // Joural of Imagig Sciece. 99. V. 34, N 4. P. 36-4. 8...,.., - / -..:, 994.. 8-89. 9. Calles F., Maehout-va der Vorst W., Ketellapper. W. The Effekt of the Solutio pag ad ph o the Space Charge Characteristics of silver Bromide Emulsio Grais // Phys. Stat. sol. (a). 98. V. 7. P. 89-95....,..,.. - pbr - //. 993.. 67, 5.. 79-8. 88
. Calles F., Ketellapper. W., Maehout-va der Vorst W. The Ifluece of the Solutio pag o the Iterstitial Cocetratio of Silver Halides. A Semi-Quatitative Treatmet // Joural Photographic Sciece. 985. V. 33. P. -4....,.. //. 965.. 7,.. 6-74. 3...,.. - //. 996.. 38, 4.. 977-98. 4... -..:, 987. 43. 5. Takada S. Ioic coductio ad space charge layer i silver halide photographic emulsio grais // Phot. Sci. ad Eg. 974. V. 8, N 5. P.5-53. 6.. - //. 97.. 44,.. 37-374. 7... - //... 45,.. 67-7. 8. Va Hulle M. E., Maehout va dervorst W. Ioic coductivity ad space charge regio i silver bromide () microcrystals // Phys. Stat. Sol. (a). 977. V. 39. P. 53-58. 9...,..,.. //. 986.. XXIV. C. 5-46. 3...,.. - //. 986.. XXIV. C.47-68. 89
3.....:,. 88. 3...,.. - //. 994. 5. C. 98-7. 33. Scharfetter D.., Gummel H. K. arge-sigal Aalysis of a Silico Read Diode Oscillator // EEE Tras. Eiektro Dev. 968. V. ED-6, N. P. 64-77. 34... - - :... 987. 748-87. 7. 35.. -..:, 984. 5. 36....:, 987. 4. 37...,.. - //... 45, 3.. 4-5. 38...,..,.. //. 993. T. 9,. 8. C. 68-7. 39... - //. 3.. 39, 3.. 368-373. 4... - AgBr //... 47, 4.. 54-58. 4. Kliewer K.., Koehler J. S. Space Charge i Ioic Crystals // Phys. Rev. 965. V. 4, N 4A. P. 6-46. 4...,... - 9
( ) - //. 988. 8.. 7-5. 43...,.. - //. 99.. 66, 8.. 99-4. 44.... :, 989. 5. 45...,..,.. //.. 98.. 6,.. 6 67. 46... //. 999.. 73. 4.. 66-63. 47...,.. - - //. 99. 7.. 79-87. 48...,.. //.. 988.. 4, 7.. 6-7. 49...,.. - //. -. 987.. 3, 5.. 793-796. 5..,....:, 96. 44. 5... -....-.., 99.. 9
5.....,.: - -, 95. 56. 53...,..,.. //. 987... 3-87. 54....:, 967. 45. 55.. /.... : 978. 558. 56..,....:, 984. 64. 57...,..,..,.. - //. 99.. 36, 4.. 77-8. 58...,.., // -. 98.. 6,... 337-339. 59...,..,.. - // -. 985.. 3, 5.. 376-377. 6...,..,..,.. - - // -. 985.. 3, 3.. 6-7. 6...,..,..,.. - 9
- // -. 987.. 3, 4.. 5-55. 6. Teraoka K., Nakamura., Hoshio, Nima, Saeki N., Wataabe S., Tai T. Ehacemet of photographic sesitivity by strog electric field pulse // Joural of the Society of photographic Sciece ad Techology of Japa. 997. V. 6, N. P. 37-44. 63...,.. - - // -. 99.. 35, 4.. 43-5. 64...,.. //. 998.. 43,.. 34-43. 65... // 4- -.. 4.. -5. 66.,...:. 98. 488. 67...,.. - // -., 983. 4. 68. -..,..,.. -..:. 97. 46. 93
69. /.....:. 979. 83. 7...,..,.. - - - // -. 999.. 44,.. -8. 7.....:. 975. 96. 7...,..,..,.. //. 994.. 3, 6.. -7. 73... /. XI.. I, II. - 996.. 3-5. 74...,.. //. 4.. 3,... 86-94. 75... / - -. : -.... 98.. 5.. 5-7. 76....:. 96. 8. 77.,.....:, 958. 98. 78. -,.. -..:. 967. 48. 79... - - //. 7.. 6, 5.. 94-96. 94
8. Goffaux R., Coelho R. Sur la rupture thermique filametaire differee das les isolats electriques // Revue Phys. Appl. 98. V. 7, N. P. 55-64. 8...,.. -..:. 985. 464. 8. Chadra S. Superioic Solids. N. Y.: Amsterdam: North-Hollad, 98. 44 p. 83. /..... - :. 98. 35. 84...,.....:. 987..4. 57. 85...,.. - //. 99.. 35,.. 8-3. 86..,...:. 973. 46. 87.....:. 968. 448. 88.....:. 977. 448. 89.,...:. 978. 7. 9...,... :. 969. 88. 9...,.. -..:. -. 997. 35. 95
9....:. 975. 384. 93....:. 977. 66. 94....:. 977. 568. 95.... : - -. 963. 496. 96...,.. //. 973.. 8, 6.. 933-945. 97. Chie-the Kao, Rowa. G., Slifki. M. EPR study of hole trappig at catio vacacies i silver halides // Phys. Rev. B. 99. V. 4, N5. P. 34-35. 98. Kaeda T. A New Approach to Estimatio of Depth of Electro Traps i AgBr Emulsio Grais o the Basis of the Gume-Mott Model // J. Imagig Sciece. 989. V. 33, N 4. P. 5-8. 99. Tyutyulkov N. N., Bad structure ad local states i silver halide crystals //. 983.. 36, 4. P. 73-76.. Hamilto J. F. A modified proposal for the mechaism of sulfur sesitio i terms of capture cross sectio // Photogr. Sci. ad Eg. 983. V. 7, N 6. P.5-3.....:. 96. 56..,.. -,..... 975. 96
3...,.. - //. -. 979.. 5,. C. 46-5. 4.,..,..,..,.. - //. 978.. 45,. 4.. 75-73. 5...,.. //... 47, 3.. 3-. 6. Schooma J., Verwey J. F. Aio vacacies i ead Bromide sigle crystals // Physica. 968. V. 39, N. P. 44-5. 7. Schooma J. Hol coductio i pyre ad doped lead bromide crystals // J. Solid State Chem. 97. V. 5, N. P. 6-7. 8.,.. - - -.. :. 997. 43. 9.....: -. 967. 46......: -. 977. 368.... //. 995.. 69, 3. C. 433-435....,..,.. - 3 -SiC/H-, 4H-, 6H- 97
8H-SiC //. 5.. 39,... 44-44. 3...,..,.. -. : -. 4. 496. 4...,.. -..:.. 48. 5...,..,.. -. - :.. 4. 6...,..,.. -. -. - :. 997. 96. 7..,.. -..:. 975. 43. 8. -..,....:. 99. 688. 9. Bado S., Shibahara Y., Ishimaru S. Photographic silver halide emulsio cotaiig double structure grais // Joural of Imagig Sciece. 985. V. 5, N 5. P. 93-95....,..,.. -. T //. 99.. 36, 5.. 353-359.. Grazer F. The uique solid state physical properties of the silver halide: A prerequisite for their use as iformatio recordig materials // J.I.R.M. 99. V.. P. 9-9.. Grazer F. Physical properties of phase boudaries i silver halide crystals i relatio to photography. Part I. Bad structures of abrupt phase boudaries betwee differet silver halide crystals // Joural of Imagig Sciece. 989. V. 33, N6. P. 7 6. 98
3...,..,.. - - //. 4. 4.. 56-6. 4...,..,..,.. AgBr AgI //. 8.. 4,... 4-44. 5... // -. 999.. 44,.. -8. 99
Покупайте Ваши книги быстро и без посредников он-лайн в одном из самых быстрорастущих книжных он-лайн магазинов! окружающей среде благодаря технологии Печати-на-Заказ. Покупайте Ваши книги на www.more-books.ru Buy your books fast ad straightforward olie - at oe of world s fastest growig olie book stores! Evirometally soud due to Prit-o-Demad techologies. Buy your books olie at www.get-morebooks.com VDM Verlagsservicegesellschaft mbh Heirich-Böckig-Str. 6-8 Telefo: 49 68 37 74 ifo@vdm-vsg.de D - 66 Saarbrücke Telefax: 49 68 37 749 www.vdm-vsg.de