ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε ένα κλειστό διάστηµα [α,β]; Μονάδες 5 B Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη α Αν µια συνάρτηση f:a είναι, τότε για την αντίστροφη συνάρτηση f ισχύει: f f, A και f f y y, y f A Μονάδες β Μια συνεχής συνάρτηση f διατηρεί πρόσηµο σε καθένα από τα διαστήµατα στα οποία οι διαδοχικές ρίζες της f χωρίζουν το πεδίο ορισµού της Μονάδες γ Όταν η διακρίνουσα της εξίσωσης α z β z γ µε α, β, γ και α είναι αρνητική, τότε η εξίσωση δεν έχει ρίζες στο σύνολο των µιγαδικών Μονάδες δ Αν µια συνάρτηση f είναι δύο φορές παραγωγίσιµη στο και στρέφει τα κοίλα προς τα άνω, τότε κατ ανάγκη θα ισχύει f > για κάθε πραγµατικό αριθµό Μονάδες ε Aν η f είναι συνεχής σε διάστηµα και α, β, γ τότε ισχύει β γ β f d f d f d α α γ Μονάδες Τεχνική Επεξεργασία: Kyson
ΘΕΜΑ o Αν για τους µιγαδικούς αριθµούς z και w ισχύουν: z 6 i και w i w i τότε να βρείτε: α το γεωµετρικό τόπο των εικόνων των µιγαδικών αριθµών z β το γεωµετρικό τόπο των εικόνων των µιγαδικών αριθµών w γ την ελάχιστη τιµή του w δ την ελάχιστη τιµή του z w Μονάδες 6 Μονάδες 7 Μονάδες 6 Μονάδες 6 ΘΕΜΑ o ln, > ίνεται η συνάρτηση f, α Να αποδείξετε ότι η συνάρτηση f είναι συνεχής στο Μονάδες β Να µελετήσετε ως προς τη µονοτονία τη συνάρτηση f και να βρείτε το σύνολο τιµών της Μονάδες 9 γ Να βρείτε το πλήθος των διαφορετικών θετικών ριζών της εξίσωσης για όλες τις πραγµατικές τιµές του α Μονάδες 6 δ Να αποδείξετε ότι ισχύει f > f f, για κάθε > Μονάδες 7 α Τεχνική Επεξεργασία: Kyson
ΘΕΜΑ o Έστω f µια συνάρτηση συνεχής στο για την οποία ισχύει α Να αποδείξετε ότι f f d 5 f 6 5 Μονάδες 8 β ίνεται επίσης µια συνάρτηση δύο φορές παραγωγίσιµη στο Να αποδείξετε ότι Μονάδες γ Αν για τη συνάρτηση f του ερωτήµατος α και τη συνάρτηση του ερωτήµατος β ισχύει ότι f 5 και, τότε: i να αποδείξετε ότι 5 ii να αποδείξετε ότι η συνάρτηση είναι Μονάδες Μονάδες Τεχνική Επεξεργασία: Kyson
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Α Θεωρία Σελ 5 σχολ βιβλίου Α Θεωρία Σελ 9 σχολ βιβλίου Β α Σωστό β Σωστό γ Λάθος δ Λάθος ε Σωστό ΘΕΜΑ ο α Η ισότητα i z 6, γράφεται ισοδύναµα: i z 6 8 z 6 z 6 z Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z είναι ο κύκλος µε κέντρο την αρχή των αξόνων Ο, ακτίνα ρ και εξίσωση c: y β Η δοσµένη σχέση για τους µιγαδικούς αριθµούς w περιγράφει τη µεσοκάθετο του τµήµατος Γ, όπου Γ, και, Πιο αναλυτικά αν w yi οι µιγαδικοί αριθµοί που ικανοποιούν τη δοσµένη σχέση, έχουµε: w i w i yi i yi i y i y i y y y y 6 9 y 6y 9 y 6 y Εποµένως ο γεωµετρικός τόπος των εικόνων Μw είναι τα σηµεία της ευθείας ε µε εξίσωση: y γ Η ελάχιστη τιµή του w είναι η απόσταση του σηµείου Ο από την ευθεία ε: y, δηλαδή: d O, ε Τεχνική Επεξεργασία: Kyson
δ Σύµφωνα µε το παρακάτω σχήµα, όπου αναπαριστώνται γεωµετρικά οι γεωµετρικοί τόποι των εικόνων c, ε αντίστοιχα των µιγαδικών αριθµών z και w βρίσκουµε ότι, η ελάχιστη τιµή του z w είναι το µήκος του τµήµατος ΑΒ: AB OB OA ρ y c ε - A - B - ΘΕΜΑ ο ln α f ln D l Hospil ln Επίσης f Συνεπώς f συνεχής στο β Η f είναι συνεχής στο, ως γινόµενο συνεχών και συνεχής στο λόγω του α Άρα η f είναι συνεχής στο [, Για > : f ln ln ln ln ln Τεχνική Επεξεργασία: Kyson 5
f ln ln Έχουµε τον παρακάτω πίνακα µεταβολών: f - f Στο, η f είναι γνησίως φθίνουσα άρα: f, f, f, Στο, η f είναι γνησίως αύξουσα άρα: f, f, f, f Εποµένως: [,,,, γ Επειδή >, για κάθε, για την εξίσωση προκύπτει ο περιορισµός, Με τον περιορισµό αυτό η εξίσωση γράφεται ισοδύναµα: ln ln ln ln f, > Επειδή το σύνολο των τιµών της f βρέθηκε, προκύπτουν οι περιπτώσεις: i Αν, η είναι αδύνατη Τεχνική Επεξεργασία: Kyson 6
ii Αν, η τιµή Έτσι η έχει την ρίζα είναι η ελάχιστη τιµή της f την οποία παίρνει µόνον για iii Αν,, επειδή, f, και η f είναι γνησίως φθίνουσα στο, προκύπτει ότι, η έχει ακριβώς µία ρίζα στο, που είναι θετική Επίσης επειδή, f, και η f είναι γνησίως αύξουσα στο, προκύπτει ότι η έχει ακριβώς άλλη µία ρίζα στο, που είναι επίσης θετική iv Αν η γίνεται ln απορρίπτεται ή ln Μία ρίζα θετική v Αν, επειδή,, f, αύξουσα στο είναι θετική και η f γνησίως,, προκύπτει ότι η έχει ακριβώς µία ρίζα στο,, που δ Είναι f > για κάθε > Άρα f γνησίως αύξουσα στο, Η f ικανοποιεί τις προϋποθέσεις του ΘΜΤ στο [, ], για κάθε > f f Άρα υπάρχει ξ, : f ξ f f f ξ Όµως ξ f γν αύξουσα < f ξ < f f f < f Τεχνική Επεξεργασία: Kyson 7
Τεχνική Επεξεργασία: Kyson 8 ΘΕΜΑ ο α Το d f είναι πραγµατικός αριθµός Έτσι µπορούµε να θέσουµε R k d f Τότε 5 k f και άρα : [ ] d k d f 5 9 6 9 6 5 k k k k Από τις, προκύπτει ότι: k 6 k - 9 k Οπότε τελικά: 5 6 5 f β Έστω Έχουµε:, αφού ή από υπόθεση είναι δύο φορές παραγωγίσιµη γ i Έχουµε: [ ] H DL [ ] Οπότε f 6 5 5 6 5 H 6 γράφεται: 5 6 c
Για έχουµε: c Οπότε 5 Η 5 τώρα γράφεται: 5 Για έχουµε: c 5 Άρα 5 5 5 c ii H 5 ως πολυωνυµική, είναι παραγωγίσιµη στο µε 5 Όµως 5 > για κάθε, οπότε η είναι γνησίως αύξουσα στο, άρα και Τεχνική Επεξεργασία: Kyson 9