ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

Σχετικά έγγραφα
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης ούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

ΧΡΗΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΕ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΕΝΕΡΓΕΙΑΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μάθημα: ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική

Μοντέλα και Τεχνικές Αξιολόγησης. Ενεργειακών και Περιβαλλοντικών Πολιτικών

Ενεργειακών και Περιβαλλοντικών Πολιτικών

Χάραξης Ενεργειακών και Περιβαλλοντικών Πολιτικών

ΔΙΑΧΕΙΡΙΣΗ ΕΤΕΡΟΓΕΝΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων

Πολυκριτήρια Ανάλυση Αποφάσεων

ΔΙΑΧΕΙΡΙΣΗΣ ΕΤΕΡΟΓΕΝΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΤΗΝ ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ

Πολυκριτήρια ανάλυση με γλωσσικές μεταβλητές για την υποστήριξη αποφάσεων ενεργειακής πολιτικής: Επισκόπηση μεθοδολογιών και ανάλυση εφαρμογών

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Ασαφής Λογική (Fuzzy Logic)

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #11: Ασαφής Αριθμητική. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

Βασικές Έννοιες Ασαφών Συνόλων

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΑΣΑΦΗΣ ΛΟΓΙΚΗ. Οικονόμου Παναγιώτης Δρ. Ε. Παπαγεωργίου 1

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΒΑΡΩΝ SIMOS - ROC. Χάρης Δούκας

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΜΕΘΟΔΟΣ NAIADE ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ. Υπεύθυνη Μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π.

Λήψη αποφάσεων υπό αβεβαιότητα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 3 Ο. Σταθερές-Παράμετροι-Μεταβλητές Αριθμητικοί & Λογικοί Τελεστές Δομή ελέγχου-επιλογής Σύνθετοι έλεγχοι

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Σκοπός. Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές. Συλλογή & Επεξεργασία Δεδομένων. Πρόγραμμα. Εντολές Επεξεργασίας Δεδομένων

Προγραμματισμός Ι (ΗΥ120)

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Κεφάλαιο 14. Ασάφεια. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #5: Ασαφής Συλλογισμός. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Αριθμητικά Συστήματα

Προγραμματισμός Ι (ΗΥ120)

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές. Δρ. Γιώργος Λαμπρινίδης 23/10/2015 Η - Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1


Προγραμματισμός Ι (HY120)

Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ. ΗΜΥ-210: Εαρινό Εξάµηνο Σκοπός του µαθήµατος. Ψηφιακά Συστήµατα. Περίληψη. Εύρος Τάσης (Voltage(

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ

ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x

«Ο κύριος στόχος δεν είναι να ανακαλύψουµε

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (3) Επανάληψη Μέθοδος Promethee II

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Πράξεις με δυαδικούς αριθμούς

Πρόβλημα 29 / σελίδα 28

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

ΣΥΝΑΡΤΗΣΙΑΚΑ ΜΟΝΤΕΛΑ ΑΠΟΦΑΣΕΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting)

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση

Αριθμητική Ανάλυση & Εφαρμογές

(Γραμμικές) Αναδρομικές Σχέσεις

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

(Γραμμικές) Αναδρομικές Σχέσεις

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

ΓΛΩΣΣΑ ΑΛΦΑΒΗΤΟ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΣΤΑΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

(Γραμμικές) Αναδρομικές Σχέσεις

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Προγραμματισμός I (Θ)

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Εισαγωγή στην Επιστήμη των Υπολογιστών

Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο. Τι θα τυπωθεί στον παρακάτω κώδικα;

Λήψη αποφάσεων υπό αβεβαιότητα

Γεννήτριες Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης

Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Λήψη αποφάσεων υπό αβεβαιότητα. Παίγνια Αποφάσεων 9 ο Εξάμηνο

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα

3 ο Εργαστήριο Μεταβλητές, Τελεστές

3.7 Παραδείγματα Μεθόδου Simplex

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

Τάσσος Δήμου. Μεθοδολογίες και λυμένες ασκήσεις. Λυμένα θέματα συναρτήσεων-μέρος Α. Εύρεση μονοτονίας σε απλές συναρτήσεις

Επιχειρησιακή Έρευνα I

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Transcript:

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ ΣΕ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ Ακαδημαϊκό έτος 2015-2016 Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς Αθήνα, Μάιος 2016

Περιεχόμενα Εισαγωγή Εισερχόμενες Ασάφειες Ασαφής Λογικής Μοντέλα Αναπαράστασης και Επεξεργασίας Προσέγγιση Προέκτασης Προσέγγιση Διπλής Αναπαράστασης

Εισαγωγή Ασάφεια έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα Το πρόβλημα δεν οφείλεται τόσο στις έννοιες που χρησιμοποιούνται όσο στην αντίληψη που έχει ο καθένας για λεκτικούς προσδιορισμούς ποσοτικών μεγεθών

Εισερχόμενες Ασάφειες [1/4] Παράμετροι Πολυκριτηριακού Προβλήματος (επιδόσεις, βάρη, κατώφλια) Ποιοτική πληροφορία Ελλιπής γνώση σχετικά με τις παραμέτρους του προβλήματος Αδυναμία απόκτησης ακριβούς τιμής για κάποιες παραμέτρους

Εισερχόμενες Ασάφειες [2/4] Προτιμήσεις Εμπειρογνωμόνων Φύση Κριτηρίων Ποσοτική» Ποιο είναι το κόστος της Εναλλακτικής Α; Ποιοτική» Κριτήρια Οπτικής όχλησης» Ποια είναι η συνεισφορά της στην τοπική ανάπτυξη;» Συνεισφορά στην Ανταγωνιστικότητα της οικονομίας

Εισερχόμενες Ασάφειες [3/4] Ενσωμάτωση σε Προβλήματα Απόφασης Πολυκριτηριακά Προβλήματα (Πολλαπλοί Αποφασίζοντες) Ένα σετ από εναλλακτικές επιλογές Ένα σετ από κριτήρια αξιολόγησης Ένα σετ από αποδόσεις όπου A B { b,..., b C ij C ij : ( a i, b j) { a 1,..., a n 1 l } }

Εισερχόμενες Ασάφειες [4/4] Εναλλακτικές Α1 Α2.. Αn Κριτήρια B1 C11 C12.. C1n B2 C21 C22.. C2n.......... Bl Cl1 Cl2.. Cln Μοντέλα Αναπαράστασης και Επεξεργασίας

Ασαφής Λογική [1/6] Κλασσική θεωρία της λογικής δύο τιμών Η χαρακτηριστική συνάρτηση συσχέτισης μ Α ορίζει μια ξεκάθαρη διάκριση μεταξύ των μελών και των μη-μελών του Α. Έτσι η μ Α δίνει σε κάθε x μια από δυο τιμές: μ Α(x) =1 εάν και μόνο εάν x<x τ, μ Α(x) =0 εάν και μόνο εάν x>x τ. Άρα, απαιτείται ένα αυστηρό όριο x T για τον προσδιορισμό μιας ξεκάθαρης διάκρισης μεταξύ των αποδεκτών τιμών (x< x T )καιτωνμηαποδεκτών τιμών (x> x T ). Συχνά, ένα αυστηρό όριο είναι πρακτικά μηρεαλιστικό.

Ασαφής Λογική [2/6] μ Α (χ) = μ Α Λογική Πολλαπλών Τιμών 0 χ τ Μια συνάρτηση συσχέτισης ορίζει τη μερική συμμετοχή σε ένα σύνολο. Άρα η μετάβαση από τη μια κατάσταση στην άλλη είναι βαθμιαία και όχι απότομη. Η συνάρτηση συσχέτισης δίνει σε κάθε x μια τιμή από 0 έως 1, υποδηλώνοντας τον βαθμό συσχέτισης. χ Άρα, σε αυτή την περίπτωση απαιτείται ένα εύκαμπτο όριο για τον προσδιορισμό μιας ενδιάμεσης αποτίμησης μεταξύ των αποδεκτών και των μη-αποδεκτών τιμών

Ασαφής Λογική [3/6] Σύνολα (Κλασσικά) Ένα στοιχείο είναι μέλος ή όχι Αληθές ή ψευδές είναι οι μόνες δυνατότητες Ασαφή Σύνολα Ένα αντικείμενο μπορεί να ανήκει μερικώς σε ένα σύνολο Ο βαθμός συμμετοχής στο σύνολο ονομάζεται συνάρτηση συσχέτισης ή συμμετοχής (membership function f(x)) f(x)=0 το αντικείμενο δεν ανήκει στο σύνολο f(x)=1 είναι σίγουρα μέλος του συνόλου Οι υπόλοιπες τιμές για την f(x) δείχνουν το βαθμό συμμετοχής

Ασαφής Λογική [4/6] Μια πρόταση έχει κάποιο βαθμό αληθείας Δεν είναι απλά αληθής ή ψευδής. Ξεφεύγουμε από το μοντέλο του «0-1», «αληθές-ψευδές».

Ασαφής Λογική [5/6] Παράδειγμα Λογικής Πολλαπλών Τιμών Τρεις γλωσσικές τιμές γλωσσικούς όρους: ~ A 1= «Αποδεκτό», A ~ ~ i ( 1 ~ A 2= «Αποδεκτό υπό όρους», ~ A 3 = «Μη-αποδεκτό». ~ ~ A, A 2 και A 3 ) ορίζουν την συνεισφορά του x στην ΑΑ σε

Ασαφής Λογική [6/6] Οι Γλωσσικές Μεταβλητές διαφέρουν από τις Αριθμητικές διότι οι τιμές τους δεν είναι αριθμοί αλλά λέξεις ή φράσεις (Zadeh 1975) Ορίζονται ως ένα σύνολο γλωσσικών όρων Συνάρτηση Συσχέτισης S { s 0, s 1,..., s k}

Τριγωνικός Ασαφής Όρος [1/2] Έστω 2 τριγωνικοί αριθμοί Γεωμετρική Απόσταση

Τριγωνικός Ασαφής Όρος [2/2] Παράδειγμα Ο B είναι κοντινότερος στον Α από τον C

Μοντέλα Αναπαράστασης και Επεξεργασίας [1/4]

Μοντέλα Αναπαράστασης και Επεξεργασίας [2/4] Σύνολο Γλωσσικών Όρων Μορφή: S = {s 0, s 1, s 2,,s n+1 }, n+1 1 Παράδειγμα: S = {s 0 = Καθόλου, s 1 = Πολύ Χαμηλό, s 2 = Χαμηλό, s 3 = Ενδιάμεσο, s 4 = Υψηλό, s 5 = Πολύ Υψηλό, s 6 = Τέλειο} x Ιδιότητα: a b x αν και μόνον αν a b Delgado M et al. (1998)

Μοντέλα Αναπαράστασης και Επεξεργασίας [3/4] Σύνολο Γλωσσικών Όρων Πρόσθετα Χαρακτηριστικά: Να υπάρχει ένας αρνητικός τελεστής π.χ. neg(s i ) = s j. j = T i (T + 1 είναι ο αριθμός των στοιχείων). Τελεστής μεγιστοποίησης: max(s i, s j ) = s i αν s i s j. Τελεστής ελαχιστοποίησης: min(s i, s j ) = s i αν s i s j. Δεν ορίζονται οι συνηθισμένες αλγεβρικές πράξεις της πρόσθεσης, αφαίρεσης, πολλαπλασιασμού και διαίρεσης μεταξύ των όρων της. Ορίζονται μόνο πράξεις που αφορούν τη διάταξη όπως π.χ. η max και η min.

Μοντέλα Αναπαράστασης και Επεξεργασίας [4/4] Σχετιζόμενες Γλωσσικές Προσεγγίσεις Προσέγγιση Προέκτασης: Σχετικές συναρτήσεις συσχέτισης των γλωσσικών όρων. Πολύπλοκες Πράξεις. Χαμηλή «διακριτότητα» εναλλακτικών S n F app1(.) F( R) S Προσέγγιση Διπλής Αναπαράστασης: Ικανή προσέγγιση αναπαράστασης και επεξεργασίας της ασαφούς πληροφορίας (, ) s i Herrera F, Martinez L. (2000)

Φιλοσοφία Προσέγγιση Προέκτασης [1/5] Μετατροπή αριθμητικών τιμών σε ασαφή σύνολα Αλγεβρικές πράξεις Απώλεια πληροφορίας Herrera F et al (2009)

Προσέγγιση Προέκτασης [2/5] Παράδειγμα (1/4) Η συνάρτηση συσχέτισης για την αναπαράσταση των γλωσσικών μεταβλητών είναι τριγωνικής μορφής, δηλαδή Si ( ai, bi, ci ), όπου το a είναι το αριστερό όριο, το i c είναι το i δεξιό όριο και το b i η τιμή που η συνάρτηση παίρνει την μέγιστη τιμή δηλαδή το 1.

Προσέγγιση Προέκτασης [3/5] Παράδειγμα (2/4) S= {N, VL, L, M, H, VH, P}, όπου: P = Perfect = (.83, 1, 1) VH = Very_High = (.67,.83, 1) H = High = (.5,.67,.83) M = Medium = (.33,.5,.67) L = Low = (.17,.33,.5) VL = Very_Low = (0,.17,.33) N = None = (0, 0,.17)

Προσέγγιση Προέκτασης [4/5] Παράδειγμα (3/4) x 1 x 2 x 3 x 4 P 1 VL M M L P 2 M L VL H P 3 H VL M M P 4 H H L L C = (1/ m a,1/ m b,1/ m c ) d j m i1 ij m i1 ij m 2 2 2 ( si, C j ) Q1 ( a1 a j ) Q2 ( b1 bj ) Q3 ( c1 c j ) i1 ij

Προσέγγιση Προέκτασης [5/5] Παράδειγμα (4/4) Το app 1 (.) επιλέγει το s * i (app 1 (C j)= s * i ), έτσι ώστε, d(s * i, C j) d(s i, C j ) s i S

Προσέγγιση Διπλής Αναπαράστασης [1/4] «2-tuple» Έστω S = {s 0,, s g } ένα γλωσσικό σύνολο όρων Έστω β το αποτέλεσμα μιας συμβολικής άθροισης, ενός συνόλου γλωσσικών όρων που έχουν εκφραστεί σε μια γλωσσική κλίμακα S όπου β [0, g] Έστω i=round(β) και a=β i δύο τιμές τέτοιες ώστε i [0, g] και a [ 0.5,0.5) Το μοντέλο γλωσσικής αναπαράστασης αναπαριστά τη γλωσσική πληροφορία με ζεύγη διπλών αναπαραστάσεων (s i, a i ) s S και a [ 0.5,0.5) i i Το s i αντιπροσωπεύει την γλωσσική προέλευση της πληροφορίας Το α i αποτελεί μια αριθμητική τιμή, η οποία εκφράζει την απόδοση της μετάφρασης από το αρχικό αποτέλεσμα β στο πλησιέστερο όρο i στο σύνολο γλωσσικών στοιχείων (s i ). Herrera F, Martinez L. (2000)

Προσέγγιση Διπλής Αναπαράστασης [2/4] Μετασχηματισμός Συναρτήσεις μετασχηματισμού ανάμεσα στους γλωσσικούς όρους και τη διπλή αναπαράσταση και ανάμεσα στις αριθμητικές τιμές και τη διπλή αναπαράσταση: Δ:[0,g] S [-0.5,0.5) si, i round( ) όπου i=round(β) και Δ(β)=(s i,a) με a i, a [ 0.5,0.5) a i [ 0.5, 0.5) Υπάρχει πάντα μια συνάρτηση Δ -1, τέτοια ώστε από τη διπλή αναπαράσταση επιστρέφει την ισοδύναμη αριθμητική τιμή β [0, g] Έτσι, ορίζεται η παρακάτω συνάρτηση: -1 Δ : S [ 0.5,0.5) [0, g] -1 Δ (s i,a)=i+a=β Herrera F, Martinez L. (2000)

Προσέγγιση Διπλής Αναπαράστασης [3/4] Παραδείγματα β=3.25

Προσέγγιση Διπλής Αναπαράστασης [4/4] Αριθμητικός Μέσος Σταθμισμένος Μέσος

2-tuple LOWA (1/2) Έστω A ( r, a ),...,( r, a ) 1 1 m m ένα σύνολο από διπλές αναπαραστάσεις που πρέπει να συναθροιστούν Το διάνυσμα άθροισης για τη διπλή αναπαράσταση ορίζεται ως: m m 1 i ( j) ( j) i () i () i i() i 1 1 m EC { w,( r, a ), j 1,..., m} ( w (( r, a ))) ( w ), όπου: {r σ(j), a σ(j) } {r σ(i), a σ(i) }, i j (πρόκειται ουσιαστικά για το διάνυσμα των αποδόσεων σε διάταξη από το μεγαλύτερο στο μικρότερο) W=[w 1,...,w m ] είναι το διάνυσμα των βαρών που προκύπτει από τον ποσοτικοποιητή του Yager. Herrera F, Martinez L. (2000)

Ποσοτικοποιητής Yager 2-tuple LOWA (2/2) Most (0.3, 0.8), At least half (0, 0.5), As many as possible (0.5, 1) 1 1 1 0 0.3 0.8 x 0 0.5 x 0.5 1 x Most At least half As many as possible Ποσοτικοποιητής LOWA Yager RR. (1988)