Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html Ασκηση 1. Εστω η γραµµική απεικόνιση f : R 3 R 3 η οποία ορίζεται από τη σχέση : f(x, y, z) (x + 2y, y z, 2x + 4y) Να υπολογιστεί µια ϐάση του πυρήνα Ker(f) και µια ϐάση της εικόνας Im(f) της f. Λύση. Εστω (x, y, z) R 3. Τότε : (x, y, z) Ker f αν και µόνον αν : f(x, y, z) (0, 0, 0) (x + 2y, y z, 2x + 4y) (0, 0, 0) x 2y και y z Συνεπώς ο πυρήνας της f είναι Ker f (x, y, z) R 3 f(x, y, z) (0, 0, 0)} (x, y, z) R 3 x 2y και y z} ( 2y, y, y) R 3 y R} y( 2, 1, 1) R 3 y R} ( 2, 1, 1) και αφού ( 2, 1, 1) (0, 0, 0) έπεται ότι το διάνυσµα ( 2, 1, 1) είναι γραµµικά ανεξάρτητο. Εποµένως το σύνολο ( 2, 1, 1)} αποτελεί ϐάση του Ker f. Επειδή το σύνολο B e 1 (1, 0, 0), e 2 (0, 1, 0), e 3 (0, 0, 1) }, ως ϐάση του R 3, παράγει τον R 3, έπεται ότι το σύνολο f(b) f( e 1 ), f( e 2 ), f( e 3 ) } παράγει την εικόνα Im f της f. Ετσι : και Συνεπώς Im f f(1, 0, 0), f(0, 1, 0), f(0, 0, 1) (1, 0, 2), (2, 1, 4), (0, 1, 0) 2 2 1 4 0 Γ 2 Γ 2 2Γ 1 2 0 Γ 3 Γ 3 +Γ 2 0 2 0 0 Im f (1, 0, 2), (2, 1, 4), (0, 1, 0) (1, 0, 2), (0, 1, 0) ιαφορετικά: εξετάζουµε αν τα παραπάνω διανύσµατα είναι γραµµικά ανεξάρτητα. Εστω κ(1, 0, 2) + λ(2, 1, 4) + µ(0, 1, 0) (0, 0, 0) κ + 2λ 0 και λ µ 0 Το σύστηµα αυτό έχει ως γενική λύση : ( 2λ, λ, λ) και εποµένως, για λ 1, ϑα έχουµε µια σχέση γραµµικής εξάρτησης : 2(1, 0, 2) + (2, 1, 4) + (0, 1, 0) (0, 0, 0) από την οποία ϐλέπουµε ότι (2, 1, 4) (1, 0, 2), (0, 1, 0) και άρα όπως και παραπάνω έχουµε : Im f (1, 0, 2), (2, 1, 4), (0, 1, 0) (1, 0, 2), (0, 1, 0). Εύκολα διαπιστώνουµε ότι τα διανύσµατα (1, 0, 2), (0, 1, 0) είναι γραµµικά ανεξάρτητα. (1, 0, 2), (0, 1, 0)} αποτελεί ϐάση της εικόνας Im f της f. Αρα το σύνολο Ασκηση 2. Να εξεταστεί αν η γραµµική απεικόνιση είναι ισοµορφισµός. f : R n R n, f(x 1,, x n ) (x 1, x 1 + x 2,, x 1 + x 2 + + x n )
2 Λύση. Για να είναι η γραµµική απεικόνιση f ισοµορφισµός πρέπει να είναι µονοµορφισµός και επιµορφισµός. ηλαδή πρέπει Ker f 0} και Im f R n. Εχουµε : Ker f (x 1,, x n ) R n f(x 1,, x n ) (0,, 0)} (x 1,, x n ) R n (x 1, x 1 + x 2,, x 1 + x 2 + + x n ) (0, 0,, 0)} (x 1,, x n ) R n x 1 0, x 1 + x 2 0,, x 1 + x 2 + + x n 0} (x 1,, x n ) R n x 1 x 2 x n 0} (0,, 0)} και άρα η γραµµική απεικόνιση f είναι µονοµορφισµός. Εστω (y 1, y 2,, y n ) R n. Τότε υπάρχει το διάνυσµα (y 1, y 2 y 1, y 3 y 2,, y n y n 1 ) R n έτσι ώστε f(y 1, y 2 y 1, y 3 y 2,, y n y n 1 ) (y 1, y 1 + y 2 y 1,, y 1 + y 2 y 1 + y 3 y 2 + y n y n 1 ) (y 1, y 2,, y n ) και άρα η f είναι επιµορφισµός. Συνεπώς, η γραµµική απεικόνιση f είναι ισοµορφισµός. Παρατήρηση 1. Εστω E και F δυο K-διανυσµατικοί χώροι πεπερασµένης διάστασης και έστω f : E F µια γραµµική απεικόνιση. Τότε έχουµε την Θεµελιώδη Εξίσωση των ιαστάσεων: dim K E dim K Ker f + dim K Im f Ας υποθέσουµε ότι dim K E dim K F. Τότε έχουµε τα ακόλουθα : (1) Αν η f είναι µονοµορφισµός, τότε η f είναι ισοµορφισµός. Αφού η f είναι µονοµορφισµός έχουµε Ker f 0} και άρα dim K Ker f 0. Εποµένως από την εξίσωση των διαστάσεων έχουµε ότι dim K E dim K Im f. Αρα έχουµε dimk F dim K Im f Im f F f : επιµορφισµός Im f : υπόχωρος του F Συνεπώς η γραµµική απεικόνιση f είναι ισοµορφισµός. (2) Αν η f είναι επιµορφισµός, τότε η f είναι ισοµορφισµός. Αφού η f είναι επιµορφισµός έχουµε Im f F και άρα dim K Im f dim K F. Αρα από την εξίσωση των διαστάσεων έχουµε ότι dim K E dim K Ker f + dim K F και dim K E dim K F. Εποµένως dim K Ker f 0, δηλαδή Ker f 0}. Αρα η f είναι µονοµορφισµός και άρα ισοµορφισµός. Εποµένως στην προηγούµενη άσκηση αρκεί να δείξουµε ότι η f είναι είτε µονοµορφισµός ή επιµορφισµός. Τότε έπεται ότι η f είναι ισοµορφισµός. Ασκηση 3. Εστω f : E E µια γραµµική απεικόνιση, όπου ο K-διανυσµατικός χώρος E έχει πεπερασµένη διάσταση. (1) Να δείξετε ότι η f είναι µονοµορφισµός αν και µόνον αν η f στέλνει γραµµικά ανεξάρτητα σύνολα διανυσµάτων σε γραµµικά ανεξάρτητα σύνολα διανυσµάτων : C e 1, e k } : γραµµικά ανεξάρτητο σύνολο f(c) f( e 1 ), f( e k )} : γραµµικά ανεξάρτητο σύνολο (2) Να δείξετε ότι η f είναι ισοµορφισµός αν και µόνον αν η f στέλνει τυχούσα ϐάση του E σε ϐάση του E: B e 1, e n } : ϐάση του E f(b) f( e 1 ), f( e n )} : ϐάση του E
3 Λύση. (1) () Υποθέτουµε ότι η γραµµική απεικόνιση f είναι µονοµορφισµός και έστω C e 1, e k } ένα σύνολο γραµµικά ανεξάρτητων διανυσµάτων. Θα δείξουµε ότι το σύνολο f(c) f( e 1 ), f( e k )} είναι γραµµικά ανεξάρτητο. Εστω λ 1 f( e 1 ) + + λ k f( e k ) 0 f(λ 1 e 1 + + λ k e k ) 0 f : γραµµική λ 1 e 1 + + λ k e k Ker f 0} f : µονοµορφισµός λ 1 e 1 + + λ k e k 0 e 1,, e k }: γραµµικά ανεξάρτητο λ 1 λ k 0 Αρα το σύνολο f(c) f( e 1 ), f( e k )} είναι γραµµικά ανεξάρτητο. ( ) Υποθέτουµε ότι η f στέλνει γραµµικά ανεξάρτητα σύνολα διανυσµάτων σε γραµµικά ανεξάρτητα σύνολα διανυσµάτων, δηλαδή αν C e 1, e k } είναι ένα σύνολο γραµµικά ανεξάρτητων διανυσµάτων τότε το σύνολο f(c) f( e 1 ), f( e k )} είναι γραµµικά ανεξάρτητο. Θα δείξουµε ότι η f είναι µονοµορφισµός. Εστω x Ker f, δηλαδή f( x) 0. Αν το διάνυσµα x 0 τότε το σύνολο x} είναι γραµµικά ανεξάρτητο και άρα από την υπόθεση έπεται ότι το σύνολο f( x)} είναι γραµµικά ανεξάρτητο και άρα f( x) 0. Αυτό όµως είναι άτοπο διότι το διάνυσµα x Ker f. Αρα δείξαµε ότι αν x Ker f τότε x 0. Συνεπώς Ker f 0}, δηλαδή η f είναι µονοµορφισµός. (2) () Υποθέτουµε ότι η γραµµική απεικόνιση f είναι ισοµορφισµός, δηλαδή η f είναι µονοµορφισµός και επιµορφισµός. Εστω B e 1,, e n } µια ϐάση του E. Θα δείξουµε ότι το σύνολο f(b) f( e 1 ),, f( e n )} είναι ϐάση του E. Αφού η f είναι µονοµορφισµός, έπεται από το (1) παραπάνω ότι το σύνολο f(b) είναι γραµµικά ανεξάρτητο. Εστω y E. Τότε αφού η f είναι επιµορφισµός υπάρχει ένα x E έτσι ώστε f( x) y. Το σύνολο B e 1,, e n } είναι ϐάση του E, άρα το x γράφεται x λ 1 e 1 + + λ n e n. Τότε y f(λ 1 e 1 + + λ k e k ) λ 1 f( e 1 ) + + λ n f( e n ) y f( e 1 ),, f( e n ) E f( e 1 ),, f( e n ) f(b) και άρα δείξαµε ότι το σύνολο f(b) παράγει τον E. Εποµένως το σύνολο f(b) είναι ϐάση του E. ιαφορετικά: έχοντας δείξει ότι το σύνολο f(b) είναι γραµµικά ανεξάρτητο, ϑα µπορούσαµε να δείξουµε ότι το σύνολο f(b) είναι ϐάση του E ως εξής : Επειδή f είναι ισοµορφισµός, έπεται ότι : n dim K E dim K F. Από την άλλη πλευρά f(b) n (διότι διαφορετικά υπάρχουν 1 i j n έτις ώστε : f( e i ) f( e j ). Τότε όµως e i e j επειδή η f είναι µονοµορφισµός, κάτι το οποίο είναι άτοπο διότι το B είναι ϐάση του E). Από γνωστό Θεώρηµα : f(b) γραµµικά ανεξάρτητο και f(b) dim K F f(b) είναι ϐάση του F. ( ) Υποθέτουµε ότι αν B e 1, e n } είναι µια ϐάση του E τότε το σύνολο f(b) f( e 1 ), f( e n )} είναι ϐάση του E. Θα δείξουµε ότι η f είναι ισοµορφισµός. f µονοµορφισµός: Εστω x Ker f και x λ 1 e 1 + + λ n e n. Τότε : f( x) 0 f(λ 1 e 1 + + λ n e n ) 0 λ 1 f( e 1 ) + + λ n f( e n ) 0 f : γραµµική λ 1 λ n 0 f( e 1 ),, f( e n )}: γραµµικά ανεξάρτητο x 0 Ker f 0 f : µονοµορφισµός f επιµορφισµός: Εστω y E. Αφού το σύνολο f(b) f( e 1 ), f( e n )} είναι ϐάση του E, τότε y λ 1 f( e 1 ) + + λ n f( e n ) f(λ 1 e 1 + + λ n e n ) f( x) όπου x λ 1 e 1 + + λ n e n E. Συνεπώς η f είναι επιµορφισµός.
4 Εποµένως έχουµε ότι η f είναι ισοµορφισµός. ιαφορετικά: έχοντας δείξει ότι η f είναι µονοµορφισµός, ϑα µπορούσαµε να δείξουµε ότι η f είναι επιµορφισµός ως εξής : Επειδή το σύνολο f(b) είναι ϐάση του F έπεται ότι : n dim K E dim K F. Από την άλλη πλευρά η Θεµελιώδης Εξίσωση ιαστάσεων δίνει ότι : n dim K E dim K Im f. Επειδή Im f είναι υπόχωρος του F και dim K Im f dim K F, από γνωστό Θεώρηµα έπεται ότι Im f F, δηλαδή η f είναι επιµορφισµός. Ασκηση 4. Να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της γραµµικής απεικόνισης : f : R 3 R 3, f(x, y, z) (x + 2y, y x, x + 2z) Λύση. Εστω (x, y, z) R 3. Τότε : (x, y, z) Ker f αν και µόνον αν : f(x, y, z) (0, 0, 0) (x + 2y, y x, x + 2z) (0, 0, 0) x y z 0 Συνεπώς Ker f 0} και άρα η f είναι µονοµορφισµός και άρα το κενό σύνολο } είναι ϐάση του πυρήνα Ker f της f. Επειδή το σύνολο B e 1 (1, 0, 0), e 2 (0, 1, 0), e 3 (0, 0, 1) }, ως ϐάση του R 3, παράγει τον R 3, έπεται ότι το σύνολο f(b) f( e 1 ), f( e 2 ), f( e 3 ) } παράγει την εικόνα Im f της f. Ετσι : και Im f f(1, 0, 0), f(0, 1, 0), f(0, 0, 1) (1, 1, 1), (2, 1, 0), (0, 0, 2) 1 1 1 2 2 6 0 και άρα τα διαµύσµατα (1, 1, 1), (2, 1, 0), (0, 0, 2) είναι γραµµικά ανεξάρτητα. Εποµένως, το σύνολο των διανυσµάτων (1, 1, 1), (2, 1, 0), (0, 0, 2)} αποτελεί ϐάση της εικόνας Im f της f. Να σηµειώσουµε ότι από την Παρατήρηση 1 έπεται ότι η f είναι ισοµορφισµός. Ασκηση 5. Θεωρούµε τη γραµµική απεικόνιση : f : R 4 R 3, f(x, y, z, w) (x z + 2w, 2x + y + 2z, y + 4w) (1) Να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της f. (2) Να δειχθεί ότι το διάνυσµα (1, 3, κ) Im f κ 5. (3) Ποια συνθήκη πρέπει να ικανοποιούν τα a, b R έτσι ώστε (1, a, 1, b) Ker f; Λύση. (1) Εστω (x, y, z, w) R 4. Τότε : (x, y, z, w) Ker f αν και µόνον αν : f(x, y, z, w) (0, 0, 0) (x z + 2w, 2x + y + 2z, y + 4w) (0, 0, 0) και 1 2 2 1 2 0 0 4 Γ 2 Γ 2 +2Γ 1 1 2 0 4 Γ 3 Γ 3 Γ 2 0 4 x z + 2w 0 2x + y + 2z 0 y + 4w 0 1 2 0 4 και άρα καταλήγουµε στο σύστηµα : x z + 2w 0 y + 4w 0 x z 2w y 4w
5 Συνεπώς ο πυρήνας της f είναι Ker f (x, y, z, w) R 4 f(x, y, z, w) (0, 0, 0)} (x, y, z, w) R 4 x z 2w και y 4w} (z 2w, 4w, z, w) R 4 z, w R} z(1, 0, 1, 0) + w( 2, 4, 0, 1) R 4 z, w R} (1, 0, 1, 0), ( 2, 4, 0, 1) Εστω λ 1 (1, 0, 1, 0) + λ 2 ( 2, 4, 0, 1) (0, 0, 0, 0). Τότε (λ 1 2λ 2, 4λ 2, λ 1, λ 2 ) (0, 0, 0, 0) λ 1 λ 2 0 και άρα τα διανύσµατα (1, 0, 1, 0), ( 2, 4, 0, 1) είναι γραµµικά ανεξάρτητα. Εποµένως το σύνολο (1, 0, 1, 0), ( 2, 4, 0, 1)} αποτελεί ϐάση του Ker f. Επειδή το σύνολο B e 1 (1, 0, 0, 0), e 2 (0, 1, 0, 0), e 3 (0, 0, 1, 0), e 4 (0, 0, 0, 1) }, ως ϐάση του R 4, παράγει τον R 4, έπεται ότι το σύνολο f(b) f( e 1 ), f( e 2 ), f( e 3 ), f( e 4 ) } παράγει την εικόνα Im f της f. Ετσι : Im f f(1, 0, 0, 0), f(0, 1, 0, 0), f(0, 0, 1, 0), f(0, 0, 0, 1) (1, 2, 0), (0, 1, 1), ( 1, 2, 0), (2, 0, 4) (1, 2, 0), (0, 1, 1), (2, 0, 4) Εστω κ(1, 2, 0) + λ(0, 1, 1) + µ(2, 0, 4) (0, 0, 0). Τότε κ + 2µ 0 (κ + 2µ, 2κ + λ, λ + 4µ) (0, 0, 0) 2κ + λ 0 λ + 4µ 0 κ 2µ και λ 4µ Το σύστηµα αυτό έχει ως γενική λύση : ( 2µ, 4µ, µ) όπου µ R και εποµένως, για µ 1, ϑα έχουµε µια σχέση γραµµικής εξάρτησης : Συνεπώς 2(1, 2, 0) 4(0, 1, 1) + (2, 0, 4) (0, 0, 0) (2, 0, 4) (1, 2, 0), (0, 1, 1) Im f (1, 2, 0), (0, 1, 1) και εύκολα διαπιστώνουµε ότι τα διανύσµατα (1, 2, 0), (0, 1, 1) είναι γραµµικά ανεξάρτητα. Αρα το σύνολο (1, 2, 0), (0, 1, 1)} αποτελεί ϐάση της εικόνας Im f της f. (2) Από το προηγούµενο ερώτηµα γνωρίζουµε ότι το σύνολο (1, 2, 0), (0, 1, 1)} αποτελεί ϐάση της εικόνας Im f της f. Συνεπώς το διάνυσµα (1, 3, κ) Im f αν και µόνο αν υπάρχουν λ 1, λ 2 R έτσι ώστε λ 1 (1, 2, 0) + λ 2 (0, 1, 1) (1, 3, κ) (λ 1, 2λ 1 + λ 2, λ 2 ) (1, 3, κ) Αρα έχουµε λ 1 1, λ 2 κ και 2λ 1 + λ 2 3 λ 2 3 + 2λ 1 5 κ 5 Εποµένως δείξαµε ότι (1, 3, κ) Im f αν και µόνο αν κ 5. (3) Από το ερώτηµα (1) γνωρίζουµε ότι το σύνολο (1, 0, 1, 0), ( 2, 4, 0, 1)} αποτελεί ϐάση του Ker f. Εποµένως το διάνυσµα (1, a, 1, b) Ker f αν και µόνο αν υπάρχουν λ 1, λ 2 R έτσι ώστε λ 1 (1, 0, 1, 0) + λ 2 ( 2, 4, 0, 1) (1, a, 1, b) (λ 1 2λ 2, 4λ 2, λ 1, λ 2 ) (1, a, 1, b) Αρα για a b 0 το διάνυσµα (1, a, 1, b) Ker f. a b 0
6 Ασκηση 6. Εστω f : E E µια γραµµική απεικόνιση, όπου dim K E <. Εστω ότι f n 0 και f n 1 0. Αν x E, να δείξετε ότι f n 1 ( x) 0 αν και µόνο αν το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο. Λύση. Αν το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο τότε έχουµε ότι f n 1 ( x) 0. Εστω x E έτσι ώστε f n 1 ( x) 0. Θα δείξουµε ότι το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο. Εστω λ 0 x + λ 1 f( x) + + λ n 1 f n 1 ( x) 0. Εφαρµόζοντας διαδοχικά την f στην παραπάνω σχέση και λαµβάνοντας υπ όψιν ότι f n 0 και f n 1 ( x) 0, ϑα έχουµε :. λ 0 x + λ 1 f( x) + + λ n 1 f n 1 ( x) 0 λ 0 f( x) + λ 1 f 2 ( x) + + λ n 2 f n 1 ( x) + λ n 1 f n ( x) 0 λ 0 f( x) + λ 1 f 2 ( x) + + λ n 2 f n 1 ( x) + 0 0 λ 0 f 2 ( x) + λ 1 f 3 ( x) + + λ n 3 f n 1 ( x) + λ n 2 f n ( x) 0 λ 0 f 2 ( x) + λ 1 f 3 ( x) + + λ n 3 f n 1 ( x) + 0 0 λ 0 f 3 ( x) + λ 1 f 4 ( x) + + λ n 4 f n 1 ( x) + λ n 3 f n ( x) 0 λ 0 f 3 ( x) + λ 1 f 4 ( x) + + λ n 4 f n 1 ( x) + 0 0 λ 0 f n 2 ( x) + λ 1 f n 1 ( x) + λ 2 f n ( x) 0 λ 0 f n 2 ( x) + λ 1 f n 1 ( x) + 0 0 λ 0 f n 1 ( x) + λ 1 f n ( x) 0 λ 0 f n 1 ( x) + 0 0 λ 0 f n 1 ( x) 0 λ 0 0 αφού f n 1 ( x) 0 ( ) Αρα από τη σχέση ( ) έχουµε λ 1 f( x) + + λ n 1 f n 1 ( x) 0 και αν επαναλάβουµε ξανά την παραπάνω διαδικασία τότε λ1 f n 1 ( x) 0 f n 1 ( x) 0 λ 1 0 Συνεχίζοντας µε τον ίδιο τρόπο έπεται ότι λ 1 λ n 1 0 και άρα το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο. Ασκηση 7. Θεωρούµε τον 2 2 πίνακα πραγµατικών αριθµών ( ) A 1 1 και έστω η γραµµική απεικόνιση f : M 2 2 (R) M 2 2 (R), f(m) AM MA Να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της f.
( ) Λύση. Εστω M M c d 2 2 (R). Τότε ( ) f(m) AM MA f( ) c d ( ) Τότε : M Ker f αν και µόνον αν : c d ( f(m) 0 b 0 a + d b ( ) ( ) ( ) ( ) 1 1 c d c d 1 1 ( ) ( ) a b b a + c b + d c d d ( ) b 0 a + d b ) ( ) b 0 a d 7 και άρα ο πυρήνας της f είναι ( ) ( ) ( ) } Ker f M c d 2 2 (R) f( ) c d ( ) } M c d 2 2 (R) b 0 και a d ( ) } a 0 M c a 2 2 (R) a, c R ( ) ( ) } 1 0 a + c M 0 1 2 2 (R) a, c R ( ) ( ) 1 0, 0 1 ( ) ( ) Θέτουµε A και B. Εύκολα διαπιστώνουµε ότι τα διανύσµατα A, B είναι γραµµικά 0 1 ανεξάρτητα και άρα το σύνολο A, B} είναι ϐάση του πυρήνα Ker f της f. Για την εικόνα της f έχουµε : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 0 f( ), f( ), f( ), f( ) 1 1 1 1 και άρα ( ) ( ) ( ) ( ) ( ) 1 0 1 0 Im f,,, 1 1 1 1 ( ) ( ) Θέτουµε Γ και. Τότε αφού τα διανύσµατα Γ, είναι γραµµικά ανεξάρτητα, έπεται 0 1 ότι το σύνολο Γ, } είναι ϐάση της εικόνας Im f της f. Ασκηση 8. Θεωρούµε τη ϐάση του R 2 [t] και τα διανύσµατα B : e 1 1, e 2 t, e 3 t 2 } w 1 1 + t, w 2 3 t 2, w 3 4 + 2t 3t 2 του R 2 [t]. Να προσδιορισθεί η µοναδική γραµµική απεικόνιση f : R 2 [t] R 2 [t] έτσι ώστε : f( e i ) w i, 1 i 3. Ακολούθως να εξετασθεί αν η f είναι ισοµορφισµός. Αν η f δεν είναι ισοµορφισµός να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της f.
8 Λύση. Εστω P (t) a + bt + ct 2 R 2 [t]. Τότε έχουµε Εποµένως η f ορίζεται ως ακολούθως : f(a + bt + ct 2 ) af(1) + bf(t) + cf(t 2 ) a(1 + t) + b(3 t 2 ) + c(4 + 2t 3t 2 ) a + at + 3b bt 2 + 4c + 2ct 3ct 2 (a + 3b + 4c) + (a + 2c)t + ( b 3c)t 2 f : R 2 [t] R 2 [t], a + bt + ct 2 f(a + bt + ct 2 ) (a + 3b + 4c) + (a + 2c)t + ( b 3c)t 2 Εστω P (t) a + bt + ct 2 R 2 [t]. Τότε : P (t) Ker f αν και µόνον αν : f(p (t)) 0 (a + 3b + 4c) + (a + 2c)t + ( b 3c)t 2 0 + 0t + 0t 2 a + 3b + 4c 0 a + 2c 0 b 3c 0 Τότε b 3c, a 2c και άρα 2c + 3( 3c) + 4c 0 c 0. Εποµένως έχουµε a b c 0. Συνεπώς ο πυρήνας της f είναι Ker f 0} και άρα η γραµµική απεικόνιση f είναι µονοµορφισµός. Από την εξίσωση των διαστάσεων έχουµε : dimr Im f 3 dim R R 2 [t] dim R Ker f + dim R Im f 3 0 + dim R Im f Im f : υπόχωρος του R 2 [t] Im f R 2 [t] Εποµένως η γραµµική απεικόνιση f είναι ισοµορφισµός. f : επιµορφισµός