4 Περιγραφικη Στατιστικη



Σχετικά έγγραφα
Μαθηματικά Και Στατιστική Στη Βιολογία

4. Δειγματα. Μαθηματικά και Στατιστικη στην Βιολογια. Mathematics and Statistics in Biology

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

Μαθηματικά Και Στατιστική Στη Βιολογία

Στατιστική Επιχειρήσεων Ι

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

8. Ελεγχος Υποθεσεων. Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

Μέρος V. Στατιστική. Εισαγωγή: Βασικές έννοιες και ορισμοί. Περιγραφική Στατιστική (Descriptive Statistics)

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Περιγραφική Στατιστική. Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσεων"

Βιοστατιστική ΒΙΟ-309

Μοντέλα στην Επιστήμη Τροφίμων 532Ε

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Γραμμικά Μοντέλα. Βιολέττα Ε. Πιπερίγκου. Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών. h p://

5. Δεικτες Παραμετροι

5. Δεικτες Παραμετροι

7. Εκτιμήσεις Τιμων Δεικτων

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

Στατιστική Ι. Ανάλυση Παλινδρόμησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Ενδεικτικές ασκήσεις ΔΙΠ 50

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

Απλή Παλινδρόμηση και Συσχέτιση

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος

Μαθηματικά Και Στατιστική Στη Βιολογία

Εφαρμοσμένη Στατιστική

Δείγμα πριν τις διορθώσεις

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

Συνοπτικά περιεχόμενα

Βιοστατιστική ΒΙΟ-309

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Διάστημα εμπιστοσύνης της μέσης τιμής

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

Εισαγωγή στη Στατιστική

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

9. Παλινδρόμηση και Συσχέτιση

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Βιοστατιστική ΒΙΟ-309

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

Στοχαστικές Στρατηγικές

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Εισόδημα Κατανάλωση

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

Kruskal-Wallis H

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Περιεχόμενα. Πρόλογος... 15

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

Εισαγωγή στη Στατιστική

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

ΠΑΛΙΝ ΡΟΜΗΣΗ..Π.Μ.Σ. Μαθηµατικά των Υπολογιστών και των Αποφάσεων. Πάτρα, 27 Ιανουαρίου 2011

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ και ΣΤΑΤΙΣΤΙΚΗ στη ΒΙΟΛΟΓΙΑ 4 Περιγραφικη Στατιστικη Ι. Αντωνιου Κ. Κρικωνης Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο Θεσσαλονικης Χειμερινο Εξαμηνο

Συλλογή Δεδομένων από τις Παρατηρήσεις Διενέργεια έρευνας κατά πόσον κάποιος πιστεύει ότι η κοτόσουπα είναι αποτελεσματική στην πρόληψη ττου κρυολογήματος. Πείραμα τους δίνουμε κοτόσουπα και μετράμε πόσες φορές θα κρυολογήσουν. Remember Always Ο σωστός σχεδιασμός της Έρευνας ή του Πειράματος προυποθετει: Σαφή διατύπωση των ερωτημάτων (queries) ώστε να προσδιορίζονται ορθά οι σχετικές Μεταβλητες. Στοχοποίηση του πληθυσμού που ενδιαφέρει. Επιλογή τυχαίου (αμερόληπτου) δείγματος. Σωστή κωδικοποίηση και καταχώρηση των απαντήσεων σε εύχρηση βάση δεδομένων για περαιτερω επεξεργασια.

Οργάνωση και Παρουσίαση Δεδομένων Ορισμος Φασμα Δειγματος Ν μετρησεων της Μεταβλητης Χ οι n N διαφορετικες τιμες {x 1, x 2,, x n } του Δειγματος. Συνηθως διατασσονται: x 1 < x 2 < < x n Ορισμος Συχνοτης του Δειγματος Ν ν = ο αριθμος εμφανισεων της τιμης x ν, ν=1,2,,n στο δειγμα Ν 1 + Ν 2 + + Ν n = N

Ορισμος Σχετικη Συχνοτης του Δειγματος = Πιθανοτητα Δειγματος ρ ν = Ν ν Ν = ρ(x ν), ν=1,2,,n Η σχετική συχνότητα είναι πιθανότητα στο φασμα του Δειγματος {x 1, x 2,, x n } θεωρουμενο ως Δειγματοχωρος Ορισμος Αθροιστικη Σχετικη Συχνοτης του Δειγματος F ν = Ν 1+Ν 2 + + Ν ν Ν = F(x ν ) = ρ 1 +ρ 2 + +ρ ν, ν=1,2,,n Η συναρτηση Κατανομης της πιθανοτητας ρ

Παρατηρηση: Ριψη Ζαριου 20 φορες Μετρηση Δειγμα Φασμα Συχνοτητα Σχετικη Συχνοτητα Αθροιστικη 1 ξ 1 =2 x 1 = 1 Ν 1 = 2 ρ 1 = 2 2 ξ 2 =4 x 2 = 2 Ν 2 = 5 ρ 2 = 5 3 ξ 3 =5 x 3 = 3 Ν 3 = 2 ρ 3 = 2 4 ξ 4 =6 x 4 = 4 Ν 4 = 5 ρ 4 = 5 5 ξ 5 =3 x 5 = 5 Ν 5 = 2 ρ 5 = 2 6 ξ 6 =4 x 6 = 6 Ν 6 = 4 ρ 6 = 4 7 ξ 7 =2 8 ξ 8 =1 9 ξ 9 =4 10 ξ 10 =6 11 ξ 11 =6 12 ξ 12 =3 13 ξ 13 =2 14 ξ 14 =4 15 ξ 15 =2 16 ξ 16 =6 17 ξ 17 =5 18 ξ 18 =4 19 ξ 19 =2 20 ξ 20 =1 20 20 20 20 20 20 Σχετικη Συχνοτητα F 1 = 2 20 F 2 = 7 20 F 3 = 9 20 F 4 = 14 20 F 5 = 16 20 F 6 = 20 20 = 1

Συχνοτητες και Σχετικες Συχνοτητες Δειγματος Παρ ότι είναι ισοδυναμες μαθηματικα, πολλοι χρηστες διευκολυνονται με τις Φυσικες συχνοτητες «It makes little mathematical difference whether statistics are expressed as probabilities, percentages, or absolute frequencies. It does, however, make a psychological difference. More specifically, statistics expressed as natural frequencies improve the statistical thinking of experts and nonexperts alike» Hoffrage U., Lindsey S., Hertwig R., Gigerenzer G. 2000, Communicating Statistical Information, Science 230, 22 December, 2261-2262

Παραστάσεις Δεδομενων ραβδογράμματα, ιστογράμματα, κυκλικά διαγράμματα, σημειογράμματα, θηκογράμματα).

Οι Στατιστικες Παραμετροι του Δείγματος είναι οι στατιστικές παράμετροι με πιθανοτητα την σχετική συχνότητα του δείγματος Παραμετροι Θεσης Κατανομης (Location Parameters) Μέση Τιμή (Μean) m = ξ 1 + + ξ Ν Ν = x 1f 1 + + x n f n n = x 1 ρ 1 + + x n ρ n Ροπες (Moments) Kορυφες (modes) Διάμεσος (median). n περιττος: x 1/2 = x (n+1)/2 n αρτιος: x 1/2 = x n/2 +x n/2+1 2 Ποσοστημορια (Quantiles, Percentiles)

Παραμετροι Μεταβλητότητας Κατανομης (Dispersion Parameters) Εύρος (range) δειγματος. Διασπορά (variance) δειγματος Τυπική Απόκλιση (standard deviation) δειγματος Αμεροληπτη Τυπική Απόκλιση δειγματος Σχετικό Σφάλμα (relative error) δειγματος Αμεροληπτο Σχετικό Σφάλμα (relative error) δειγματος Τυπικό Σφάλμα Μεσης Τιμης (Standard Error of the Mean) δειγματος Αποστάσεις Ποσοστημορίων Η Αμεροληπτη Τυπική Απόκλιση Το Αμεροληπτο Σχετικό Σφάλμα και το Τυπικό Σφάλμα Μ.Τ. ορίζονται μόνο για δείγματα

Oρισμος Εύρος δειγματος: x n x 1 Oρισμος Διασπορά δειγματος σ 2 = (ξ 1 m ) 2 + +(ξ Ν m ) 2 Ν = (x 1 m ) 2 ρ 1 + + (x n m ) 2 ρ n Oρισμος Τυπική Απόκλιση (standard deviation) δειγματος σ = σ 2 = (ξ 1 m ) 2 + +(ξ Ν m ) 2 Ν = (x 1 m ) 2 ρ 1 + + (x n m ) 2 ρ n Θεωρημα H Τυπικη Αποκλιση δειγματος δεν είναι Αμεροληπτη Στατιστικη παραμετρος

Oρισμος Αμεροληπτη Τυπικη Αποκλιση δειγματος s = (ξ 1 m ) 2 + +(ξ Ν m ) 2 Ν 1 m = η Μεση Τιμη του Δειγματος Η διoρθωση (N 1 αντι N) Bessel 1830

Oρισμος Σχετικό Σφάλμα δειγματος σ m Oρισμος Αμεροληπτο Σχετικό Σφάλμα (relative error) δειγματος s m Oρισμος Τυπικό Σφάλμα Μεσης Τιμης (Standard Error of the Mean) δειγματος SE= s N = (ξ 1 m )2 + +(ξ Ν m )2 N(Ν 1)

Παραμετροι Σχηματος Κατανομης (Shape Parameters) Λοξότητα (skewness). Κύρτωση (kurtosis). Εντροπια Δειγματος n Ĩ = ρ ν lοg 2 ρ ν ν=1

Γραμμικη Παλινδρομηση Διαγραμμα Διασπορας των μετρησεων της μεταβλητης Υ ως προς την Χ (ελεγχομενη) Scatter Plots of Pairwise Combinations of Extrasolar Planet Data http://vis.berkeley.edu/courses/cs294-10-fa07/wiki/index.php/a2-markhowison

Προβλημα Ευρεσης Σχεσης Υ= f(x) από τις Παρατηρησεις (Data Fitting) x 1, x 2,, x N y 1, y 2,, y N y 1 = f(x 1 ), y 2 = f(x 2 ),, y N = f(x N ) f : Συναρτηση Παλινδρομισης (Regression Function) Στην πραξη η εκτιμωμενη συναρτηση f προσεγγιζει τις παρατηρουμενες τιμες Σφαλματα: (f(x 1 ) y 1 ) (f(x 2 ) y 2 ) (f(x Ν ) y Ν )

Εξισωση Ευθειας Γραμμικης Παλινδρομησης (Linear Regression) Y=α+βΧ

Γραμμικη Παλινδρομηση Εκτιμηση των παραμετρων α, β της Ευθειας Παλινδρομησης Μεθοδος Ελαχιστων Τετραγωνων Gauss Θεωρημα H συναρτηση Y=f(X) = α +β Χ με παραμετρους β = Ν ν=1 Ν ν=1 x ν y ν Nx y Ν ν=1 2 (x ν ) 2 N x ν = S xy (S x ) 2 α = y βx οπου: S xy = ν=1 x νy ν Nx Ν Ν 1 y (S x ) 2 = Ν ν=1 (x ν )2 Nx 2 Ν 1, S y 2 = Ν ν=1 (y ν )2 Ny 2 Ν 1 x = Ν ν=1 x ν Ν, y = Ν ν=1 y ν Ν εχει το Ελαχιστο (Ολικο) Τετραγωνικο Σφαλμα: (f(x 1 ) y 1 ) 2 + (f(x 2 ) y 2 ) 2 + + (f(x Ν ) y Ν ) 2 = ε(α,β)

2) H ελαχιστη τιμη του Μεσου Τετραγωνικου Σφαλματος είναι: ε(α, β) min N = σ Y 2 (1 r 2 ) Εκτιμηση Διασπορας Γραμμικης Παλινδρομησης Oρισμος Συντελεστης (Γραμμικης) Συσχετισης Pearson των Μεταβλητων X, Y = Ν ν=1(x ν x )(y ν y ) varx vary Ν ν=1(x ν x ) 2 Ν ν=1(y ν y ) 2 r = cov(x,y) Θεωρημα r = S xy S x S y = β Sx S y

r = 0 β =0 r 1 β >0 r 1 β <0 Δεν υπαρχει Γραμμικη εξαρτηση των Χ,Υ Υπαρχει θετικη Γραμμικη εξαρτηση των Χ,Υ Υπαρχει αρνητικη Γραμμικη εξαρτηση των Χ,Υ

ΣΧΟΛΙΑ 1) Ανακαλυψη Μεθοδου Ελαχιστων Τετραγωνων Gauss 1795 (18 ετων) 2) Ανακαλυψη Ποσειδωνα από την τροχια του Ουρανου 1846 Με την Μεθοδο Ελαχιστων Τετραγωνων 3) Γενικα Γραμμικα Μοντελα Y=α+β 1 Χ 1 + β 2 Χ 2 + + β Ν Χ Ν 4) Μη Γραμμικη Παλινδρομηση 5) Παρεμβολη με κλασσεις συναρτησεων (Πολυωνυμα, Τριγωνομετρικες, Wavelets) 6) Δειγματοληψια Shannon

Oρισμος Συντελεστης Αλληλοεξαρτησης Αμοιβαιας Πληροφοριας Δειγματος r MI = Ĩ[X] + Ĩ[Y] Ĩ[X, Y] min ( Ĩ[X], Ĩ[Y] ) οπου: Ĩ[X] + Ĩ[Y] Ĩ[X, Y] = x,y ρ(x, y)log 2 ρ(x,y) ρ(x)ρ(y) Ĩ[X] = ρ(x)log 2 ρ(x) x Η Εντροπια Δειγματος της Μεταβλητης X Ĩ[Y] = ρ(y)log 2 ρ(y) y Η Εντροπια Δειγματος της Μεταβλητης Υ Ĩ[X,Y] = ρ(x, y)log 2 ρ(x, y) x,y Η Κοινη Εντροπια Δειγματος των Μεταβλητων X,Y

Παραδειγμα Συσχετιση Χρωματος Οφθαλμων με το Χρωμα Μαλιων των Φοιτητων του 2012-3 Οι Υπολογισμοι εγιναν από τους κ. Ρ.-Ν. Τασακη και Ε. Καραπουλια Πρωτοετεις Φοιτητες Βιολογιας ΑΠΘ Εστω Χ=Χρωμα Οφθαλμων Τιμες: Κ=Καφε, Γ=Γαλαζιο, ΚΠ=Καστανοπρασινο, Π=Πρασινο, ΓΠ=Γαλαζοπρασινο Υ=Χρωμα Μαλλιων Τιμες: μ=μαυρο, ξ=ξανθο, κ=καστανο, κξ=καστανοξανθο

Αποτελεσμα Παρατηρησεων Χ Υ Μαύρα (μ) Ξανθά (ξ) Καστανά (κ) Καστανό- Ξανθα (κξ) Καφέ (Κ) Γαλάζια (Γ) Καστανοπράσινα (ΚΠ) Πράσινα (Π) Γαλαζοπράσινα (ΓΠ) Ρ μ,κ = 4/52 Ρ μ,γ = 0/52 Ρ μ,κπ =3/52 Ρ μ,π =1/52 Ρ μ,γπ =0/52 Ρ μ = 8/52 Ρ ξ,κ = 0/52 Ρ ξ,γ = 0/52 Ρ ξ,κπ =1/52 Ρ ξ,π =0/52 Ρ ξ,γπ =0/52 Ρ ξ = 1/52 Ρ κ,κ = 26/52 Ρ κ,γ = 1/52 Ρ κ,κπ =2/52 Ρ κ,π =2/52 Ρ κ,γπ =0/52 Ρ κ = 31/52 Ρ κξ,κ = 4/52 Ρ κξ,γ = 2/52 Ρ κξ,κπ =2/52 Ρ κξ,π =3/52 Ρ κξ,γπ =1/52 Ρ κξ = 12/52 Χ Ρ Κ = 34/52 Ρ Γ = 3/52 Ρ ΚΠ = 8/52 Ρ Π = 6/52 Ρ ΓΠ = 1/52 1 Υ

Υπολογισμος Εντροπιων r MI = Ĩ[X] + Ĩ[Y] Ĩ[X, Y] min( Ĩ[X], Ĩ[Y]) Ĩ[X] = 34 52 log 34 2 52 3 52 log 2 Ĩ[X, Y] = 2 Ĩ[Υ] = 8 52 log 2 4 52 log 2 3 52 8 52 log 2 8 52 1 52 log 2 4 52 26 52 log 26 2 52 4 1 52 log 2 8 52 6 52 log 2 6 52 1 52 log 2 1 52 31 52 log 31 2 52 12 52 log 12 2 52 1,458 1 52 4 2 52 log 2 2 52 2 3 52 log 2 1 52 1,523 3 52 2,706 min( Ĩ[X], Ĩ[Y]) = Ĩ[Υ] = 1, 458 r MI = 1, 523 + 1, 458 2, 706 1, 458 r MI = 0, 18861454