ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Σχετικά έγγραφα
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3B: ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΠΟΣΥΖΕΥΓΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ

3: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ

ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΟ MATLAB

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 5: ΕΚΓΑΡΣΙΑ-ΔΙΕΥΘΥΝΣΗΣ ΔΥΝΑΜΙΚΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ : «Επισκόπηση δυναμικών χαρακτηριστικών και χαρακτηριστικών ελέγχου πτήσης αεροσκαφών»

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 6: ΔΙΑΜΗΚΕΙΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 4: ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

Ε Μ Π Σ Χ Ο Λ Η Μ Η Χ Α Ν Ο Λ Ο Γ Ω Ν Μ Η Χ Α Ν Ι Κ Ω Ν Ι Ω Α Ν Ν Η Σ Α Ν Τ Ω Ν Ι Α Δ Η Σ 1: ΕΙΣΑΓΩΓΗ

Το ελαστικο κωνικο εκκρεμε ς

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ

ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 2: ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΑΝΤΙΣΤΑΘΜΙΣΗ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 2: ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΑΝΤΙΣΤΑΘΜΙΣΗ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.

Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8)

Αυτόματη προσγείωση τετρακόπτερου με χρήση κάμερας

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

Τα θέματα συνεχίζονται στην πίσω σελίδα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό


ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

Μαθηματική Εισαγωγή Συναρτήσεις

Θέση και Προσανατολισμός

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.

Γιάννης Γιάκας. Συστήματα αναφοράς και μονάδες μέτρησης Γραμμικά κινηματικά χαρακτηριστικά Γωνιακά κινηματικά χαρακτηριστικά Βλητική 2/12/2013

Κεφάλαιο 11 Στροφορμή

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

Κεφάλαιο M11. Στροφορµή

5: ΕΓΚΑΡΣΙΑ ΔΥΝΑΜΙΚΗ Σύνοψη Προαπαιτούμενη γνώση 1. Απόκριση σε εντολές ελέγχου

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

ΔΙΑΓΩΝΙΣΜΑ 03 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

Φυσική Ο.Π. Γ Λυκείου

2 ο Μάθημα Κίνηση στο επίπεδο

Α. Ροπή δύναµης ως προς άξονα περιστροφής

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

Μαθηματική Εισαγωγή Συναρτήσεις

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. 22 Μαΐου 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

ΦΥΣΙΚΗ Ο.Π. Αν η κρούση της σφαίρας με τον κατακόρυφο τοίχο είναι ελαστική, τότε ισχύει:. = και =.. < και =. γ. < και <. δ. = και <.

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Εξισώσεις Κίνησης (Equations of Motion)

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

Θεωρητική μηχανική ΙΙ

Φυσική για Μηχανικούς

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 8B: ΑΥΤΟΜΑΤΟΙ ΠΙΛΟΤΟΙ

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων

1. Δύναμη. Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του.

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

Physics by Chris Simopoulos

ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A

ΣΥΝΟΨΗ 1 ου Μαθήματος

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

Μηχανική του στερεού σώματος

2 ο Μάθημα Κίνηση στο επίπεδο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

website:

Transcript:

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για περιγραφή της. Τα διάφορα συστήματα αξόνων στη Δυναμική Πτήσης: αδρανειακοί άξονες (συνήθως γήινοι), σωματόδετοι άξονες, αεροδυναμικοί άξονες ή άξονες ανέμου, άξονες ευστάθειας.

Αδρανειακοί άξονες - Ι Αδρανειακοί άξονες: Προσδένονται σε ένα σύστημα αναφοράς το οποίο θεωρείται ακίνητο και ως προς το οποίο μελετάμε τη σχετική κίνηση του αεροσκάφους. Συνήθως, σαν τέτοιο σύστημα συντεταγμένων θεωρείται η Γη. Η Γη ως αδρανειακό (ακίνητο) σύστημα αναφοράς: Στη Δυναμική Πτήσης, οι χρόνοι μέσα στους οποίους εξελίσσονται τα φαινόμενα δυναμικής, είναι πολύ μικροί συγκριτικά με τον χρόνο περιστροφής της γης Η παραδοχή αυτή είναι απολύτως επαρκής. Παραδοχή επίπεδης Γης: Η παραδοχή ότι η πτήση πραγματοποιείται πάνω από μια επίπεδη Γη, εφόσον, η Δυναμική Πτήσης ουσιαστικά αφορά τη βραχυπρόθεσμη κίνηση του αεροσκαφους.

Αδρανειακοί άξονες - ΙΙ 1) Γήινοι άξονες (earth axis) Ο 0 x 0 y 0 z 0 : Ο 0 x 0 προς το βορρά (North). O 0 y 0 προς την ανατολή (East). Ο 0 z 0 κατακόρυφα προς τα κάτω (προς κέντρο Γης) // g 2) Γήινοι άξονες αναφοράς (datum-path earth axis) Ο Ε x E y E z E : Για την περιγραφή της βραχυπρόθεσμης σχετικής κίνησης του αεροσκάφους, ως προς το αδρανειακό σύστημα (Ο 0 x 0 y 0 z 0 ). Ο Ε x E y E : οριζόντιο επίπεδο // επίπεδο (Ο 0 x 0 y 0 ) στην επιφάνεια της γης, Ο Ε x E : άξονας με τη φορά πτήσης του αεροσκάφους και όχι προς το βορρά, Ο Ε z E O o z o. Αρχή των αξόνων Ο Ε, συνήθως κέντρο βάρους του αεροσκάφους (cg center of gravity).

Σωματόδετοι άξονες αεροσκάφους (1) Σωματόδετο σύστημα αξόνων (Οx b y b z b ): Όταν η κατάσταση του αεροσκάφους διαταράσσεται από τις αρχικές συνθήκες πτήσης, οι άξονές κινούνται μαζί με το αεροσκάφος. Οx b z b : το επίπεδο που ορίζει το επίπεδο συμμετρίας του αεροσκάφους, Οx b : άξονας που γενικά ορίζεται παράλληλος με τη γεωμετρική αναφορά της ατράκτου (horizontal fuselage datum), Οy b : άξονας με φορά προς τη δεξιά πτέρυγα, Οz b : άξονας με φορά προς τα κάτω. Αρχή Ο των αξόνων συνήθως κέντρο βάρους (cg) του αεροσκάφους.

Σωματόδετοι άξονες αεροσκάφους 2) Αεροδυναμικοί άξονες ή άξονες ανέμου (wind axis) Ox w y w z w : Ox w : παράλληλος με τη διεύθυνση της ολικής ταχύτητας V T του σχετικού ανέμου Προσδιορίζεται σε σχέση με τον άξονα Ox b, μέσω των δύο χαρακτηριστικών γωνιών της σχετικής ταχύτητας του ανέμου ως προς το αεροσκάφος: - γωνία πρόσπτωσης α, - γωνία πλαγιολίσθησης β. 3) Άξονες ευστάθειας, (stability axis) Ox s y s z s : Διαφορά αξόνων ευστάθειας και ανέμου: Ο άξονας Ox s έχει διεύθυνση παράλληλη με την προβολή της σχετικής ταχύτητας του ανέμου στο επίπεδο (Oxz). * Προφανώς οι άξονες ευστάθειας και οι άξονες άνεμου ταυτίζονται στην σταθερή-μόνιμη συμμετρική πτήση (β=0).

Μεταβλητές αεροσκάφους σωματόδετο σύστημα συντεταγμένων Συνιστώσες της συνολικής γραμμικής ταχύτητας V T = [U,V,W] T του κ.β. O : U: αξονική ταχύτητα, V: εγκάρσια ταχύτητα, W: κάθετη ταχύτητα. Συνιστώσες της γωνιακής ταχύτητας Ω = [P,Q,R] T του κ.β. O: P: ρυθμός κλίσης (περιστροφής), Q: ρυθμός πρόνευσης, R: ρυθμός εκτροπής. Συνιστώσες του αθροίσματος των εξωτερικών δυνάμεων: X: αξονική συνιστώσα δύναμης, Y: πλάγια συνιστώσα δύναμης, Z: κάθετη συνιστώσα δύναμης. Συνιστώσες του αθροίσματος των ροπών των εξωτερικών δυνάμεων: L: ροπή περιστροφής, M: ροπή πρόνευσης, N: ροπή εκτροπής.

Μεταβλητές αεροσκάφους στο σωματόδετο σύστημα συντεταγμένων Αεροσκάφος Στερεό σώμα Έξι (6) βαθμοί ελευθερίας: τρεις συνιστώσες της μετατόπισης ως προς τους εκάστοτε τρεις άξονες αναφοράς και τρεις αντίστοιχες γωνίες περιστροφής περί τους άξονες αυτούς. Θεωρείται αρχικά ένα γενικευμένο σωματόδετο σύστημα αξόνων Οxyz, το οποίο μπορεί να είναι το σωματόδετο σύστημα Οx b y b z b ή το σύστημα ανέμου Οx w y w z w. Οι συνιστώσες των γραμμικών ποσοτήτων, (δύναμη, ταχύτητα κλπ.) είναι θετικές όταν η φορά της δράσης είναι η ίδια με τη φορά του άξονα με τον οποίο αυτή σχετίζεται. Η θετική έννοια των περιστροφικών ποσοτήτων, (ροπή, γωνιακή ταχύτητα, γωνία θέσης, κλπ. ) προκύπτει με τον κανόνα του δεξιού χεριού: Θετική κλίση περί τον άξονα Ox: ο άξονας Oy πλησιάζει τον άξονα Oz, το αεροσκάφος εμφανίζει δεξιά* κλίση και η δεξιά* πτέρυγα κλίνει προς τα κάτω. Θετική πρόνευση περί τον άξονα Oy: ο άξονας Oz πλησιάζει τον άξονα Ox και το αεροσκάφος ανεβάζει το ρύγχος (nose up). Θετική εκτροπή ως προς τον άξονα Oz: ο άξονας Ox πλησιάζει τον άξονα Oy και το αεροσκάφος στρέφει το ρύγχος προς τα δεξιά*. * Υπό την οπτική του πιλότου μέσα στο πιλοτήριο.

Μετασχηματισμός αξόνων Προσανατολισμός αεροσκάφους ως προς το γήινο (χωρόδετο) σύστημα αξόνων: Γωνίες Euler: { Φ, Θ, Ψ } Έστω P το κ.β. Μεταφορά Ο στο P Οx E y E z E Px 1 y 1 z 1. Mέσω τριών διαδοχικών περιστροφών: 1) Γωνία πορείας Ψ (heading angle) : περιστροφή του Px 1 y 1 z 1 κατά γωνία Ψ γύρω από τον άξονα Pz 1, οδηγεί σε ένα νέο σύστημα συντεταγμένων Px 2 y 2 z 2, με Pz 2 = Pz 1. 2) Γωνία πρόνευσης Θ (pitch angle) : περιστροφή του Px 2 y 2 z 2 κατά γωνία Θ γύρω από τον άξονα Py 2, οδηγεί σε ένα νέο σύστημα συντεταγμένων Px 3 y 3 z 3 με Py 3 = Py 2. 3) Γωνία περιστροφής ή κλίσης Φ (bank angle) : περιστροφή του Px 3 y 3 z 3 κατά γωνία Φ γύρω από τον άξονα Px 3, οδηγεί τελικά στο σωματόδετο σύστημα συντεταγμένων Px b y b z b με Px b = Px 3. Αντίστοιχες γωνιακές ταχύτητες ( Φ, Θ, Ψ): ρυθμός αλλαγής της κλίσης Φ, ρυθμός αλλαγής της γωνίας ανόδου-καθόδου Θ, ρυθμός αλλαγής της πορείας Ψ.

Η θέση του αεροσκάφους ως προς το γήινο σύστημα αξόνων Συσχετισμός γωνιακών ταχυτήτων P,Q,R στο σωματόδετο σύστημα αναφοράς, με τις γωνιακές ταχύτητες Euler Φ, Θ, Ψ: P Q R = 1 0 sin Θ 0 cos Φ sin Φ cos Θ 0 sin Φ cos Φ cos Θ Φ Θ Ψ Ο ρυθμός περιστροφής P (roll rate) ως προς το σωματόδετο σύστημα δεν ταυτίζεται με τον ρυθμό αλλαγής της κλίσης Φ. Ο ρυθμός πρόνευσης Q (pitch rate) ως προς το σωματόδετο σύστημα δεν ταυτίζεται με τον ρυθμό αλλαγής της γωνίας ανόδου-καθόδου Θ. Ο ρυθμός εκτροπής R (yaw rate) ως προς το προσδεμένο σύστημα δεν ταυτίζεται με τον ρυθμό αλλαγής της πορείας Ψ.

Οι Βασικές παραδοχές και Υποθέσεις 1) Το αεροσκάφος πετά σε ακίνητη ατμόσφαιρα με σταθερές ιδιότητες. 2) Η ταχύτητα του αεροσκάφους είναι σημαντικά μικρότερη της ταχύτητας του ήχου, έτσι ώστε ο αέρας να θεωρείται ασυμπίεστος και οι διαταραχές να διαδίδονται ακαριαία επάνω στο αεροσκάφος. 3) Το αεροσκάφος δεν παραμορφώνεται ελαστικά υπό την επίδραση των φορτίων που του ασκούνται. Συμπεριφέρεται δηλαδή σαν άκαμπτο σώμα. 4) Το αεροσκάφος έχει σταθερή μάζα. 5) Το αεροσκάφος είναι συμμετρικό ως προς το επίπεδο Οxz. 6) Η επιτάχυνση της βαρύτητας είναι σταθερή. 7) Οι επιταχύνσεις του αεροσκάφους λόγω της κίνησης του περί την καμπύλη επιφάνεια της γης που περιστρέφεται, είναι αμελητέες (Coriolis effects).

Οι γενικές εξισώσεις κίνησης του στερεού συμμετρικού αεροσκάφους 2 ος Νόμος του Νεύτωνα: Στερεό σώμα, υπό τη δράση ενός πεδίου εξωτερικών δυνάμεων F ex : d(mv) dt I = F ex όπου m είναι η μάζα του σώματος και v το διάνυσμα της ταχύτητας του κ.β. του αεροσκάφους. Οι ασκούμενες εξωτερικές ροπές T ex στο σώμα εξισορροπούνται από τη μεταβολή της στροφορμής του: dh dt I = T ex Ο ρυθμός μεταβολής ενός διανύσματος b λαμβάνεται στο αδρανειακό (χωρόδετο) σύστημα αναφοράς και περιλαμβάνει δύο επί μέρους συμβολές: Το ρυθμό μεταβολής (μεταφορά) του b στο σωματόδετο σύστημα αξόνων. Τη μεταβολή του b λόγω περιστροφής του συστήματος συντεταγμένων B με γωνιακή ταχύτητα ω ως προς το αδρανειακό σύστημα Ι. db dt I db = dt B + ω b

Οι γενικές εξισώσεις κίνησης του στερεού συμμετρικού αεροσκάφους Γραμμική και γωνιακή ταχύτητα κέντρου βάρους, διανύσματα εξωτερικών δυνάμεων και ροπών του αεροσκάφους : V = V T = U, V, W T ω = Ω = P, Q, R T F ex = X, Y, Z T T ex = L, M, N T Οι ροπές αδράνειας του αεροσκάφους ορίζονται ως: I x = I xx = y 2 + z 2 dm, I y = I yy = x 2 + z 2 dm και I z = I zz = y 2 + x 2 dm, I xz = xz dm Λόγω της συμμετρικότητας ως προς το επίπεδο Οxz και ότι η μάζα του αεροσκάφους είναι ομοιόμορφα κατανεμημένη, ισχύει Ι xy = I yz = 0. = Η στροφορμή Η προσδιορίζεται από το μητρώο (τελεστή): H x I x 0 I xz H = H y 0 I y 0 H z I xz 0 I z P Q R = PI x RI xz QI y PI xz + RI z

Οι γενικές εξισώσεις κίνησης του στερεού συμμετρικού αεροσκάφους Οι ρυθμοί μεταβολής της ταχύτητας και της στροφορμής στο σωματόδετο σύστημα συντεταγμένων B είναι αντίστοιχα: dv T dt B = U V W και dh dt B = H x H y H z = I x 0 I xz 0 I y 0 I xz 0 I z P Q R = PI x QI y PI xz + Οι μεταβολές της ταχύτητας και της στροφορμής λόγω περιστροφής του σωματόδετου συστήματος συντεταγμένων B είναι αντίστοιχα: RI xz RI z ω V T = RV + QW PW + RU QU + PV και ω H = PQI xz + RQ I z I y PR I x I z + (P 2 R 2 )I xz QRI xz + PQ I y I x

Οι γενικές εξισώσεις κίνησης του στερεού συμμετρικού αεροσκάφους Προσέγγιση του Bryan (1911) Οι εξωτερικές δυνάμεις και ροπές, που εμφανίζονται στις σχέσεις είναι ένα άθροισμα συνιστωσών και εκφράζονται ως: X = X a + X g + X c + X p + X d Y = Y a + Y g + Y c + Y p + Y d Z = Z a + Z g + Z c + Z p + Z d L = L a + L g + L c + L p + L d M = M a + M g + M c + M p + M d N = N a + N g + N c + N p + N d όπου οι δείκτες συμβολίζουν: - a: αεροδυναμικές δυνάμεις (aerodynamic), - p: δυνάμεις λόγω εφαρμογής της ισχύος (ώθησης)(propulsion), - c: δυνάμεις που προκύπτουν από την κίνηση των πηδαλίων (control), - g: δυνάμεις βαρύτητας (gravity), - d: δυνάμεις λόγω των ατμοσφαιρικών αναταράξεων (disturbance).

Γενικευμένες εξισώσεις κίνησης Χ = m U RV + QW Y = m V PW + RU Z = m W qu + pv = X a + X g + X c + X p + X d = Y a + Y g + Y c + Y p + Y d = Z a + Z g + Z c + Z p + Z d L = I x P I xz R I xz PQ + I z I y RQ = L a + L g + L c + L p + L d M = I y Q + I x I z PR + I xz P 2 R 2 = M a + M g + M c + M p + M d N = I z R I xz P + I y I x PQ + I xz QR = N a + N g + N c + N p + N d Σύστημα έξι μη-γραμμικών διαφορικών εξισώσεων που περιγράφουν την κίνηση ενός αεροσκάφους με: U,V,W,P,Q,R ως εξαρτημένες μεταβλητές. Χρόνος η ανεξάρτητη μεταβλητή. Η λύση των εξισώσεων δεν είναι δυνατή αναλυτικά διότι: - Τα δεξιά μέλη των έξι εξισώσεων μεταβάλλονται με τον χρόνο και με τη μεταβολή των εξαρτημένων μεταβλητών U,V,W,P,Q,R. - Οι συνιστώσες των δυνάμεων λόγω της βαρύτητας στις σχέσεις εξαρτώνται από τον προσανατολισμό του αεροσκάφους σε σχέση με το γήινο σύστημα αξόνων. Απαιτείται γραμμικοποίηση των εξισώσεων.

3B: ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΠΟΣΥΖΕΥΓΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ

ΣΥΝΟΨΗ Μόνιμη κατάσταση και κατάσταση διαταραχής Γραμμικοποίηση των κινηματικών και των αδρανειακών όρων Γραμμικοποίηση των αεροδυναμικών όρων Οι γραμμικές συνιστώσες της βαρυτικής δύναμης Γραμμικοί όροι του αεροδυναμικού ελέγχου και της ώσης Εξίσωση ισορροπίας στη μόνιμη κατάσταση αντιστάθμισης Οι εξισώσεις κίνησης για μικρές διαταραχές Αποσυζευγμένες εξισώσεις κίνησης

Μόνιμη κατάσταση και κατάσταση διαταραχής Μεταβλητές στην μόνιμη αντισταθμισμένη κατάσταση πτήσης: δείκτης e (equilibrium). Το αεροσκάφος θεωρείται αρχικά ότι βρίσκεται σε κατάσταση μόνιμης αντισταθμισμένης και ευθύγραμμης συμμετρικής πτήσης, (όχι κατ ανάγκη οριζόντιας), χωρίς κλίση, εκτροπή ή πλαγιολίσθηση: β e = V e = 0 και Φ e = Ψ e = 0 Επειδή το αεροσκάφος βρίσκεται σε ομαλή ευθύγραμμη πτήση: U e = V e = W e = P e = Q e = R e = Φ e = Θ e = Ψ e = 0 Το μέγεθος των μεταβολών (διαταραχών) u, v, w, p, q, r των κινηματικών μεγεθών του αεροσκάφους στα πλαίσια της γραμμικής θεώρησης της δυναμικής πτήσης θεωρείται μικρό, έτσι ώστε να ισχύουν οι βασικές αρχές της θεωρίας μικρών διαταραχών. Γραμμικές ταχύτητες Γωνιακές ταχύτητες Αντισταθμισμένη ισορροπία U e V e =0 W e U=U e +u V=v W=w P e =0 Q e =0 R e =0 P=p Q=q R=r Κατάσταση διαταραχής U = P = u p V = Q = v q W = R = w r Γωνίες Θ e Φ e = 0 Ψ e = 0 Θ=Θ e +θ Φ=φ Ψ=ψ Θ = θ Φ = φ Ψ = ψ

Μόνιμη κατάσταση και κατάσταση διαταραχής Ολική ταχύτητα στην αντιστάθμιση: V Te = U e, 0, W T e W e = V Te sin α e και U e = V Te cos α e Μετά τη διαταραχή η νέα ολική ταχύτητα V T βρίσκεται στον νέο «διαταραγμένο» άξονα x w. Διαταραχή α της γωνίας πρόσπτωσης: w α = arctan U e + u w (α σε rad) U e επειδή α [rad]<< tan(α) = sin(α) = α. Γωνία ίχνους πτήσης στην αντιστάθμιση: γ e = Θ e α e Γωνία ίχνους πτήσης: γ = Θ α Οριζόντια αντισταθμισμένη πτήση (γ e =0): Θ e = α e

Γραμμικοποίηση των κινηματικών και των αδρανειακών όρων Υπόθεση μικρών διαταραχών: u, v, w οι p, q, r μικρές οι όροι που περιέχουν γινόμενα και τετράγωνα των ποσοτήτων αυτών (μη γραμμικοί) αποτελούν ποσότητες 2 ης τάξης και μπορούν να αμεληθούν στους υπολογισμούς. Μικρές γωνίες διαταραχών: cos δ 1 και sin(δ) δ (δ σε rad) Διαταραχές γωνιακών ταχυτήτων : p = φ ψ sin Θ e q = Θ r = ψ cos Θ e Για οριζόντια (ή σχεδόν οριζόντια) πτήση (Θ e ), προσεγγιστικά: p = φ, q = θ, r = ψ

Γραμμικοποίηση των κινηματικών και των αδρανειακών όρων Υποθέτοντας σταθερή ατμοσφαιρική κατάσταση, οι δυνάμεις λόγω ατμοσφαιρικών αναταράξεων μπορούν να αμεληθούν: X d = Y d = Z d = L d = M d = N d = 0 Τότε οι γενικευμένες εξισώσεις κίνησης γίνονται: X = m u = X a + X g + X c + X p Y = m v + r U e = Y a + Y g + Y c + Y p Z = m W q U e = Z a + Z g + Z c + Z p L = I x p I xz r = L a + L g + L c + L p M = I y q = M a + M g + M c + M p N = I z r I xz p = N a + N g + N c + N p

Γραμμικοποίηση των αεροδυναμικών όρων Υποτίθεται ότι οι όροι των αεροδυναμικών δυνάμεων και ροπών, εξαρτώνται μόνο από τις μεταβλητές κίνησης και τις παραγώγους αυτών. Eκφράζεται ως ένα άθροισμα από σειρές Taylor: Ενδεικτικά ο αεροδυναμικός όρος Χ a στην εξίσωση της αξονικής δύναμης: Χ a = Χ ae + X X u + HODT u + u v v + HODT v + X X w + HODT w + w p p + HODT p + X X q + HODT q + q r r + HODT r + X u u + HODT u + X v v + HODT v +σειρές με όρους w, p, q, r +σειρές με όρους παραγώγων μεγαλύτερης τάξης X ae : σταθερός όρος, αεροδυναμικές δυνάμεις στην μόνιμη αντισταθμισμένη κατάσταση πτήσης, ΗΟΤD: όροι με παραγώγους ανώτερης τάξης.

Γραμμικοποίηση των αεροδυναμικών όρων Οι μεταβλητές κίνησης είναι μικρές ποσότητες μόνο οι πρώτοι όροι σε κάθε μια από τις πιο πάνω σειρές θα έχουν σημαντικό μέγεθος. Οι μόνες αξιοσημείωτες σειρές που περιλαμβάνουν παραγώγους μεγαλύτερης τάξης και που συχνά λαμβάνονται υπόψη, είναι αυτές της κάθετης επιτάχυνσης w. ή με εναλλακτικό συμβολισμό Χ a = X ae + X a u + X a v + X a w + X a p + X a q + X a r + X a u v w p q r Όμοια και οι υπόλοιποι αεροδυναμικοί όροι (Y a, Z a, L a, M a,n a ). X u = X u, X v = X v, X w = X w Χ a = X ae + X u u + X v v + X w w + X p p + X q q + X r r + X w w,... κλπ : «αεροδυναμικές παράγωγοι ευστάθειας». Το σύμβολο «~» (περισπωμένη), δηλώνει ότι πρόκειται για διαστατές μεταβλητές. Για παράδειγμα, η παράγωγος X u έχει μονάδες μέτρησης δύναμης προς ταχύτητας, δηλαδή: Ν m/sec2 = kg = kg 1 ft/sec2 slug m/sec m/sec sec ft/sec w w

Οι γραμμικές συνιστώσες της βαρυτικής δύναμης Όμοια γραμμικοποιούνται και οι βαρυτικές δυνάμεις: Z g = Z ge + Z g θ θ + Z g φ φ + = Z ge mgθsinθ e cos φ mgφ cos Θ e sinφ Διαταραχές θ,φ είναι μικρές: Z g = Z ge mgθ sin Θ e mgφ 2 = Z ge mgθ sin Θ e Μόνιμη αντισταθμισμένη πτήση πτέρυγες οριζόντιες (Φ e =0) στην αρχική συμμετρική κατάσταση πτήσης συνιστώσες του βάρους εμφανίζονται μόνο στο επίπεδο συμμετρίας: X ge Y ge Z ge = mgsinθ e 0 mgcosθ e Στις εξισώσεις κίνησης μικρών διαταραχών: X g Y g Z g = mg sin Θ e mgθ cos Θ e mgψ sin Θ e + mgφ cos Θ e mg cos Θ e mgθ sin Θ e Επιπλέον, επειδή η αρχή του σωματόδετου συστήματος ταυτίζεται με το κέντρο βάρους, δεν υφίσταται ροπή λόγω κάποιας συνιστώσας του βάρους, ως προς οποιονδήποτε άξονα, άρα: L g = M g = N g = 0

Γραμμικοί όροι του αεροδυναμικού ελέγχου Αεροδυναμικός έλεγχος πηδάλια ανόδου-καθόδου, κλίσης και εκτροπής. Δυνάμεις και ροπές λόγω αποκλίσεων των πηδαλίων μεταβολές στις αεροδυναμικές συνθήκες. Τα αποτελέσματα αυτών των αποκλίσεων, περιγράφονται ποσοτικά συναρτήσει των παραγώγων ευστάθειας του αεροδυναμικού ελέγχου, όμοια με τους αεροδυναμικούς όρους. Π.χ. η ροπή πρόνευσης λόγω του αεροδυναμικού ελέγχου: M c = M ce + M δa δ a + M δe δ e + M δr δ r M ce : σταθερή ροπή που απαιτείται από τις επιφάνειες ελέγχου για αντιστάθμιση. Η εξίσωση αυτή περιγράφει τις επιδράσεις των αεροδυναμικών επιφανειών ελέγχου σε σχέση με τις ισχύουσες συνθήκες ισορροπίας-αντιστάθμισης Οι γωνίες ελέγχου δ a, δ e και δ r, μετρώνται σχετικά με τις γωνίες αντιστάθμισης δ a trim, δ etrim, δ rtrim αντίστοιχα. Όμοια προκύπτουν και οι ανάλογοι αεροδυναμικοί όροι στις υπόλοιπες εξισώσεις κίνησης.

Γραμμικοί όροι της ώσης Η ισχύς και επομένως η ώση Τ, ελέγχεται από τη γωνία του μοχλού ελέγχου της ισχύος δ p (μανέτα). T = T e + τ και T s δ p s = k τ 1 + st τ Π.χ. οριζόντια δύναμη λόγω της ώσης: X δp = Χ pe + X δp δ p X pe : σταθερή ώθηση του κινητήρα που απαιτείται κατά τη μόνιμη κατάσταση.

Εξίσωση ισορροπίας στη μόνιμη κατάσταση αντιστάθμισης Μόνιμη αντισταθμισμένη πτήση όλες οι μεταβλητές της διαταραχής, καθώς και οι αντίστοιχες παράγωγοι τους είναι εξ ορισμού μηδενικές. Έτσι στη μόνιμη κατάσταση, οι γενικευμένες εξισώσεις κίνησης: X ae mgsinθ e + X ce + X pe = 0 Y ae + Y ce + X pe = 0 Z ae + mgcosθ e + Z ce + Z pe = 0 L ae + L ce + L pe = 0 M ae + M ce + M pe = 0 N ae + N ce + N pe = 0 Οι εξισώσεις αυτές είναι ουσιαστικά οι εξισώσεις στατικής ισορροπίας του αεροσκάφους

Οι εξισώσεις κίνησης για μικρές διαταραχές Aντικαθιστώντας τις εκφράσεις των αεροδυναμικών όρων, των όρων βαρύτητας, ισχύος και αεροδυναμικού ελέγχου στις γενικευμένες εξισώσεις κίνησης και λαμβάνοντας υπόψη ότι οι μόνιμοι όροι των δυνάμεων και ροπών που εμφανίζονται λόγω αντιστάθμισης εξισορροπούνται λόγω των εξισώσεων στατικής ισορροπίας, προκύπτουν: m u X u u X v v X w w X p p ( X q mw e )q X r r X w w + mgθcosθ e = X δa δ a + X δe δ e + X δr δ r + X δp δ p m v Y u u Y v v Y w w Y p + mw e p Y q q Y r mu e r Y w Z u u Z v v Z w w Z p p Z q + mu e q Z r r + m Z w I x p I xz r L u u L v v L w w L p p L q q L r r L w I y q M u u M v v M w w M p p M q q M r r M w w mgψsinθ e + mgφcosθ e = Y δa δ a + Y δe δ e + Y δr δ r + Y δp δ p w + mgθsinθ e = Z δa δ a + Z δe δ e + Z δr δ r + Z δp δ p w = L δa δ a + L δe δ e + L δr δ r + L δp δ p w = M δa δ a + M δe δ e + M δr δ r + M δp δ p I z r I xz p N u u N v v N w w N p p N q q N r r N w w = N δa δ a + N δe δ e + N δr δ r + N δp δ p Είναι γραμμικές και σχηματίζουν ένα σύστημα έξι διαφορικών εξισώσεων που περιγράφουν την κίνηση ενός αεροσκάφους με τις u,v,w,p,q,r ως εξαρτημένες μεταβλητές. Οι εξισώσεις αυτές, προβλέπουν μέσω των όρων εξωτερικών διεγέρσεων στο δεξί τους μέλος, ότι η αλλαγή κατάστασης της πτήσης του αεροσκάφους, προέρχεται μόνο από ηθελημένη δράση του πιλότου -χειριστή ή «αυτόματου»- μέσω δράσης σε επιφάνεια αεροδυναμικού ελέγχου, ή μέσω μεταβολής ώθησης του κινητήρα.

Αποσυζευγμένες εξισώσεις κίνησης Οι εξισώσεις των μικρών διαταραχών, περιγράφουν την απόκριση του αεροσκάφους συναρτήσει των διαταραχών σε όλες τις κατευθύνσεις και περιστροφές περί όλους τους άξονες. Για τα περισσότερα αεροσκάφη όμως κατά τη μεταβατική κίνηση των μικρών διαταραχών, η σύζευξη των διαμηκών-εγκάρσιων εξισώσεων είναι αμελητέα. Δυνατή η αποσύζευξη του συστήματος σε δύο επί μέρους συστήματα εξισώσεων, τα οποία αφορούν ξεχωριστά την κίνηση σε διάμηκες και εγκάρσιο επίπεδο, μέσω κάποιων πρόσθετων παραδοχών. Αποσυζευγμένη διαμήκης κίνηση: η κίνηση του αεροσκάφους που προκύπτει ως απόκριση του αεροσκάφους σε μια διαταραχή που εφαρμόστηκε κατά το διάμηκες επίπεδο συμμετρίας Οxz. Αποσυζευγμένη εγκάρσια κίνηση και η ανάλογη κίνηση ως προς τη διεύθυνση περιλαμβάνει μόνο την κίνηση του αεροσκάφους ως προς την περιστροφή, την εκτροπή και την πλαγιολίσθηση.

Διαμήκεις εξισώσεις κίνησης Η κίνηση στο διάμηκες επίπεδο περιγράφεται από τις εξισώσεις της αξονικής δύναμης X, της κάθετης δύναμης Z και της ροπής πρόνευσης M μόνο. Εφόσον δεν υπάρχει εγκάρσια κίνηση του αεροσκάφους, οι εγκάρσιες μεταβλητές κίνησης v, p, r, καθώς και οι παράγωγοι αυτών είναι μηδενικές. Οι αεροδυναμικές παράγωγοι σύζευξης είναι τόσο μικρές ώστε μπορούν να αγνοηθούν: X v = X p = X r = Z v = Z p = Z r = M v = M p = M r = 0 Γενικά οι αποκλίσεις των πηδαλίων κλίσεως και εκτροπής δεν προκαλούν κίνηση στο διάμηκες επίπεδο συμμετρίας: Διαμήκεις εξισώσεις κίνησης: X δa = X δr = Z δa = Z δr = M δa = M δr = 0 m u X u u X w w ( X q mw e )q X w w + mgθcosθ e = X δe δ e + X δp δ p Z u u Z w w Z q + mu e q + m Z w w + mgθsinθ e = Z δe δ e + Z δp δ p I y q M u u M w w M q q M w w = M δe δ e + M δp δ p

Εγκάρσιες-διεύθυνσης εξισώσεις κίνησης Η κίνηση στο εγκάρσιο επίπεδο και το επίπεδο διεύθυνσης περιγράφεται από τις εξισώσεις της πλάγιας δύναμης Υ, της ροπής περιστροφής L και της ροπής εκτροπής Ν μόνο. Επειδή δεν υφίσταται διαμήκης κίνηση, οι διαμήκεις μεταβλητές κίνησης u, w, q καθώς και οι αντίστοιχες παράγωγοί τους είναι μηδενικές. Οι αεροδυναμικές παράγωγοι σύζευξης είναι τόσο μικρές ώστε μπορούν να αγνοηθούν: Y u = Y w = Y w = Y q = L u = L w = L w = L q = N u = N w = N w = N q = 0 Ανάλογα, επειδή η άτρακτος είναι συμμετρική, η απόκλιση του πηδαλίου ανόδου-καθόδου και οι μεταβολές της ώσης δεν προκαλούν εγκάρσια κίνηση ή ανάλογη κίνηση ως προς την εκτροπή, οι αντίστοιχες συζευγμένες παράγωγοι, μπορούν επίσης να ληφθούν μηδενικές: Y δe = Y δp = L δe = L δp = N δe = N δp = 0 Εξισώσεις εγκάρσιας - διεύθυνσης μη συμμετρικής κίνησης: m v Y v v Y p + mw e p Y r mu e r mgψsinθ e + mgφcosθ e = Y δa δ a + Y δr δ r I x p I xz r L v v L p p L r r = L δa δ a + L δr δ r I z r I xz p N v v N p p N r r = N δa δ a + N δr δ r