ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1-
ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ: ΑΝΤΙΣΤΟΙΧΙΣΗ ΑΝΤΙΚΕΙΜΕΝΩΝ Αντιστοίχιση: Ένα πρόβλημα καλείται «πρόβλημα αντιστοίχισης» όταν η μορφή της λύσης του προβλήματος εκφράζεται ως αντιστοιχίσεις των στοιχείων ενός συνόλου με τα στοιχεία ενός άλλου συνόλου. Διαφορετικές αντιστοιχίσεις στοιχείων παράγουν διαφορετικές λύσεις. a 1 a 2 a 3...... a n b 1 b 2 b 3 b m ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 2-
ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΤΙΣΤΟΙΧΙΣΗΣ a 1 a 2 a 3... a n... b 1 b 2 b 3 b m Τα Προβλήματα Αντιστοίχισης αφορούν την εύρεση της βέλτιστης αντιστοίχισης στοιχείων των δυο αυτών συνόλων, με σκοπό την επίτευξη κάποιου στόχου. Παραδείγματα: Αντιστοίχιση κιβωτίων σε αποθήκες Αντιστοίχιση αποθηκών σε τοποθεσίες Αντιστοίχιση εργαζομένων σε χρονικά διαστήματα Αντιστοίχιση αεροσκαφών σε πτήσεις ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 3-
ΠΡΟΒΛΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 4-
ΠΡΟΒΛΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 5-
ΠΡΟΒΛΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ Να εφαρμοσθεί ένας ΠΚΑ για την επίτευξη του στόχου του προβλήματος. Να υπολογισθεί το κόστος της λύσης. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 6-
ΧΩΡΟΘΕΤΗΣΗ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΠΙΛΥΣΗ ΜΕΣΩ ΠΚΑ Μορφή Λύσης: Ένα σύνολο 1 αντιστοιχίσεων που θα απαρτίζονται από 1 πυροσβεστικά οχήματα και 3 πυροσβεστικές μονάδες. Στοιχείο Λύσης: Μία αντιστοίχιση πυροσβεστικού οχήματοςπυροσβεστικής μονάδας. Κριτήριο Επιλογής: Το κριτήριο επιλογής θα καθορίζει την εφικτή (να ικανοποιεί τους περιορισμούς του προβλήματος, δηλαδή, της χωρητικότητας κάθε πυροσβεστικής μονάδας και του συνολικού αριθμού πυροσβεστικών μονάδων που θα αποτελούν την ολοκληρωμένη λύση τους προβλήματος μας) αντιστοίχιση «πυροσβεστικού οχήματος πυροσβεστικής μονάδας» που θα προστίθεται, σε κάθε επανάληψη, στην ημιτελή λύση του προβλήματος. Συνεπώς το κριτήριο επιλογής θα πρέπει να καθορίζει, σε κάθε επανάληψη, ποιο συγκεκριμένα όχημα θα αντιστοιχηθεί σε ποια συγκεκριμένη μονάδα. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 7-
ΧΩΡΟΘΕΤΗΣΗ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΠΙΛΥΣΗ ΜΕΣΩ ΠΚΑ Κριτήριο Επιλογής: Το κριτήριο επιλογής διατυπώνεται ως εξής: Επέλεξε, σε κάθε επανάληψη, την αντιστοίχιση οχήματος-μονάδας που προκύπτει από την αντίστοιχη ελάχιστη απόσταση (από το σημείο αναμονής) του κάθε οχήματος από την κάθε μονάδα. Προσοχή οι επιλεγμένες αντιστοιχίσεις (μια αντιστοίχιση σε κάθε επανάληψη) να μην υπερβαίνουν τον αριθμό των τριών (3) πυροσβεστικών μονάδων. Κριτήριο Αξιολόγησης: Υπολόγισε τη συνολική απόσταση που θα διανύουν τα οχήματα από τα δέκα σημεία αναμονής προς τις τρεις επιλεγμένες πυροσβεστικές μονάδες, αθροίζοντας τις αντίστοιχες αποστάσεις μεταξύ των δέκα σημείων αναμονής και των τριών πυροσβεστικών μονάδων που επιλέγηκαν βάσει του Κριτηρίου Επιλογής. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 8-
ΧΩΡΟΘΕΤΗΣΗ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΠΙΛΥΣΗ ΜΕΣΩ ΠΚΑ Επανάληψη 1: Εφαρμόζοντας το Κριτήριο Επιλογής σε κάθε επανάληψη, επιλέγουμε την αντιστοίχιση 8Ζ. Άρα S: (8Z) με κόστος της ημιτελούς λύσης ίσο με c(s)= 22 Επανάληψη 2: Ανάλογα, επιλέγουμε την αντιστοίχιση 1Ζ. Άρα S: (8Z,1Ζ). Επανάληψη 3: Ανάλογα, επιλέγουμε την αντιστοίχιση 5Γ. Άρα S: (8Z,1Ζ,5Γ). Επανάληψη 4: Ανάλογα, επιλέγουμε την αντιστοίχιση 7Β. Με άλλα λόγια διαλέξαμε και την τρίτη μονάδα στην οποία θα επιστρέφουν τελικώς τα 1 οχήματα από τα σημεία αναμονής τους. Άρα S: (8Z,1Ζ,5Γ,7Β). Επειδή στην Επανάληψη 4 επιλέχθηκε και η τρίτη πυροσβεστική μονάδα (δηλαδή η B), οι κατατάξεις των αποστάσεων των σημείων αναμονής των οχημάτων από τις πυροσβεστικές μονάδες, βάσει του Κριτηρίου Επιλογής, θα αφορούν (για τις επόμενες επαναλήψεις) αποκλειστικά τις τρεις ήδη επιλεγμένες πυροσβεστικές μονάδες Z,Γ,Β. Αυτό συμβαίνει γιατί η λύση του προβλήματος απαιτεί την ελαχιστοποίηση της συνολικής απόστασης από τα 1 σημεία αναμονής των οχημάτων προς 3 (τρεις) πυροσβεστικές μονάδες. Άρα το μόνο που μένει να καθοριστεί στις επόμενες επαναλήψεις είναι σε ποιες, από τις τρεις (Z, Γ και Β) μονάδες θα επιστρέψουν τα εναπομείναντα οχήματα. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 9-
ΣΧΕΔΙΑΣΜΟΣ ενός ΠΚΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΧΩΡΟΘΕΤΗΣΗΣ Επανάληψη 5: Με βάση το προηγούμενο σκεπτικό, επιλέγουμε την αντιστοίχιση 1Β. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β) Επανάληψη 6: Ανάλογα, επιλέγουμε την αντιστοίχιση 6Β. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β) Επανάληψη 7: Ανάλογα, επιλέγουμε την αντιστοίχιση 3Ζ. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ) Επανάληψη 8: Ανάλογα, επιλέγουμε την αντιστοίχιση 2Ζ. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ,2Ζ) Επανάληψη 9: Ανάλογα, επιλέγουμε την αντιστοίχιση 9Ζ. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ,2Ζ,9Ζ) Επανάληψη 1: Ανάλογα, επιλέγουμε την αντιστοίχιση 4Β. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ,2Ζ,9Ζ,4Β) Το κόστος της ολοκληρωμένης λύσης σύμφωνα με το Κριτήριο Αξιολόγησης θα είναι το c(s) = 34 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1-
ΔΙΑΝΟΜΗ ΠΡΟΪΟΝΤΩΝ ΣΕ ΡΑΦΙΑ Η ιδιαίτερα ανταγωνιστική παγκόσμια αγορά έχει επιβάλλει νέους όρους, νέους κανόνες, με αποτέλεσμα όλοι οι λιανέμποροι να επιδιώκουν τη διαφοροποίηση και την εξασφάλιση ανταγωνιστικού πλεονεκτήματος. Κλειδί αυτής της λογικής είναι η εφαρμογή ενός αποτελεσματικού συστήματος διανομής των προϊόντων στα ράφια τους. Το Πρόβλημα Διανομής Προϊόντων σε Ράφια (Shelf-Space Allocation Problem -SSAP) πραγματεύεται τη βέλτιστη διανομή προϊόντων πάνω σε ράφια με σκοπό τη μεγιστοποίηση του κέρδους, την ικανοποίηση των πελατών και τον περιορισμό φαινόμενων out-of-stock. Παράλληλα, το σημείο που είναι τοποθετημένα πάνω στο ράφι και ο αριθμός των τεμαχίων ενός προϊόντος επηρεάζει καταλυτικά τις προτιμήσεις των καταναλωτών. Για όλους τους παραπάνω λόγους οι λιανέμποροι δίνουν τεράστια σημασία στην αποτελεσματική διανομή των προϊόντων στα ράφια. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 11-
TO ΠΡΟΒΛΗΜΑ SHELF-SPACE ALLOCATION To πρόβλημα Shelf-Space Allocation περιγράφεται ως εξής: Υποθέτουμε για ένα λιανέμπορο, πχ. ένα super market, τα εξής δεδομένα: k: ένασυγκεκριμένοράφι, όπου: k = 1,2, m m: ο αριθμός των διαθέσιμων ραφιών του λιανέμπορου Τ k : τομήκοςκάθε kραφιού, όπου το k m i = ένα συγκεκριμένο προϊόν, όπου: i = 1,2, n α i = τομήκοςκάθετεμαχίου ενός συγκεκριμένου προϊόντος L i = κάτωόριοτωντεμαχίωνγιαέναi προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι U i = άνωόριοτωντεμαχίωνγιαέναi προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι Α i = ησυνολικήδιαθεσιμότητατεμαχίων ενός i προϊόντος P ik = το κέρδος/τεμάχιο του λιανέμπορου από το i προϊόν στο k ράφι ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 12-
TO ΠΡΟΒΛΗΜΑ SHELF-SPACE ALLOCATION Το μήκος όλων των προϊόντων που είναι τοποθετημένα σε ένα ράφι δε θα πρέπει να υπερβαίνει το συνολικό μήκος του ραφιού. O αριθμός τεμαχίων ενός i προϊόντος σε ένα k ράφι πρέπει να είναι μεταξύ των άνω και κάτω ορίων διαθεσιμότητας ενός i προϊόντος. Ο αριθμός τεμαχίων ενός i προϊόντος σε ένα k ράφι παίρνει ακέραιες τιμές. Σκοπός του προβλήματος είναι η βέλτιστη διανομή διαφόρων προϊόντων σε ορισμένα ράφια ενός λιανέμπορου (supermarket). Στο πρόβλημα Shelf-Space Allocation μπορούμε να ορίσουμε ανάλογα με το στόχο μας ως αντικειμενική συνάρτηση: την μεγιστοποίηση του κέρδους που αποφέρει κάθε προϊόν ή το πόσο πλήρη είναι τα ράφια μας ή ακόμα και το πόσο διαφορετικά προϊόντα έχουν τα ράφια μας ή το αντίστροφο. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 13-
ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION PROBLEM m = 2 διαθέσιμα ράφια Το μήκος κάθε ραφιού είναι Τ κ1 = 2 και Τ κ2 =2 i = ένα συγκεκριμένο προϊόν, όπου: i= 1,2, 6 k = ένα συγκεκριμένο ράφι, όπου: k= 1,2 το κέρδος/τεμάχιο του λιανέμπορου από το i προϊόν στο k ράφι είναι το ίδιο, ανεξάρτητα το ράφι. Παρακάτω φαίνονται οι πληροφορίες για τα i προϊόντα: Προϊόν No.1 No.2 No.3 No.4 No.5 No.6 Τεμάχια 3 4 7 2 5 4 α i 2 4 3 5 2 5 P ik 1 8 3 7 2 4 L i U i 2 2 4 2 4 3 Τ k : το μήκος κάθε k ραφιού α i : το μήκος κάθε τεμαχίου ενός συγκεκριμένου προϊόντος P ik : το κέρδος/τεμάχιο του λιανέμπορου από το i προϊόν στο k ράφι L i = κάτω όριο των τεμαχίων για ένα i προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι U i = άνω όριο των τεμαχίων για ένα i προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 14-
ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION Στόχος είναι να βρεθεί η λύση που μεγιστοποιεί το συνολικό κέρδος ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 15-
ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION Μορφή Λύσης: Η μορφή της λύσης είναι ένας αριθμός αντιστοιχίσεων τεμαχίων προϊόντων με ράφια. ΣτοιχείοΛύσης: Μια αντιστοίχιση τεμαχίου προϊόντος με ράφι Κριτήριο επιλογής του υποψήφιου στοιχείου της λύσης: Υπολόγισε το κλάσμα P ik /α i για κάθε προϊόν και κατάταξε τα προιόντα ανάλογα με τα αντίστοιχα κλάσματα (φθίνουσα κατάταξη). Σε κάθε επανάληψη προσθέτουμε στην ημιτελή μας λύση μια εφικτή αντιστοίχιση του μη-τοποθετημένου τεμαχίου του προϊόντος i με ένα ράφι. Το προϊόν i είναι αυτό με το μεγαλύτερο κλάσμα P ik /α i σε κάθε επανάληψη. Κριτήριο Αξιολόγησης: Tο συνολικό κέρδος/τεμάχιο του λιανέμπορου από την τοποθέτηση των επιλεγμένων τεμαχίων των προϊόντων στα 2 ράφια ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 16-
ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION Υπολογίζουμε τα κλάσματα P ik /α i και τα κατατάσσουμε. ΑΡΙΘΜΟΣ ΚΑΤΑΤΑΞΗΣ ΠΡΟΪΟΝ TEMAXIA P ik /α i L i U i 1 No.2 4 2 2 2 No.4 2 14 2 3 No.3 7 1 4 4 No.5 5 1 4 5 No.6 4 8 3 6 No.1 3 5 2 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 17-
ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION 1 η Επανάληψη: Ράφι1(16) Ράφι2(2) 3 η Επανάληψη: Ράφι1(12) 2 η Επανάληψη: Ράφι1(12) Ράφι2(2) Ράφι2(16) 4 η Επανάληψη: Ράφι1(12) Ράφι2(12) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 18-
ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION 5η Επανάληψη: Ράφι1(7) Ράφι2(12) 6η Επανάληψη: Ράφι1(2) Ράφι2(12) 7η Επανάληψη: Ράφι1(2) Ράφι2(9) 8η Επανάληψη: Ράφι1(2) Ράφι2(6) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 19-
ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION 9 η Επανάληψη: Ράφι1(2) Ράφι2(3) 1 η Επανάληψη: Ράφι1(2) Ράφι2() 11 η Επανάληψη: Ράφι1() Προϊόν5(2) Ράφι2() Κ(S) = (4*8)+(2*7)+ (4*3) + 2 =32+14+12 +2 =6 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 2-
ΕΡΩΤΗΣΕΙΣ ΠΑΡΑΚΑΛΩ ;;;;; tarantil@aueb.gr 21-82385, Πατησίων 95, 3 ος όροφος Ώρες Γραφείου: Παρασκευή 11.-14. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 21-