Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Σχετικά έγγραφα
Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

f x και τέσσερα ζευγάρια σημείων

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Αριθμητική Ανάλυση και Εφαρμογές

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1

Παράδειγμα #6 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

2.1 Αριθμητική επίλυση εξισώσεων

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Αν θεωρήσουμε την ^5h εξίσωση ως προς x και εκτελέσουμε τις πράξεις προκύπτει:

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

Αριθμητική Ανάλυση & Εφαρμογές

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

Οι συναρτήσεις που θα διαπραγματευτούμε θεωρούνται ότι είναι ολοκληρώσιμες με την έννοια που καθόρισε ο Riemann. Η συνάρτηση

3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού;

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

Αριθµητική Ολοκλήρωση

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

Πεπερασμένες Διαφορές.

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κεφάλαιο 0: Εισαγωγή

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 7

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

f(x) = και στην συνέχεια

Ολοκλήρωμα πραγματικής συνάρτησης

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

ΜΕΜ251 Αριθμητική Ανάλυση

Εφαρμοσμένα Μαθηματικά ΙΙ

Παράδειγμα #8 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και β) για τη παράγωγο f

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Παρεµβολή και Προσέγγιση Συναρτήσεων

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Όριο και συνέχεια πραγματικής συνάρτησης

Ελαχιστοποίηση του Κόστους

a n = 3 n a n+1 = 3 a n, a 0 = 1

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις.

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

Μέθοδος μέγιστης πιθανοφάνειας

Transcript:

Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα

3. Εισαγωγή στη πολυωνυμική παρεμβολή Έστω ότι από μετρήσεις ή/και υπολογισμούς δίδονται οι τιμές 0 i f με i 0,,...,. και οι αντίστοιχες διακριτές τιμές i Σημειώνεται ότι ενώ τα αναλυτική μορφή της συνάρτησης ζευγάρια τιμών f είναι άγνωστη. f f είναι γνωστά η i i i Ο σκοπός της αριθμητικής πολυωνυμικής παρεμβολής είναι η εύρεση συνάρτησης g f f f. g έτσι ώστε και που θα προσεγγίζει την άγνωστη i i i i Για ζευγάρια τιμών η συνάρτηση g επιλέγεται να είναι ένα πολυώνυμο βαθμού της μορφής P a a a a και επομένως θα πρέπει 0 P i f i fi με i 0,,...,. Επομένως θα πρέπει να ισχύουν οι εξής σχέσεις:

P a a a a f 0 0 0 0 0 0 P a a a a f 0 P a a a a f i i i i 0 i P a a a a f 0 ή a f 0 0 0 0 0 a f a i i i i fi a f Επομένως, οι συντελεστές του πολυώνυμου P προκύπτουν από τη λύση του παραπάνω συστήματος που είναι στη μορφή Xa f. Αποδεικνύεται ότι: det X 0 0 0 0 i i 3

Επομένως, ο πίνακας X είναι αντιστρέψιμος και η λύση του συστήματος είναι μοναδική όπως και το πολυώνυμο παρεμβολής P!! Έχοντας την αναλυτική μορφή του πολυωνύμου η τιμή της συνάρτησης f,. 0 P υπολογίζεται προσεγγιστικά Είναι γνωστό ότι για μεγάλο αριθμό δεδομένων, κάτι που είναι συνηθισμένο, η επίλυση του συστήματος Xa f είναι αριθμητικά επίπονη λόγω του δείκτη κατάστασης του πίνακα X. Αναζητούμε τεχνικές που να εξάγουν το πολυώνυμο παρεμβολής P έτσι ώστε P i fi χωρίς να είναι αναγκαία η επίλυση γραμμικού συστήματος (π.χ. παρεμβολές Newto και Lagrage). 4

3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Newto Το ζητούμενο πολυώνυμο παρεμβολής P γράφεται στη μορφή P b b b b 0 0 0 0 Οι άγνωστοι συντελεστές b i, i 0,,...,, προκύπτουν ως εξής: 0 : P 0 b0 f0 : P b0 b0 f : i P b b b f 0 0 0 P b b b b f : i 0 i 0 i 0 i i i 0 i i i i : P b b b b f 0 0 0 0 5

Σχετικά εύκολα αποδεικνύεται ότι b f 0 0 b f f0 0 0 b f f 0 0 0 0 f 0 b f f f 0 0 0 0 0 6

Παράδειγμα: Δίδονται τα δεδομένα f0 f 0, f f, f f βρεθεί με τη μέθοδο Newto το πολυώνυμο παρεμβολής ης τάξης 4 και να P a a a. 0 b 0 f0 b f f 0 0 0 0 0 4 b 0 0 0 0 Επομένως: Pb0 b0b00 0 P 7

3.. Παρεμβολή Lagrage Το ζητούμενο πολυώνυμο παρεμβολής P γράφεται στη μορφή P L f, όπου L i i i0 i 0i i i i 0 i i i i i i 0 Όταν i i 0 i i i i i η ποσότητα Li Lii. i 0 i i i i i Όταν i η ποσότητα τότε το θα είναι ίσο με ένα από τα, 0 i i L. και επομένως 0 i 8

Επομένως L για i i και 0 L για i. P L f L f L f L f L f i i 0 0 i i i0 Με βάση τα παραπάνω ισχύει ότι: P L f L f L f L f f 0 0 0 0 0 i 0 i 0 0 P L f L f L f L f f 0 0 i i P L f L f L f L f f i 0 i 0 i i i i i i P L f L f L f L f f 0 0 i i i Επομένως το προκύπτον πολυώνυμο P ικανοποιεί τις σχέσεις που P f. i i 9

f, f f, f f Παράδειγμα: Δίδονται τα δεδομένα f0 0 4 και να βρεθεί με τη μέθοδο Lagrage το πολυώνυμο παρεμβολής ης τάξης P L f L f L f. 0 0 0 0 L0 0 0 0 0 0 0 L 0 0 0 L 0 P f f f 0 P 0

Έστω Παράδειγμα: Επιλέξτε αυθαίρετα µία συνάρτηση f ( ) και τέσσερα i, f( i). Στη συνέχεια, µε βάση τα επιλεγμένα ζευγάρια τιμών, βρείτε το πολυώνυμο παρεμβολής, 3 ης τάξης, εφαρμόζοντας παρεμβολή α) Lagrage και β) Newto. f 3 ( ) 3 4 5 και τα αντίστοιχα ζεύγη τιμών 0, 5,,7, 5,90, 9,46 α) Παρεμβολή Lagrage P( ) f ( ) L ( ) f ( ) L ( ) f ( ) L ( ) f ( ) L ( ) L L 0 ( ) ( ) 0 0 3 3 3 0 0 0 3 0 3 0 3 P f ( ) 3 3 4 5 ( ) 3,, L ( ) L ( ) 3. 0 3 0 3 0 3 0 3 3 β) Παρεμβολή Newto: Θα δώσει ακριβώς το ίδιο αποτέλεσμα.

400 00 000 800 600 400 00 4 6 8 0 Γραφική παράσταση της f ( ) με τα σημεία παρεμβολής και του πολυωνύμου P( ) που 3 προέκυψε με τις παρεμβολές Lagrage και Newto. Σημειώνεται ότι στη περίπτωση αυτή λόγω της μοναδικότητας του πολυωνύμου παρεμβολής f P( ). 3

3.3 Μέθοδος κυβικών splies Αρχικά η μέθοδος περιγράφεται για την ειδική περίπτωση των 4 ( 3) σημείων και στη συνέχεια γενικεύεται για σημεία. Έστω τα δεδομένα:,f 0 0,,f,,f,,f 3 3 Σε κάθε διάστημα,, 03,,, βρίσκουμε ένα πολυώνυμο παρεμβολής 3 ης τάξης: S a b c d, 0,, (συνολικά άγνωστοι) έτσι ώστε να ισχύουν τα εξής: 3 Συνθήκη Α: S f, S f S, S f S, 0 0 0 0 Συνθήκη Β: S S, S S 0 Συνθήκη Γ: S S, S S 0 Θέτουμε αυθαίρετα (για να κλείσουμε το σύστημα): S, S 0 0 0 3 0 S f 3 3 3

Ορίζουμε τις ποσότητες y S, y S S, y S S, y S 0 0 0 0 και h0 0, h, h 3, f0 f f0, f f f, f f3 f S είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S Αφού τα πολυώνυμα ης τάξης και επιλέγουμε να τα γράψουμε στη μορφή: S y y 3 3 θα είναι πολυώνυμα 0 3, S y y, S y y 0 0 h0 h0 h h 3 h h Με τη συγκεκριμένη επιλογή ικανοποιείται αυτόματα η συνθήκη Γ. y 3 y 3 S c d, 0,,. 6h 6h Ολοκληρώνουμε δύο φορές: Βρίσκουμε τους άγνωστους συντελεστές c και d ικανοποιώντας τη συνθήκη Α. 4

y y S c d 0 3 3, S f 0 0 0 0 6h0 6h0 y y S c d 0 0 0 S f 3 3, S f 6h 6h y y S c d 0 S f 3 3, S f 3 6h 6h S f 3 3 Αντικαθιστούμε τους συντελεστές c και d και προκύπτει: y 0 3 y 3 f yh 0 f0 y 0h 0 S0 0 0 6h0 6h0 h0 6 h0 6 '' '' '' '' y y f y h f y h S 6h 6h h 6 h 6 3 3 '' '' '' '' y y f y h f y h S 3 3 6h 6h h 6 h 6 3 3 3 3 3 5

S,S,S : y y f h S y y Η συνθήκη Β δεν έχει ακόμη εφαρμοστεί. Επομένως παραγωγίζουμε τα 0 0 0 0 0 0 0 h0 h0 h0 6 y y f h S y y h h h 6 y y f h S y y 3 3 3 h h h 6 Εφαρμόζεται η συνθήκη Β, δηλαδή S S, S S Προκύπτουν τα y και 0 f 0 6 h 0 h h y h y 0 : f h f f hy hh y6 h h S,S,S. y τα οποία αντικαθιστούμε στις εκφράσεις για τα 0 6

Παράδειγμα: Να εφαρμοστεί η μέθοδος των κυβικών splies, στον παρακάτω πίνακα 0.5 f '0.5: δεδομένων ώστε να εκτιμηθούν οι τιμές των f και i 0. 0. 0.3 0.4 f -0.605-0.840 0.0066 0.484 i Οι όροι h είναι: h0 0 0., h 0., h 3 0. Οι όροι Δf είναι: f0 f f0 0.3365, f f f 0.906, f f3 f 0.48 f f0 h0 h h y h h 0 Τριδιαγώνιο σύστημα ( y 0 y 3 0): 6 h h h y f f h h 0.4 0.y 0.459 6 0. 0.4 y 0.488 y 5.39 και y 5.97. 7

Τα πολυώνυμα τα οποία αντιστοιχούν στα τρία υποδιαστήματα είναι: 3 S0 0.957 3.857.696 8.98667 3 S.06 4.4767.6 0.9666 3 S.36 7.09607.944 9.9533 Για τον υπολογισμό της τιμής στο 0.5 αντιστοιχεί στο διάστημα [0., 0.3]. Τότε S 0.5 0.36 και επιλεγούμε το πολυώνυμο S S 0.5.9084., το οποίο 8

0. 0.5 0. 0.5 0.3 0.35 0.4-0. -0.4-0.6 Γραφική απεικόνιση των πολυωνύμων παρεμβολής με κυβικές Splies. 9

Γενίκευση: Έστω ότι έχουμε τα δεδομένα,f με 0,,,...,. Για κάθε διάστημα, βρίσκουμε ένα πολυώνυμο παρεμβολής 3 ης τάξης S, 0,..., έτσι ώστε να ισχύουν τα παρακάτω: Συνθήκη Α: S f 0 0 0 Συνθήκη Β: S S Συνθήκη Γ: S S, S f S,,...,,,...,,,..., Ορίζουμε τις ποσότητες y S Αφού τα πολυώνυμα, S f,,..., ; h, f f f, 0,..., S είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S ης τάξης και επιλέγουμε να τα γράψουμε στη μορφή θα είναι πολυώνυμα 0

S y y, 0,..., h h Με τη συγκεκριμένη επιλογή ικανοποιείται αυτόματα η συνθήκη Γ. Ολοκληρώνουμε δύο φορές και βρίσκουμε y 3 y 3 S c d 6h 6h S f Εφαρμόζοντας τη συνθήκη Α δηλαδή S f και f h c y y h 6 S f βρίσκουμε και d y y f f h h 6

Αντικαθιστούμε τους συντελεστές c και d : y y f y h f yh S 6h 6h h 6 h 6 3 3 Επομένως η μορφή των S που έχουν προκύψει έως τώρα ικανοποιεί τις συνθήκες Α και Γ. Βρίσκουμε τις ποσότητες y που παραμένουν ακόμα άγνωστες έτσι ώστε να ικανοποιείται και η συνθήκη Β. Παραγωγίζουμε μία φορά και έχουμε y y f h S y y h h h 6 Για να εφαρμόσουμε τη συνθήκη Β γράφουμε και την αντίστοιχη έκφραση y y f h S y y h h h 6

Εξισώνουμε τις δύο εκφράσεις και μετά από κάποια επεξεργασία έχουμε το σύστημα f h f h yh y y yh y y h 3 h 3 που το ξαναγράφουμε στη μορφή τριδιαγωνίου συστήματος f f h y h h y hy 6 h h Για να κλείσει το σύστημα θέτουμε S S. 0 0 0 Από την επίλυση του συστήματος προκύπτουν τα αντικαθίστανται στις εκφράσεις πολυώνυμα παρεμβολής 3 ου βαθμού. y,,..., τα οποία S, 0,..., και προκύπτουν τα ζητούμενα 3

3.4 Μέθοδος ελαχίστων τετραγώνων Έστω ότι έχουμε τα δεδομένα,f i i με i,,...,. Ορίζουμε τις διαφορές di fi Pmi m P a a... a το ζητούμενο πολυώνυμο παρεμβολής που προκύπτει όπου m 0 ελαχιστοποιώντας την ποσότητα m m i i m i i 0 i m i S d f P f a a... a i i i Αυτό επιτυγχάνεται θέτοντας τις παραγώγους του S ως προς τους συντελεστές a m ίσες με το μηδέν και επιλύοντας το προκύπτον γραμμικό σύστημα. S m m 0 fi a0 a i... ami 0 a0 a i... ami fi a0 i i i S 0 m fi a0 a i... ami i m 0 a0 a i... ami i fii a i i i S m m 0 fi a0 a i... ami i 0a0 a... a f a m i m m m i m i i i i i i 4

Το σύστημα των m εξισώσεων ξαναγράφεται στη μορφή 3 m 0 i i i 3... i m i i i i i i 3 m a i 0 i a i a... i am i fi i i i i i 3 4 m i a0 i a i a... i am i fi i i i i i a a a a a f... m m m m m i a0 i a i a... i am i fi i i i i i Η μέθοδος συνήθως εφαρμόζεται για m. 5

Επίσης εναλλακτικά το σύστημα γράφεται στη μορφή Aa F ή m i i... i a0 fi i i i i 3 m i i i... i a i fi i i i i i.............................. m m m m i i i... i a m i fi i i i i i Αποδεικνύεται ότι η ορίζουσα του πίνακα των συντελεστών A είναι διάφορη του μηδενός και επομένως η λύση του συστήματος είναι μοναδική. 6

Επίσης, με βάση την θεωρία εύρεσης ελαχίστου μεγίστου συναρτήσεων πολλών μεταβλητών αποδεικνύεται ότι θέτοντας της πρώτες παραγώγους S / a i 0 ελαχιστοποιείται η συνάρτηση S. Απαιτείται ο υπολογισμός εσσιανού πίνακα τα στοιχεία είναι οι μερικές παράγωγοι: S, i,,...,. a i a Εύκολα προκύπτει ότι a i S a A i όπου A i τα αντίστοιχα στοιχεία του πίνακα A. 7

3 Παράδειγμα: Με βάση τη συνάρτηση f ( ) 3 4 5 επιλέξτε δέκα ζευγάρια σημείων i, f ( i) και εφαρμόστε παρεμβολή µε τη μέθοδο των ελαχίστων τετραγώνων μηδενικής, πρώτης και δεύτερης τάξης. Επιλέγονται τα εξής 0 ζεύγη τιμών: {-, -4}, {0, -5}, {.5, }, {.3,.66}, {3., 38.5}, {4.5, 34.5}, {5.8, 307.5}, {6., 38.4}, {7.9, 85.45}, {8.4, 00.33} 8

α) Πολυώνυμο μηδενικού βαθμού: P0( ) a0, 0 0 0a fi, P( ) 68.37 0 i y 000 800 600 400 00 4 6 8 Γραφική παράσταση του πολυωνύμου 0 ου βαθμού (μπλε γραμμή) με ελάχιστα τετράγωνα. 9

β) Πολυώνυμο πρώτου βαθμού: P( ) a0 a 0 0 a a f 0 0 i i i i 0 0 0 0 i i i i i i i y a a f 000 P ( ) 0.08.8 800 600 400 00 4 6 8-00 Γραφική παράσταση του πολυωνύμου ου βαθμού (μπλε γραμμή) με ελάχιστα τετράγωνα. 30

γ) Πολυώνυμο δεύτερου βαθμού: P( ) a a a 0 0 0 0 0a0 a i ai fi i i i 0 0 0 0 3 a0i ai ai i fi i i i i 0 0 0 0 3 4 a0i ai ai i fi i i i i 0 38.7 43.45 a 38.7 43.45 654.64 b 43.45 654.64 09.5 c 683.73 9855.3 5038. a0 a = -4.436 a b = -45.957 a c = 9.333 P ( ) 9.333 45.957 4.436 3

y 000 800 600 400 00 4 6 8 Γραφική παράσταση του πολυωνύμου ου βαθμού (μπλε γραμμή) με ελάχιστα τετράγωνα. 3

Παράδειγμα: Να εφαρμοσθεί η μέθοδος των ελάχιστων τετραγώνων στον πίνακα δεδομένων: i 3 4 5 6 7 8 9 0 f.3 3.5 4. 5 7 8.8 0..5 3 3 Επιλέγοντας πολυώνυμο ου βαθμού προκύπτει το σύστημα i 0 i i i i i i 3 0 i i i i i i i i i 3 4 0 i i i i i i i i i a a a f a a a f a a a f Επιλύεται το σύστημα και προκύπτουν οι συντελεστές a 0, a, P 0.407.55 0.035. a. Το πολυώνυμο παρεμβολής είναι 33

Επιλέγοντας πολυώνυμο 3 ου βαθμού προκύπτει το σύστημα 3 0 i i i 3 i i i i i a a a a f 3 4 a i 0 i a i a i a3 i fi i i i i i 3 4 5 i a0 i a i a i a3 i fi i i i i i 3 4 5 6 3 i a0 i ai a i a3 i fi i i i i i P3 0.45.60.043 0.0005 Η συνάρτηση παρεμβολής είναι 3 34

5.5 0 7.5 5.5 5.5 0 7.5 5.5 4 6 8 0 4 6 8 0 Παρεμβολή ελαχίστων τετραγώνων με πολυώνυμο ου (αριστερά) και 3 ου (δεξιά) βαθμού. 35

Εφαρμογή της μεθόδου ελαχίστων τετραγώνων σε διαστάσεις: Παράδειγμα: Δίδεται ο πίνακας δεδομένων: 0 0 0 0 0 0 y 5 5 0 6 8 3 6 Ζητείται το πολυώνυμο παρεμβολής y a0 a a με τη μέθοδο των ελαχίστων τετραγώνων. Ελαχιστοποιείται η ποσότητα S d f a a a i i 0 i i i0 i0 36

Πρέπει να επιλυθεί το γραμμικό σύστημα: S 0 S 0 S a0 a a 0 Μετά τη εύρεση των παραγώγων το σύστημα ξαναγράφεται στη μορφή i i yi i i i a 0 i i i i a iy i i i i i a i ii i iyi i i i i 9 9 9a0 56 9 5 9 a 77 9 9 5 a 54 Επιλύεται το σύστημα και προκύπτουν οι άγνωστοι συντελεστές: a 7, a 85, a0 3 6 37

85 7 y, 6 3 Παρεμβολή ελαχίστων τετραγώνων με πολυώνυμο ου βαθμού σε δύο διαστάσεις. 38

Παράδειγμα: Παρεμβολή ελαχίστων τετραγώνων με εκθετικές συναρτήσεις βάσεις Με βάση τον παρακάτω πίνακα δεδομένων βρείτε με τη μέθοδο των ελαχίστων τετραγώνων τους συντελεστές της συνάρτησης παρεμβολής f c ce i 0 3 5 y 4 0 40 00 i 0 5 5 i i 0 y i i c0 ce i c0 i S y c ce 5 S S 0 i i yi c0 ce e 0 c i 5 i i 5 5 c e c y 0 i i i i i e c0 e c yie 5 5 5 i i i 5c 79.6c 55 0 79.6c 49.9c 3057.8 0 c 0 c 3.05.33 Γενίκευση: (αποδεικνύεται ότι η επιλογή των 0 f c e c είναι μοναδική). 39

Παράδειγμα: Τυπικά αποτελέσματα αριθμητικής παρεμβολής της συνάρτησης 3 f ( ) si 3 e.5.5.5.0.0.0 0.5-0.5 ò ò ò ò 3 4 0.5-0.5 ò ò ò ò 3 4 0.5-0.5 -.0 ò ò ò ò ò òò ò ò ò 3 4 -.0 -.0 -.5 -.5 -.5 -.0 Newto ad Lagrage Cubic splies Least square methods 40

3.5 Παρεμβολή με ορθογώνια πολυώνυμα Εφαρμόζεται η μεθοδολογία των ελαχίστων τετραγώνων όπου οι συναρτήσεις βάσης είναι ορθογώνια πολυώνυμα (όχι μονώνυμα) και ΔΕΝ απαιτείται επίλυση αλγεβρικού συστήματος. Έστω ότι προσεγγίζεται µία συνάρτηση f a, b μορφής: m f c 0 όπου οι συναρτήσεις βάσεις b w kd 0, k a µε ένα γραμμικό συνδυασμό της είναι ορθογώνια πολυώνυμα στο, b και ab, δηλαδή w k d dk, k a 4

Legedre P0, P P : ορθογώνια στο διάστημα [,] P P d m 0, m Laguerre L0, 0, P 3 με συνάρτηση βαρύτητας w., P P P και P P d m, m L : ορθογώνια στο διάστημα 0, με συνάρτηση βαρύτητας w e L e L Lm d 0, m., L, L L L 4 και 0 e L Lm d, m! 4

Chebyshev T0, T : ορθογώνια στο διάστημα [,] T με συνάρτηση βαρύτητας w /, T, T T T 0 m T T d, m Hermite H0, m T T d, m 0 m T T d, m 0 και H : ορθογώνια στο διάστημα, H με συνάρτηση βαρύτητας, H, H H H 4 e H Hm d 0, m και. w e. e H Hm d!, m 43

Ορίζεται τα υπόλοιπα r f c m, m. 0 Στη συνέχεια ελαχιστοποιείται η ποσότητα S wr d όπου συναρτήσεις βαρύτητας. Αναγκαίες συνθήκες για την ελαχιστοποίηση του S είναι b b m S wr d wf c d ck ck c a k a 0 b a w οι αντίστοιχες b w f c d k a c k 0 m b m w f c d0, 0 k m a 0 οι οποίες οδηγούν στο γραμμικό σύστημα 44

b a m 0 k k a b w c d w f d, 0 k m ή b cw kd wk f d, 0 k m 0 a a Το σύστημα είναι στη μορφή A b b και επιλύεται για τους άγνωστους συντελεστές c. b k, k a Εφαρμόζοντας τις σχέσεις ορθογωνιότητας w d 0 ανάγεται σε διαγώνιο πίνακα και οι συντελεστές προκύπτουν από τις σχέσεις, ο πίνακας A 45

c k b w k f d b a w b k f d d k a w d a k k i k i i d k w f, 0 k m i0 Παράδειγμα: Προσεγγίζεται με ορθογώνια πολυώνυμα Legedre στο διάστημα [,] η 3 συνάρτηση f ( ) si 3 e f ( ) c P( ) c P( ) r f c P c P Έστω 0 0, m 0 0 0 0 όπου S w f c P c P d w. 46

Αναγκαίες συνθήκες για την ελαχιστοποίηση του S είναι S c S c 0 0 r d f c0p0 cp d 0 0 0 S c c c c f c0p0 cp d 0 0 0 0 c P c P P d f P d 0 0 0 0 f c P c P P d0 0 c P P d c P P d f P d 0 0 0 0 0 c wp f i0 i 0 i i 47

S r d f c0p0 cp d c c c c f c0p0 cp d 0 0 f c P c P P d0 c P c P P d f P d 0 0 c P P d c P P d f P d 0 0 3 c wp f i0 i i i Αριθμητικά αποτελέσματα θα πάρουμε αφού εξετάσουμε το κεφάλαιο της αριθμητικής ολοκλήρωσης 48

Αποτελέσματα αριθμητικής παρεμβολής με ορθογώνια πολυώνυμα Legedre 3 με 7 και m 4 της συνάρτησης f ( ) si στο διάστημα [,] : 3 e 0.4 0.3 0. 0. ò ò ò ò ò ò ò -.0-0.5 0.5.0 4 3 ( ) 0 0( ) ( ) ( ) 3 3( ) 4 4( ) 0.34 0.66 0.07 0.7 0.00 f c P c P c P c P c P -0. 49

Ασκήσεις:. Με βάση τα σημεία 0, /3, /3 και 3 5 εφαρμόστε κυβικές splies και βρείτε τα πολυώνυμα S, 0,, S S.. Έστω η συνάρτηση f i i με την υπόθεση ότι και τις αντίστοιχες τιμές 0 0 3 0 f, i 0,,,3 i. Μια εναλλακτική στρατηγική στη μέθοδο των κυβικών splies είναι να χρησιμοποιούνται στα πρώτα δύο υποδιαστήματα 0 και στα δύο τελευταία υποδιαστήματα μόνο από ένα πολυώνυμο 3 ης τάξης. Με βάση αυτή τη προσέγγιση διατυπώστε την ελαφρά τροποποιημένη μαθηματική επεξεργασία ώστε να προκύψει το σύστημα των εξισώσεων για τον υπολογισμό των άγνωστων συντελεστών των πολυωνύμων 3 ης τάξης. 3. Έστω τα δεδομένα,,...,, yaf bg όπου f και y y. Διατυπώστε τη μέθοδο των ελαχίστων τετραγώνων για την εύρεση της συνάρτησης παρεμβολής g είναι γνωστές συναρτήσεις. 4. Ένα εικονικό πείραμα παράγει τα εξής τέσσερα ζεύγη δεδομένων y.0 0.9 0.5..0..0.5 Να εκτιμηθεί η τιμή της y στο σημείο =0 με i) παρεμβολή Lagrage και ii) παρεμβολή κυβικών splies. 50

,,. Με βάση τα σημεία 0, 0, και τις αντίστοιχες τιμές f0, f 0, f εφαρμόστε παρεμβολή Lagrage και παρεμβολή κυβικών splies και βρείτε τα πολυώνυμα παρεμβολής. Σχολιάστε τα αποτελέσματά σας. 5. Έστω η συνάρτηση f si Λαμβάνοντας υπόψη ότι f f 0 (επιπλέον δεδομένα) εφαρμόστε τη μέθοδο παρεμβολής κυβικών splies ελαφρώς τροποποιημένη και βρείτε τα πολυώνυμα παρεμβολής. Σχολιάστε τα αποτελέσματά σας ως προς τη σημαντικότητα των επιπλέον δεδομένων. Προτείνετε επιγραμματικά τρόπους βελτίωσης των παραπάνω αποτελεσμάτων. 3 6. Το ιξώδες του νερού ( 0 Ns/m ) σε διάφορες θερμοκρασίες T ( o C) δίδεται στον παρακάτω πίνακα: T 0 5 0 30.79.5.00 0.78 Εφαρμόστε τη μέθοδο των ελαχίστων τετραγώνων και βρείτε ένα γραμμικό πολυώνυμο παρεμβολής της μορφής: T at b 7. Ο πληθυσμός μιας μικρής κοινότητας έχει αυξηθεί ραγδαία τα τελευταία 0 χρόνια σύμφωνα με τα εξής δεδομένα: t 0 5 0 5 0 p 98 0 447 950 008 Εφαρμόστε ένα εκθετικό μοντέλο παρεμβολής και εκτιμήστε τον πληθυσμό της κοινότητας μετά από 5 έτη ( t 5). 5

8. Θεωρείστε το εξής πρόβλημα παρεμβολής: Έστω ότι 0,,..., είναι διακριτοί πραγματικοί αριθμοί και y0, y,..., y τα αντίστοιχα δεδομένα. Η συνάρτηση παρεμβολής είναι f ce 0 έτσι ώστε f i yi, i 0,,...,. Αποδείξτε ότι η επιλογή των c0, c,..., c είναι μοναδική. Στη συνέχεια με βάση τον πίνακα δεδομένων i 0 3 5 y 4 0 40 00 i βρείτε με τη μέθοδο των ελαχίστων τετραγώνων τους συντελεστές της συνάρτησης παρεμβολής f c ce 0 9. Να βρεθούν με τη μέθοδο των κυβικών splies για τα δεδομένα 4 9 0 f 6 8 400 οι τιμές παρεμβολής της 0. Δίδεται ο πίνακας δεδομένων: f στα σημεία, 7 και 7. Σχολιάστε την ακρίβεια των αποτελεσμάτων. 0 0 0 0 0 0 y 5 5 0 6 8 3 6 Βρείτε το πολυώνυμο παρεμβολής y a0 a a με τη μέθοδο των ελαχίστων τετραγώνων 5