ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a



Σχετικά έγγραφα
5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

Générateurs et groupes cycliques

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

a = a a Z n. a = a mod n.

============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2:

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Ορια Συναρτησεων - Ορισµοι

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Επίλυση Γραµµικών Συστηµάτων

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

Όνοµα: Λιβαθινός Νικόλαος 2291

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }

Κεφάλαιο 7 Βάσεις και ιάσταση

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

1 Ορισµός ακολουθίας πραγµατικών αριθµών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Στοχαστικά Σήµατα και Εφαρµογές

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

3 Αναδροµή και Επαγωγή

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης


ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων

HY118- ιακριτά Μαθηµατικά

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

Κεφάλαιο 9. Οµάδες συγκεκριµένης τάξης. 9.1 Οµάδες τάξης pq. Z p 2 και Z p Z p.

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΘΕΩΡΗΜΑ CAYLEY-HAMILTON. Έστω A πίνακας ν ν. Από το θεώρηµα Cayley-Hamilton συµπεραίνουµε ότι το σύνολο των πολυωνύµων p( λ ), ώστε p( A)

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

Κίνηση στερεών σωμάτων - περιστροφική

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων


Transcript:

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας βοηθήσουν. Ας ξεκινήσουµε από την έννοια της G- δράσης επί ενός τυχαίου συνόλου Α. (G, ) σύνολο Α (από αριστερά) Θα ορίσουµε µία απεικόνιση (x,a) x a x G και a A η οποία πρέπει να πληροί δύο προϋποθέσεις: 1) (xy)a=x(ya) x,y G και a A 2) e a=a (ουδέτερο στοιχείο) Βλέπουµε ότι το πρώτο είναι µια µορφή προσεταιριστικότητας. Το x y G, άρα δρα το a δεξιά. ρα επίσης δεξιά στο y. Οπότε αυτό µας λέει ότι όταν έχουµε πράξη µε το a, παραµένουµε στο χώρο του a. Στην πραγµατικότητα, αυτό το πρώτο κριτήριο είναι το πολύ δύσκολο. Το δεύτερο µάς λέει ότι το ουδέτερο στοιχείο είναι ουδέτερο και για το a. Αυτό φαίνεται αυτονόητο, αλλά προσέξτε ότι εδώ µας λέει ότι για τη συγκεκριµένη πράξη, το ουδέτερο έχει την ιδιότητά του ακόµη και αν αλλάξουµε χώρο. Εφόσον τηρούνται αυτές οι δύο προϋποθέσεις, τότε θα λέµε ότι η G δρα ή ενεργεί επί του συνόλου Α και έχουµε µία G- δράση επί του Α, αριστερή, δηλαδή ότι όλα τα στοιχεία που ανήκουν στο G είναι πάντοτε αριστερά από αυτά που ανήκουν στο Α. Το ίδιο πράγµα, όπως θα δούµε τώρα, µπορεί να γίνει και από τα δεξιά. Κάθε στοιχείο x G ορίζει µια απεικόνιση. Τ x :Α Α: a Τ x (a)= xa Τ xy = Τ x Τ y, Τ e = I (ταυτοτικός πίνακας) Αυτό το γράφουµε για να δούµε πώς γίνεται η σύνθεση συναρτήσεων. Στα µαθηµατικά σε άλλο επίπεδο θα µπορούσαµε να κάνουµε σύνθεση απεικονίσεων. Στη G δράση από δεξιά έχουµε: (x.a) ax 1) a(xy)=(ax)y 2) ae=a 1

Εδώ η απεικόνιση είναι: S x (a)=ax, S xy =S y S x Για να καταλάβουµε γιατί στη σύνθεση βγαίνει ανάποδα, ίσως πρέπει να κάνουµε ένα παράδειγµα. S y (a)=ay S x (a)=ax S y (S x (a))= a(ax) ηλαδή όταν έχουµε ax, είµαστε στο χώρο του a. Για παράδειγµα, αν πάρω τους πραγµατικούς και µία άγνωστη οµάδα που δρα πάνω τους, µένω στους πραγµατικούς. Αν έχω π.χ. την πράξη της πρόσθεσης, θα µείνω εκεί, δεν µπορώ να αλλάξω χώρο. Αλλά έχω και οµάδα. Έχω αντίστροφο, αν κάνω για παράδειγµα ( α) + α = 0. Η ιδέα είναι ότι δεν επανερχόµαστε στο χώρο, είµαστε στο χώρο. ηλαδή αν κάνουµε µία µετάθεση στο επίπεδο, δεν θα πούµε πως επανερχόµαστε στο επίπεδο, αφού είµαστε ήδη στο επίπεδο και παραµένουµε εκεί. (σελ.21) Στη µελέτη µας δεν υπάρχει διαφορά µεταξύ αριστερών και δεξιών G-δράσεων διότι µια αριστερή G-δράση γίνεται δεξιά αν γράψουµε ax=x -1 a. Τότε: S xy (a)=(xy) -1 a=y -1 (x -1 a)=y -1 S x (a)= S y (S x (a))= S y S x (a) Για να το δούµε αυτό πρώτα µε κάτι ήδη γνωστό. Αν έχω µία οµάδα µε ένα στοιχείο που είναι ουδέτερο µόνο αριστερά: (G, ) οµάδα Έστω ε : εx=x (1) Το ερώτηµά µας είναι, αυτό είναι το ουδέτερο στοιχείο ή είναι κάτι άλλο; Αν είναι αντιµεταθετική είναι trivial. Όταν δεν είναι αντιµεταθετική, αν µπορούµε να πούµε πως το στοιχείο που είναι ουδέτερο από αριστερά, είναι το ουδέτερο στοιχείο; Γιατί σε µία µη αντιµεταθετική οµάδα, το ουδέτερο είναι αντιµεταθετικό. Λέµε: ε e, e: xe=ex=x (δηλ. e το ουδέτερο στοιχείο) (2) (1): εe = e (2): εe = eε = ε Από (1),(2) ε=e Αυτό που βλέπουµε είναι ότι όταν είσαι σε µία οµάδα και είσαι ουδέτερος αριστερά ή δεξιά, τότε θα είσαι ουδέτερος δεξιά ή αριστερά και παρεµπιπτόντως θα είσαι ουδέτερος. Αυτό µπορούµε να το γενικεύσουµε και στις υπεροµάδες, είναι ένα θεώρηµα από µία Ρουµάνα. Εδώ είναι ας πούµε µία άσκηση, το άλλο είναι µια δηµοσίευση. 2

Τώρα για να γυρίσουµε στο πιο πάνω, ας πούµε πως πολλαπλασιάζουµε µε x και από τις δύο πλευρές. Τότε θα έχουµε: xax=a επειδή όπως είδαµε ισχύει ax=x -1 a, άρα x(ax)=x(x -1 a)=(xx -1 )a=a Εδώ δεν θα πρέπει να σας προβληµατίζει η ισοδυναµία εφόσον το x µπορώ να το εκφράσω ως το x κάποιου ή το x -1 κάποιου, δηλαδή τον αντίστροφο κάποιου, εφόσον είµαστε σε οµάδα και άρα υπάρχει ο αντίστροφος. Αυτό είναι όπως όταν κάνουµε διαγωνοποίηση πινάκων. Εκεί, παίρνω έναν πίνακα, κοιτάζω τις ιδιοτιµές, κοιτάζω τα ιδιοδιανύσµατα και µπορώ να µετατρέψω τον πίνακά µου σε: πίνακα αλλαγής x διαγώνιο πίνακα x αντίστροφο πίνακα αλλαγής: M=P P -1 Θα πούµε ότι η Μ είναι διαγωνοποιήσιµη αν οι ιδιοτιµές είναι οι τιµές του χαρακτηριστικού πολυωνύµου. Το χαρακτηριστικό πολυώνυµο είναι το X M =det(m - xid) Όταν το αναπτύσσεις αυτό, σου δίνει ένα πολυώνυµο. Οι ρίζες από αυτό το πολυώνυµο είναι οι ιδιοτιµές. Υπάρχει ένα θεώρηµα που σου λέει ότι αν η πολλαπλότητα των τιµών είναι το ίδιο µε τη διάσταση των υποδιαστηµάτων του συστήµατος, τότε είναι η διαγωνοποίησή του. ηλαδή είναι αυτό που γράψαµε παραπάνω, P P -1. Τώρα, πώς έχουν φτιαχτεί αυτοί οι πίνακες. ( ) ( ) ( ) -1 Οι τιµές του πολυωνύµου X M Τα ιδιοδιανύσµατα που συµπίπτουν µε τη ρίζα ο αντίστροφος του πρώτου Αν θέλετε, για να το καταλάβουµε µε µία εκφυλισµένη περίπτωση, πέστε ότι ο Μ είναι ένας διαγώνιος πίνακας. D= τώρα κάνω την ορίζουσα από τον (D - xid) και έχω: Χ D =(a-x)(b-x) 3

Οπότε: D= Βέβαια, αυτό είναι εκφυλισµένο. Υπάρχουν πίνακες που µπορούν να διαγωνοποιηθούν και υπάρχουν πίνακες που µπορούν να τριγωνοποιηθούν. Είναι ο φορµαλισµός του Camille Jordan. Η µέθοδος του Jordan σάς λέει ότι µπορείτε να κάνετε το ίδιο µε τους πίνακες που δεν µπορείτε να διαγωνοποιήσετε, αλλά µπορείτε να τριγωνοποιήσετε. Οπότε επάνω, αυτό που πρέπει να κάνουµε είναι να βρούµε την ορίζουσα, να κάνουµε το ανάπτυγµά της και όλα τα άλλα ξέρουµε ότι είναι µηδέν. Όταν έχω έναν πίνακα ο οποίος είναι τριγωνικός πάνω ή τριγωνικός κάτω, η ορίζουσά του είναι ο πολλαπλασιασµός από τα στοιχεία που βρίσκονται στη διαγώνιό του. ( ) ) Επιστρέφοντας στο x και τον αντίστροφό του, µπορούµε να δούµε -για να το καταλάβουµετο παράδειγµα του ρολογιού. Όταν η ώρα είναι στο 6, µπορούµε να πούµε ότι είναι το +2 του 4 ή το -2 του 8. Τώρα µπορούµε να ξαναδούµε γιατί ισχύει αυτό που γράψαµε παραπάνω για τις αριστερές και τις δεξιές G-δράσεις: 4

S xy (a)=(xy) -1 a=y -1 (x -1 a)=y -1 S x (a)= S y (S x (a))= S y S x (a) ιδιότητα Για να το καταλάβουµε καλύτερα, ας δούµε πώς θα το γράφαµε εάν θέλαµε να το αποδείξουµε: (xy) y -1 (x -1 a)=x(yy -1 )x -1 a=xx -1 a=a Οπότε το πρώτο = είναι καθαρά εφαρµογή του ορισµού (ax=x -1 a). Το δεύτερο το δείξαµε τώρα, είναι µια ιδιότητα και τα υπόλοιπα είναι πάλι εφαρµογή του ορισµού. Στην πραγµατικότητα, όλα αυτά τα κάνουµε επειδή δεν µπορούµε να προϋποθέσουµε ότι είναι αντιµεταθετική. Αλλιώς είναι αυτονόητο. Αλλά η θεωρία οµάδων διαχειρίζεται και οντότητες που δεν είναι αντιµεταθετικές, άρα πρέπει να είµαστε προσεχτικοί. Εδώ αυτό που προσπαθούµε να δείξουµε είναι ότι ακόµη κι αν η οµάδα η ίδια δεν είναι αντιµεταθετική, η δράση της οµάδας είναι αντιµεταθετική. Βέβαια η ιδιότητα αυτή εµφανίζεται στη σύνθεση, οπότε στην πραγµατικότητα έχουµε αλλάξει πράξη. Αυτό που πρέπει να προσέξουµε είναι ότι µόνο στη δεύτερη ισότητα είχαµε να εφαρµόσουµε µία ιδιότητα. Τα υπόλοιπα ήταν απλώς ο ορισµός, έπρεπε να το γράψουµε κάπως και ο ορισµός µάς λέει πώς να το γράψουµε. Όλη η πολυπλοκότητα βρίσκεται στη δεύτερη ισότητα. Αν θέλουµε να το πούµε κάπως αλλιώς, θα λέγαµε ότι αυτό εδώ είναι ο γνωστικός πυρήνας. Εάν όλη η σειρά είναι ο προβληµατισµός σου, θα σου έλεγα ότι η πολυπλοκότητα του προβληµατισµού σου, είναι η πολυπλοκότητα του πυρήνα. πολ (πρ) = πολ (πυρ) Εδώ δεν πρέπει να µπερδεύεστε µε τους συµβολισµούς, γιατί τότε θα κολλήσετε στην τεχνική, ενώ υπάρχει τέχνη. Η τέχνη είναι η επιστήµη που καταφέρνει και κρύβει την τεχνική. Όλα αυτά που κάνουµε τώρα είναι µία νοητική άσκηση. Είναι µία έκφραση που χρησιµοποιούσε συχνά ο Einstein και έλεγε ότι για να βρεις ένα πείραµα, πρώτα πρέπει να κάνεις µία άσκηση σκέψης, για να βρεις τι θα µπορούσες να µετρήσεις. Ένα παράδειγµα είναι ότι όταν σου λέει πως η βαρύτητα τροποποιεί την τροχιά του φωτός, δεν είναι ένα πείραµα που κάνει πριν. Ας πούµε το να µετρήσουµε ότι το περιήλιο του Ερµή είναι 43 του τόξου σε σχέση µε το νευτωνικό, δηλαδή ότι δεν έκλεινε ακριβώς εκεί που θα έπρεπε µε βάση τη νευτώνια µηχανική, αυτό υπήρχε αλλά δεν µπορούσαν να το εξηγήσουν. Ενώ µε τη θεωρία της σχετικότητας, µπόρεσαν. Το άλλο όµως, είναι κάτι που πριν δεν το έκαναν ποτέ. Ας πούµε το παράδειγµα µε την έκλειψη: Σου λέει ότι αν βάλεις µια µεγάλη µάζα κοντά στην τροχιά του φωτός, τότε αυτή καµπυλώνεται και τελικά το αντικείµενο φαίνεται να έχει µετακινηθεί. Βέβαια η µάζα πρέπει να είναι αρκετά µεγάλη, όπως ας πούµε ο Ήλιος. Ωστόσο, µε τόσο λαµπρό φως που έχει, δεν µπορεί να φανεί η καµπύλωση του φωτός από ένα αστέρι που βρίσκεται σχεδόν πίσω του. Οπότε αυτό που έκανε ο Eddington ήταν να φωτογραφήσει το αστέρι την ώρα της έκλειψης 5

και κοίταξε τον ουρανό από πίσω, χωρίς τον Ήλιο, και είδε ότι τα αστεράκια που είναι πολύ κοντά, µετακινούνται. Αυτό είναι το πείραµα του 1919. Βέβαια τώρα ξέρουµε ότι µε τις µετρήσεις που µπορούσε να κάνει, δεν µπορούσε να το αποδείξει µε τίποτα Όπως και ο Galileo µε τα δικά του. Για να προχωρήσουµε στις ειδικές περιπτώσεις G-δράσεων. Ορισµός 1.3.2 (σελ. 22): Έστω (G, ) µία οµάδα και x G, τότε ονοµάζεται: αριστερός πολλαπλασιασµός επί x, η απεικόνιση L x :g xg, δεξιός πολλαπλασιασµός επί x, η απεικόνιση R x :g gx συζυγία του x η απεικόνιση σ x :g σ x (g)=xgx -1 η συζυγία ονοµάζεται και εσωτερικός αυτοµορφισµός. Τώρα πηγαίνοντας προς το θεώρηµα του Lagrange, βλέπουµε τον ορισµό 1.3.3: Έστω Η µία υποοµάδα της (G, ), τότε κάθε σύνολο της µορφής όπου Ονοµάζεται αριστερό συνσύνολο (coset) µε αντιπρόσωπο το x. Όµοια ονοµάζεται δεξιό συνσύνολο κάθε σύνολο της µορφής Οπότε τώρα µπορούµε να περάσουµε στο θεώρηµα Lagrange (1771): Η τάξη µιας πεπερασµένης οµάδας διαιρείται µε την τάξη κάθε υποοµάδας της. Η G: 6

Από εδώ προκύπτει το πόρισµα 1.3.5 που µας λέει ότι «Αν η τάξη µιας οµάδας είναι πρώτος αριθµός τότε δεν έχει καµιά κύρια υποοµάδα»: Αυτό συµβαίνει επειδή, όπως ξέρουµε για οποιοδήποτε n, υπάρχει πάντοτε µία κυκλική οµάδα. Το ότι δεν υπάρχει υποοµάδα, στις οµάδες τάξης p, αυτό σηµαίνει ότι υπάρχει ένας γεννήτορας που παράγει όλη την οµάδα. ηλαδή λέµε ότι ξέρουµε ότι υπάρχει και ότι δεν έχει καµία υποοµάδα. Αλλά έχει τουλάχιστον ένα στοιχείο µέσα. Άρα παίρνω αυτό το στοιχείο και του κάνω την πράξη µε τον εαυτό του. Θα πιάσει όλη την οµάδα, γιατί αν έπιανε κάτι άλλο, θα ήταν υποοµάδα, θα είχα µια µικρή τροχιά, θα ξαναερχόταν στον εαυτό του. Εφόσον όµως θα πρέπει να τους πιάσει όλους, έχει την ιδιότητα του κυκλικού. Άρα είναι κυκλική. Στις κυκλικές οµάδες όµως, µπορεί να είναι µόνο µία. Η. Άρα θα µπορούσαµε να πούµε σαν δεύτερο πόρισµα ότι: Για p πρώτο, υπάρχει µοναδική οµάδα, η. 7