1 TIES ES IR PLOK TUMOS

Σχετικά έγγραφα
Matematika 1 4 dalis

Matematika 1 3 dalis

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

X galioja nelygyb f ( x1) f ( x2)

Dviejų kintamųjų funkcijos dalinės išvestinės

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

FDMGEO4: Antros eilės kreivės I

TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

Matematinis modeliavimas

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

Elektronų ir skylučių statistika puslaidininkiuose

I.4. Laisvasis kūnų kritimas

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1

KLASIKIN E MECHANIKA

04 Elektromagnetinės bangos

Specialieji analizės skyriai

Specialieji analizės skyriai

06 Geometrin e optika 1

MONTE KARLO METODAS. Gediminas Stepanauskas IVADAS Sistemos Modeliai Modeliavimas ir Monte-Karlo metodas...

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

Įžanginių paskaitų medžiaga iš knygos

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis?

1. Vektoriu veiksmai. Vektoriu skaliarinė, vektorinė ir mišrioji sandaugos

Statistinė termodinamika. Boltzmann o pasiskirstymas

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad

Vilijandas Bagdonavi ius. Julius Jonas Kruopis MATEMATIN E STATISTIKA

1. Individualios užduotys:

AIBĖS, FUNKCIJOS, LYGTYS

Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra. Gintaras Skersys. Mokymo priemonė

0.1. Bendrosios sąvokos

Matematinės analizės konspektai

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Paprastosios DIFERENCIALINĖS LYGTYS

Vilniaus universitetas Matematikos ir informatikos fakultetas. Algirdas Ma iulis. Duomenu tyrimas. Paskaitu konspektas

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1.4. Rungės ir Kuto metodas

Paprastosios DIFERENCIALINĖS LYGTYS

Remigijus Leipus. Ekonometrija II. remis

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai

0.1. Bendrosios sąvokos

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

KADETAS (VII ir VIII klasės)

Vilius Stakėnas. Kodavimo teorija. Paskaitu. kursas

Paprastosios DIFERENCIALINĖS LYGTYS

TEORIJA. RINKTINIAI MATEMATIKOS SKYRIAI (Informatikos spec., 2 srautas, magistrantūra, 1 semestras) PROGRAMA. su skaidžia savybe skaičiu

d 2 y dt 2 xdy dt + d2 x

EKONOMETRIJA 1 (Regresinė analizė)

DISKREČIOJI MATEMATIKA

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

!"#$ % &# &%#'()(! $ * +

2 laboratorinis darbas. TIKIMYBINIAI MODELIAI

eksponentinės generuojančios funkcijos 9. Grafu

TRANSPORTO PRIEMONIŲ DINAMIKA

Sheet H d-2 3D Pythagoras - Answers

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI

Elektrotechnikos pagrindai

Προβολές και Μετασχηματισμοί Παρατήρησης

III.Termodinamikos pagrindai

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA

ELEMENTARIOJI TEORIJA

Modalumo logikos S4 kai kurios išsprendžiamos klasės

4 laboratorinis darbas. PARAMETRŲ ĮVERČIAI IR STATISTINĖS HIPOTEZĖS

HY118- ιακριτά Μαθηµατικά

1. Klasifikavimo su mokytoju metodai

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas

Diskrečioji matematika

MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA

Matematinė logika. 1 skyrius Propozicinės formulės. žodį, Graikiškas žodis logos (λóγoς) reiškia

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis


TEORIJOS PRADMENYS PROGRAMA

Algoritmai. Vytautas Kazakevičius

6. Bendrama iai dydºiai ir realieji skai iai 71. Kokius dydºius graiku antikos matematikai vadino bendrama iais?

. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai)

1 iš 15 RIBOTO NAUDOJIMO

Atsitiktinių paklaidų įvertinimas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

FRANKO IR HERCO BANDYMAS

Analizės uždavinynas. Vytautas Kazakevičius m. lapkričio 1 d.

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,

Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius. Mokomoji knyga


AUTOMATINIO VALDYMO TEORIJA

Ax = b. 7x = 21. x = 21 7 = 3.

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1

Transcript:

G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu yra visi²kai apibreºta, jei ºinomas ortas (vienetinio ilgio vektorius) n 0, einantis i² koordina iu centro link plo²tumos α ir statmenas jai; atstumas p nuo plok²tumos α iki koordina iu pradºios ta²ko O Tarkime, M yra bet kuris plok²tumos α ta²kas, N plok²tumos α ir tieses, lygiagre ios vektoriui n 0 ir einan ios per koordina iu pradºios ta²k O, susikirtimo ta²kas Ai²ku, kad vektoriaus OM projekcija i vektoriu n 0 yra lygi ON, o ON = p Paºymekime r = OM Tuomet (11) Pr n 0 r = p Pasinaudoj vektoriu skaliarines sandaugos savybemis, (11) s lyg galime uºra²yti taip: (1) ( r, n 0 ) p = 0 (1) lygtis vadinama normaline plok²tumos lygtimi (vektorine forma) Ortas n 0 vadinamas plok²tumos α normale arba normaliniu vektoriumi Vis apra²yt proced ur galime paºodºiui pakartoti tiesei plok²tumoje Tieses α padetis koordina iu sistemos Oxy atºvilgiu yra visi²kai apibreºta, jei ºinomas ortas (vienetinio ilgio vektorius) n 0, statmenas tiesei α; atstumas p nuo tieses α iki koordina iu pradºios ta²ko O Tarkime, M yra bet kuris tieses α ta²kas, N tieses α ir tieses, lygiagre ios vektoriui n 0 ir einan ios per koordina iu pradºios ta²k O, susikirtimo ta²kas Ai²ku, kad vektoriaus OM projekcija i vektoriu n 0 yra lygi ON, o ON = p Paºymekime r = OM Tuomet (13) Pr n 0 r = p 1

Pasinaudoj vektoriu skaliarines sandaugos savybemis, (13) s lyg galime uºra²yti taip: (14) ( r, n 0 ) p = 0 (14) lygtis vadinama normaline ties es plok²tumoje lygtimi (vektorine forma) 11 Koordinatin e forma Tarkime, kad vektorius n 0 su koordina iu a²imis sudaro kampus α, β, γ Tuomet jo projekcijos i koordinatines a²is yra lygios ²iu kampu kosinusams ir, uºra² vektoriu n 0 koordinatine forma, turesime: n 0 = (cos α, cos β, cos γ) Tegul ta²ko M koordinates yra x, y, z, ty r = (x, y, z) Tuomet (1) lygti galime uºra²yti taip: (15) x cos α + y cos β + z cos γ p = 0 (15) lygtis vadinama plok²tumos normaline lygtimi (koordinatine forma) Visi²kai analogi²kai gautume ties es plok²tumoje normalin lygti (koordinatine forma): (16) x cos α + y sin α p = 0 iuo atveju cos β = sin α Gavome svarbu dalyk Teorema 1 Kiekviena plok²tuma apra²oma pirmojo laipsnio lygtimi Taip pat kiekviena tiese plok²tumoje apra²oma pirmojo laipsnio lygtimi Kitame skyrelyje parodysime, kad kiekviena pirmojo laipsnio lygtis apibreºia plok²tum (ties plok²tumoje) 1 Bendroji plok²tumos ir bendroji ties es plok²tumoje lygtys Teorema Kiekviena pirmojo laipsnio lygtis (17) Ax + By + Cz + D = 0 apra²o plok²tum Irodymas Paºymekime n = (A, B, C), r = (x, y, z) Tuomet (17) lygyb galime uºra²yti taip: (18) ( r, n ) + D = 0 (18) lygyb padalinkime i² vektoriaus n ilgio n Gausime ( ) (19) r n, + D n n = 0

1 Tegul D 0 Paºymekime n n = n 0 ir uºra²yti taip: (110) ( r, n 0 ) p = 0 D n = p Dabar (19) galime Gautoji lygtis apra²o plok²tum, kuri yra statmena ortui n 0, o jos atstumas nuo koordina iu pradºios ta²ko yra lygus p Tegul D > 0 Padauginkime (19) i² 1 Turesime ( ) (111) r n, D n n = 0 Kad p b utu teigiamas, ²iuo atveju paºymekime uºra²yti taip: (11) ( r, n 0 ) p = 0 D = +p Dabar (111) galime n Ir ²iuo atveju gautoji lygtis apra²o plok²tum, kuri yra statmena ortui n 0 (taip pat ir ortui n 0 ), o jos atstumas nuo koordina iu pradºios ta²ko yra lygus p I² teremos irodymo i²plaukia, kad (17) plok²tumos normales n 0 koordinatiniai kosinusai ir atstumas nuo koordina iu pradºios ta²ko p yra lyg us: A cos α = ± A + B + C, (113) B cos β = ± A + B + C, C cos γ = ± A + B + C, D p = ± A + B + C ƒia vir²utinis ºenklas "+" imamas, kai D 0 ir " ", kai D > 0 Visi²kai analogi²kai galima parodyti, kad lygtis (114) Ax + By + C = 0 apibreºia ties plok²tumoje (17) lygtis vadinama bendr ja plok²tumos lygtimi, o (114) lygtis bendr ja ties es plok²tumoje lygtimi Uºduotis Kokia plok²tumos, apra²omos lygtimi Ax+By+Cz+D = 0, padetis, kai 1 D = 0; vienas i² koecientu A, B arba C lygus nuliui; 3 du i² koecientu A, B, C lyg us nuliui; 4 trys koecientai A, B ir D lyg us nuliui 3

Uºduotis Kokia tieses, apra²omos lygtimi Ax + By + C = 0, padetis, kai 1 C = 0; vienas i² koecientu A arba B lygus nuliui; 3 du koecientai A ir C lyg us nuliui 13 Plok²tumos ir ties es plok²tumoje a²in es lygtys Kai bendrojoje plok²tumos lygtyje Ax + By + Cz + D = 0 ne vienas koecientas nelygus nuliui, perkel D i de²in pus ir padalij lygti i² D, gausime plok²tumos a²in lygti: (115) x a + y b + z c = 1 A²in lygti tenkina ta²kai M(a, 0, 0), N(0, b, 0), P (0, 0, c) Taigi ji parodo kuriuose ta²kuose plok²tuma kerta koordinatines a²is Ties es plok²tumoje a²in e lygtis: (116) x a + y b = 1 14 Plok²tumos ir ties es plok²tumoje, einan iu per duot ta²k lygtys Plok²tumos, einan ios per ta²k M 0 (x 0, y 0, z 0 ), lygtis: (117) A(x x 0 ) + B(y y 0 ) + C(z z 0 ) = 0 () apra²o plok²tum, ne tik einan i per ta²k M 0 (x 0, y 0, z 0 ), bet ir statmen vektoriui n = (A, B, C) Keisdami koecientus tokiu lyg iu gausime daug Plok²tumos tieses, einan ios per ta²k M 0 (x 0, y 0 ), lygtis: (118) A(x x 0 ) + B(y y 0 ) = 0 15 Plok²tumos, einan ios per tris duotus ta²kus lygtis Plok²tumos, einan ios per tris duotus ta²kus M 0 (x 0, y 0, z 0 ), M 1 (x 1, y 1, z 1 ) ir M (x, y, z )lygtis: (119) x x 0 y y 0 z z 0 x 1 x 0 y 1 y 0 z 1 z 0 x x 0 y y 0 z z 0 = 0 Uºduotis Apra²ykite plok²tumu aib, einan i per du duotus ta²kus M 0 (x 0, y 0, z 0 ) ir M 1 (x 1, y 1, z 1 ) 4

16 Plok²tumos ties es, einan ios per du duotus ta²kus lygtis Plok²tomos tieses, einan ios per du duotus ta²kus M 0 (x 0, y 0 ) ir M 1 (x 1, y 1 ) lygtis: (10) x x 0 x 1 x 0 = y y 0 y 1 y 0 17 Kryptin es plok²tumos tiesiu lygtys Jei plok²tumos tieses Ax + By + C = 0 koecientas B 0, tai ²i ties galima uºra²yti kryptine ties es lygtimi: (11) y = kx + b ƒia koecientas k = tg α, o α kampas, kuri tiese sudaro su x a²imi koecientas A 0, tai ties galima uºra²yti kryptine ties es lygtimi: O jei (1) x = lx + c ƒia koecientas l = tg β, o β kampas, kuri tiese sudaro su y a²imi 18 Kampai tarp plok²tumu ir plok²tumos tiesiu Tarkime, turime dvi plok²tumas A 1 x+b 1 y +C 1 z +D 1 = 0 ir A x+b y +C z + D = 0 Tegul ϕ yra kampas tarp ²iu plok²tumu Vektoriai n 1 = (A 1, B 1, C 1 ) ir n = (A, B, C ) yra statmeni ²ioms plok²tumoms ir kampas tarp ²iu vektoriu yra lygus kampui tarp plo²tumu I² vektoriu skaliarines sandaugos savybiu i²plaukia, kad kampo tarp plok²tumu kosinusas (13) cos ϕ = A 1 A + B 1 B + C 1 C A 1 + B1 + C 1 A + B + C Sakykime, turime dvi tieses A 1 x + B 1 y + C 1 = 0 ir A x + B y + C = 0 Tegul α yra kampas tarp ²iu tiesiu Visi²kai analogi²kai gautume, kad kampo tarp plok²tumos tiesiu kosinusas (14) cos α = A 1 A + B 1 B A 1 + B1 A + B 181 Plok²tumu ir plok²tumos tiesiu statmenumas I² kampo tarp plok²tumu (13) formules gausime, kad plok²tumu A 1 x+b 1 y+ C 1 z + D 1 = 0 ir A x + B y + C z + D = 0 statmenumo s lyga yra tokia: (15) A 1 A + B 1 B + C 1 C = 0 I² (14) formules gausime plok²tumos tiesiu A 1 x + B 1 y + C 1 z + D 1 = 0 ir A x + B y + C z + D = 0 statmenumo s lyg : (16) A 1 A + B 1 B = 0 5

18 Plok²tumu ir plok²tumos tiesiu lygiagretumas Kad plok²tumos A 1 x + B 1 y + C 1 z + D 1 = 0 ir A x + B y + C z + D = 0 b utu lygiagre ios reikia, kad ir vektoriai n 1 = (A 1, B 1, C 1 ) ir n = (A, B, C ) b utu lygiagret us, ty, kad ju koordinates b utu proporcingos Taigi, plok²tumu A 1 x+b 1 y +C 1 z +D 1 = 0 ir A x+b y +C z +D = 0 lygiagretumo s lyga: (17) A 1 A = B 1 B = C 1 C Plok²tumos tiesiu A 1 x + B 1 y + C 1 = 0 ir A x + B y + C = 0 lygiagretumo s lyga: (18) A 1 A = B 1 B 19 Ties es parametrin e lygtis 191 Vektorin e forma Pradekime nuo tieses erdveje Erdvines tieses padetis koordina iu sistemos Oxyz atºvilgiu yra visi²kai apibreºta, jei ºinomas vienas jos ta²kas, tarkime, M 0 (x 0, y 0, z 0 ); lygiagretus tiesei vektorius, tarkime, s = (m, n, p) Tegul M(x, yz) yra bet kuris tieses ta²kas lygiagretus (ir proporcingas) vektoriui s Taigi M 0 M = t s I² vektoriu sumos savybiu i²- Tegul O yra koordina iu pradºios ta²kas plaukia, kad (19) Paºymekime r = OM, r 0 taip: OM = OM 0 + M 0 M Tuomet vektorius M 0 M yra = OM 0 Tuomet (147) lygyb galesime perra²yti (130) r = r0 + t s Tai ir yra ties es parametrin e lygtis vektorine forma (148) lygtis teisinga ir plok²tumos tiesei Uºtenka pakartoti tuos pa ius samprotavimus, tik vektoriai r, r 0 ir s tures po dvi koordinates 19 Koordinatin e forma Sulygin vektorines (148) lygties abieju pusiu koordinates gausime (131) x = x 0 + mt, y = y 0 + nt, z = z 0 + pt 6

Tai yra ties es erdv eje parametrin e lygtis koordinatine forma Ties es plok²tumoje parametrin e lygtis koordinatine forma tokia: (13) { x = x 0 + mt, y = y 0 + nt 110 Ties es kanonin es lygtys I² (131) lyg iu i²rei²k parametr t ir sulygin gautas i²rai²kas, turesime (133) x x 0 m = y y 0 = z z 0 n p Tai tieses erdveje kanonines lygtys Plok²tumos ties es kanonin e lygtis: (134) x x 0 m = y y 0 n 111 Bendroji ties es lygtis erdv eje Tiese erdveje gali b uti gaunama susikertant dviem plok²tumoms Todel bendroji ties es lygtis erdv eje: (135) { A 1 x + B 1 y + C 1 z + D 1 = 0, A x + B y + C z + D = 0 11 Kampai tarp tiesiu, kai ties es duotos kanonin emis lygtimis Pradekime nuo erdviniu tiesiu: (136) x x 1 m = y y 1 = z z 1 n p ir (137) x x m = y y = z z n p Kampu tarp dvieju tiesiu erdveje vadinamas kampas tarp susikertan iu joms lygiagre iu vektoriu Taigi, kampas α tarp erdviniu tiesiu, kai tieses duotos kanoninemis lygtimis gali b uti surastas naudojantis formule: (138) cos α = m 1 m + n 1 n + p 1 p m 1 + n 1 + p 1 m + n + p Jei turime tieses plok²tumoje: (139) x x 1 m = y y 1 n 7

ir (140) x x m = y y, n tai, kampas α tarp plok²tumos tiesiu, kai tieses duotos kanoninemis lygtimis gali b uti surastas naudojantis formule: (141) cos α = m 1 m + n 1 n m 1 + n 1 m + n 111 Tiesiu lygiagretumas Erdv es tiesiu, apibreºtu (136) ir (137) lygtimis, lygiagretumo s lyga: (14) m 1 m = n 1 n = p 1 p Plok²tumos tiesiu, apibreºtu (139) ir (140) lygtimis, lygiagretumo s - lyga: (143) m 1 m = n 1 n 11 Tiesiu statmenumas Erdv es tiesiu, apibreºtu (136) ir (137) lygtimis, statmenumo s lyga: (144) m 1 m + n 1 n + p 1 p = 0 Plok²tumos tiesiu, apibreºtu (139) ir (140) lygtimis, statmenumo s - lyga: (145) m 1 m + n 1 n = 0 113 Kampas tarp ties es ir plok²tumos Pirma suraskime kamp θ (θ [0, π)), tarp tiesei x x 0 m = y y 0 = z z 0 n p lygiagretaus vektoriaus s = (m, n, p) ir plok²tumai Ax + By + Cz + D = 0 statmeno vaktoriaus n = (A, B, C) To kampo kosinusas cos θ = Am + Bn + Cp A + B + C m + n + p Tarkime, α yra kampas tarp tieses ir plok²tumos Ai²ku, kad α [0, π/] Beto π [0, α = θ, jei θ π ], θ π ( π ), jei θ, π 8

[ Jeigu θ 0, π ] ( π ) ( π ), tai sin α = cos α = cos θ Jeigu θ, π, tai ( π ) sin α = cos α = cos(π θ) = cos θ Taigi kampo tarp tieses ir plok²tumos sinusas (146) sin θ = Am + Bn + Cp A + B + C m + n + p 1131 Ties es ir plok²tumos lygiagretumas I² (146) formules gauname Ties es ir plok²tumos lygiagretumo s lyg : (147) Am + Bn + Cp = 0 113 Ties es ir plok²tumos statmenumas Tiese statmena plok²tumai, kai vektoriai n ir s lygiagret us, ty ju koordinates proporcingos Ties es ir plok²tumos statmenumo s lyg : (148) A m = B n = C p 114 Ta²ko atstumas nuo plok²tumos ir nuo ties es plok²tumoje Ta²ko M 0 (x 0, y 0, z 0 ) atstumas nuo plok²tumos Ax + By + Cz + D = 0 yra lygus (149) d = Ax 0 + By 0 + Cz 0 + D A + B + C Ta²ko M 0 (x 0, y 0 ) atstum nuo plok²tumos tieses Ax + By + C = 0 galima surasti naudojantis formule: (150) d = Ax 0 + By 0 + C A + B ANTROSIOS EIL ES KREIV ES 1 Elips e Apibr eºimas Elipse vadinama geometrine vieta plok²tumos ta²ku, tokiu, kad atstumu nuo kiekvieno i² ju iki dvieju pastoviu plok²tumos ta²ku suma yra pastovi Du pastov us ta²kai, minimi elipses apibreºime, vadinami elips es ºidiniais I²vesime elipses koordinatin lygti, kai elipses ºidiniai guli x a²yje ir yra vienodai nutol nuo koordina iu centro O(0, 0) per atstum c šidinius paºymekime F 1 ( c, 0) ir F (c, 0) Atstumas tarp ºidiniu bus lygus c Elipses ta²kus ºymekime 9

M(x, y) Tarkime, kad atstumu nuo elipses ta²ko iki ºidiniu suma (ji pastovi) lygi a Ai²ku ²i suma turi b uti nemaºesne uº atstum tarp ºidiniu, ty c a I² elipses apibreºimo turime F 1 M + F M = a Atkarpu ilgius uºra² per koordinates gausime (x + c) + y + (x c) + y = a Pakel abi lygties puses kvadratu turesime x + cx + c + y + (x + c) + y (x c) + y + x cx + c + y = 4a Arba suprastinus x + c + y a = (x + c) + y (x c) + y Dar kart pakeliame kvadratu: x 4 + c 4 + y 4 + 4a 4 + x c + x y 4x a + c y 4c a 4y a = (x + cx + c + y )(x cx + c + y ) = x 4 cx 3 + x c + x y + cx 3 4c x + c 3 x + cxy + c x c 3 x + c 4 + c y + x y cxy + c y + y 4 Suprastiname: (a c )x + a y = a (a c ) Kai a > c galime abi lygties puses dalinti i² a (a c ) b = a c galutinai gausime elipses kanonin lygti: Ived paºymejim (1) x a + y b = 1 Kai a = c, turime ne elips, o tik atkarp : c x c, y = 0 Ta²kas O(0, 0) yra elipses (1) centras Past um elips taip, kad jos centras atsidurtu ta²ke C(x 0, y 0 ), gausime toki elipses kanonin lygti: () (x x 0 ) a + (y y 0) b = 1 Taigi ta²kas C(x 0, y 0 ) vadinamas elipses centru Ta²kai V x1 (x 0 +a, y 0 ), V x (x 0 a, y 0 ), V y1 (x 0, y 0 + b), V y (x 0, y 0 b) elipses vir² unemis Atkarpa V x1 V x didºi ja a²imi, o atkarpa V y1 V y maº ja a²imi a ir b yra didºiojo ir maºojo pusa²iu ilgiai Ta²kai F 1 (x 0 c, y 0 ) ir F (x 0 + c, y 0 ) vadinami elipses ºidiniais Kai a = b elipse virsta apskritimu Jeigu b > a elipse yra i²t sta y a²ies kryptimi ir ºidiniai bus i²sidest vertikaliai Tieses x = x 0 ir y = y 0 vadinamos elipses simetrijos a²imis Skai ius ε = c vadinamas elipses ekscentricitetu Elipses ekscentricitetas visuomet yra maºesnis uº 1 ir parodo a kiek elipse skiriasi nuo apskritimo Kai ε = 0 elipses ºidiniai sutampa, pati elipse tampa apskritimu 10

11 Elips es parametrin e lygtis Ived parametr t elipses (1) kanonin lygti galime uºra²yti taip: (3) { x = a cos t, y = b sin t, (t [0, π)), o () kanonin lygti taip: (4) { x = x 0 + a cos t, y = y 0 + b sin t, (t [0, π)), (3) ir (4) lygtys vadinamos elips es parametrin emis lygtimis Hiperbol e Apibr eºimas Hiperbole vadinama geometrine vieta plok²tumos ta²ku, tokiu, kad atstumu nuo kiekvieno i² ju iki dvieju pastoviu plok²tumos ta²ku skirtumo modulis yra pastovus Du pastov us ta²kai, minimi hiperboles apibreºime, vadinami hiperbol es ºidiniais I²vesime hiperboles koordinatin lygti, kai hiperboles ºidiniai guli x a²yje ir yra vienodai nutol nuo koordina iu centro O(0, 0) per atstum c šidinius paºymekime F 1 ( c, 0) ir F (c, 0) Atstumas tarp ºidiniu bus lygus c Hiperboles ta²kus ºymekime M(x, y) Tarkime, kad atstumu nuo hiperboles ta²ko iki ºidiniu skirtumas (jo modulis pastovus) lygus ±a io skirtumo modulis turi b uti nedidesnis uº atstum tarp ºidiniu, ty c a I² hiperboles apibreºimo turime F 1 M F M = ±a Atkarpu ilgius uºra² per koordinates gausime (x + c) + y (x c) + y = ±a Pakel abi lygties puses kvadratu turesime x + cx + c + y (x + c) + y (x c) + y + x cx + c + y = 4a Arba suprastinus x + c + y a = (x + c) + y (x c) + y Dar kart pakeliame kvadratu: x 4 + c 4 + y 4 + 4a 4 + x c + x y 4x a + c y 4c a 4y a = (x + cx + c + y )(x cx + c + y ) = x 4 cx 3 + x c + x y + cx 3 4c x + c 3 x + cxy + c x c 3 x + c 4 + c y + x y cxy + c y + y 4 11

Suprastiname: (c a )x a y = a (c a ) Kai a < c galime abi lygties puses dalinti i² a (c a ) Ived paºymejim b = c a galutinai gausime hiperboles kanonin lygti: (5) x a y b = 1 Kai a = c, turime ne hiperbol, o tik dvi pustieses: x c, y = 0 ir x c, y = 0 Ta²kas O(0, 0) yra hiperboles (1) simetrijos centras Past um hiperbol taip, kad jos simetrijos centras atsidurtu ta²ke C(x 0, y 0 ), gausime toki hiperbol es kanonin lygti: (6) (x x 0 ) a (y y 0) b = 1 Taigi ta²kas C(x 0, y 0 ) vadinamas hiperboles simetrijos centru Ta²kai V x1 (x 0 + a, y 0 ), V x (x 0 a, y 0 ) hiperboles vir² unemis Ta²kai F 1 (x 0 c, y 0 ) ir F (x 0 + c, y 0 ) vadinami hiperboles ºidiniais Tieses x = x 0 ir y = y 0 vadinamos hiperboles simetrijos a²imis Skai ius ε = c vadinamas hiperboles a ekscentricitetu Hiperboles ekscentricitetas visuomet yra didesnis uº 1 Tieses y = y 0 ± b a (x x 0) vadinamos hiperbol es asimptot emis Hiperboles grakas, kai x ± arteja prie ²iu tiesiu Lygtis (7) (x x 0) a + (y y 0) b = 1 taip pat yra hiperbol es kanonin e lygtis Tik ²ios hiperboles ºidiniai ir vir² unes i²sides iusios vertikaliai, o ²akos nukreiptos y a²ies teigiama ir neigiama kryptimis 3 Parabol e Apibr eºimas Prabole vadinama geometrine vieta plok²tumos ta²ku, kuriu atstumai nuo pastovaus ta²ko ir pastovios tieses yra lyg us Pastovus ta²kas, minimas paraboles apibreºime, vadinamas parabol es ºidiniu, o pastovi tiese parabol es direktrise I²vesime paraboles koordinatin lygti, kai paraboles ºidinys guli x a²yje (teigiamoje dalyje), direktrise statmena x a²iai ir abu vienodai nutol nuo koordina iu centro O(0, 0) per atstum p/ šidini paºymekime F (p/, 0) Atstumas tarp ºidinio ir direktrises bus lygus p Paraboles ta²kus ºymekime M(x, y) Direktrises ta²kai gali b uti ºymimi D( p/, y) I² paraboles apibreºimo turime F M = MD 1

Atkarpu ilgius uºra² per koordinates gausime ( x p ) + y = x + p Pakel abi lygties puses kvadratu turesime x px + p 4 + y = x + px + p 4 Suprastin gauname parabol es kanonin lygti: (8) y = px Kai a = c, turime ne hiperbol, o tik dvi pustieses: x c, y = 0 ir x c, y = 0 Ta²ke O(0, 0) yra parabol es (8) vir² un e Past um parabol taip, kad jos vir² une atsidurtu ta²ke V (x 0, y 0 ), gausime toki paraboles kanonin lygti: (9) (y y 0 ) = p(x x 0 ) Taigi ta²kas V (x 0, y 0 ) vadinamas paraboles vir² une Ta²kas F (x 0 +p/, y 0 ) vadinamas paraboles ºidiniu Tiese x = x 0 p/ vadinama paraboles direktrise Tiese y = y 0 yra paraboles simetrijos a²is Skai ius ε = 1 vadinamas parabol es ekscentricitetu Lygtys (10) (y y 0 ) = p(x x 0 ), (11) (x x 0 ) = p(y y 0 ), (1) (x x 0 ) = p(y y 0 ) taip pat yra paraboliu kanonin es lygtys Tik ²iu paraboliu ²akos nukreiptos neigiama x a²ies kryptimi, teigiama y a²ies kryptimi, neigiama y a²ies kryptimi, o simetrijos a²ys yra tieses y = y 0, x = x 0, x = x 0, atitinkamai 4 Antrosios eil es kreiviu lygties tyrimas Algebrines kreives klasikuojamos pagal ju lyg iu laipsnius Bendriausia antrojo laipsnio lygties forma: (13) a 11 x + a 1 xy + a y + a 10 x + a 0 y + a 00 = 0 Bent vienas i² koecientu a 11, a 1, a neturi b uti lygus nuliui, nes prie²ingu atveju turesime pirmos eiles lygti (apibreºian i plok²tum ) Bet kuri antros eiles lygtis apibreºia elips, hiperbol, parabol I²imtiniais atvejais tai gali b uti tiese, dvi lygiagre ios tieses, dvi susikertan ios tieses, ta²kas ir net tu² ia aibe Panagrinesime visus atvejus 13

Pasukant koordina iu sistem (del laiko ir ºiniu tr ukumo mes to nedarysime) galima panaikinti antr ji lygties nari a 1 xy Po to, i²skiriant piln kvadrat ir atitinkamai pastumiant koordina iu sistem, galima panaikinti pirmojo laipsnio nari a 10 x, jei a 11 0, ir pirmojo laipsnio nari a 0 y, jei a 0 Tokia proced ura visi²kai nesunki Po tokiu operaciju turesime paprastesn lygti, kuri ir patyrinesime Tai b utu viena i² lyg iu: (14) Ax + By + C = 0, A 0 arba B 0, (15) Ax + Dy + C = 0, A 0, (16) By + Ex + C = 0, B 0 Tarkime, kad (14) lygtyje A > 0 Tuomet (14) lygtis apibreºia: elips, jei B > 0, C < 0;, jei B > 0, C > 0; ta²k, jei B > 0, C = 0; hiperbol, jei B < 0, C 0; dvi susikertan ias tieses, jei B < 0, C = 0; dvi lygiagre ias tieses, jei B = 0, C < 0; ties, jei B = 0, C = 0;, jei B = 0, C > 0 Kai koecientas B > 0, galime nagrineti analogi²kai Nemaºindami bendrumo galime laikyti, kad (15) lygties koecientas A > 0 Prie²ingu atveju lygti galima padauginti i² 1 (15) lygtis apibreºia: parabol, jei D 0; dvi lygiagre ias tieses, jei D = 0, C < 0; ties, jei D = 0, C = 0;, jei D = 0, C > 0 (16) lygti galime nagrineti analogi²kai kaip ir (15) 3 ANTROSIOS EIL ES PAVIR IAI iame skyrelyje pateiksime tik kai kuriu paprastesniu antros eiles pavir²iu analizines i²rai²kas Apibr eºimas Pavir²ius, kuri sudaro plok² i ja kreive judedama tiese, kai jos vienas ta²kas lieka pastovus, vadinamas k uginiu pavir²iumi Apibr eºimas Pavir²ius, kuri sudaro plok² i ja kreive lygiagre iai judedama tiese, vadinamas cilindriniu pavir²iumi 14

Apibr eºimas Pavir²ius, gaunamas sukant kreiv apie ties (taip, kad kreives ta²kai breºtu apskritimus, statmenus tai tiesei, ir apskritimu centrai guletu toje tieseje), vadinamas sukimosi pavir²iumi Minima tiese vadinama sukimosi a²imi (31) x a + y b z c = 0 tai antrosios eiles k ugio lygtis Koordina iu pradºios ta²kas O yra ²io k ugio simetrijos centras, o koordina iu plok²tumos xy, xz, yz pavir²iaus simetrijos plok²tumos (3) x a + y a + z c = 1 tai sukimosi elipsoidas Sukimosi a²is yra z a²is Tria²is elipsoidas: (33) (34) Viena²akis sukimosi hiperboloidas: Sukimosi a²is yra z a²is Viena²akis hiperboloidas: (35) (36) Dvi²akis sukimosi hiperboloidas: Sukimosi a²is yra x a²is Dvi²akis hiperboloidas: (37) Sukimosi paraboloidas: x a + y b + z c = 1 x a + y a z c = 1 x a + y b z c = 1 x a y c z c = 1 x a y b z c = 1 (38) x + y = pz Sukimosi a²is yra z a²is Elipsinis paraboloidas: (39) x p + y = z, pq > 0 q Hiperbolinis paraboloidas: (310) x p y = z, pq > 0 q 15