Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,
|
|
- Διάβολος Πήγασος Γερμανός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 MIF kurss, Bioinformtik, semestrs, 29 6 Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A <, f() = B >, ti egzistuoj toks c [, ], kd f(c) = 2 Konverguojnčios ir diverguojnčios eikutės Eilutės sum rodykite, kd jei n >, n IN, ir α = n+ <, ti eilutė n konverguoj, o jei α >, ti eilutė diverguoj n BIO, sem, Sekos ribos pibrėžims Ribu svybės 4 iferencijuojmos funkcijos ir jos išvestinės pibrėžims 5 Ar gli dvi teigimu skičiu sekos diverguoti, o ju sndug konverguoti? (Jei tip, pteikite pvyzdi, jei ne pgri skite) 6 Ar gli dvieju nediferencijuojmu funkciju (kokime nors tške ) sndug būti diferencijuojm funkcij? (Jei tip, pteikite pvyzdi, jei ne pgri skite) cos 7 Rskite rib sin 2 (sin 2 + cos 4 ) 8 Rskite funkcijos f() = sin 3 (4 5 + ) + /2 išvestine 9 Ištirkite funkcij f() = Ištirkite eilutės ( )3 ( + ) 2 ir nubrėžkite jos grfiko eskiz ( + ) n 2 n konvergvim
2 MIF 2 kurss, Bioinformtik, 2 semestrs, , perlikyms Netiesioginio integrlo pibrėžims pie netiesioginiu integrlu plyginim Teorem Trkime, kd funkcijos f, g [, b) (, ) yr integruojmos kiekvienme intervle [c], < c < b Td ) jei f g, ti f() 2) jei egzistuoj μ = b f() g() g() < + = Atskiru tveju, ki μ >, g() ; [, + ), ti f() < + (,5 t) g() < + f() < + (2,5 t) 2 Konverguojnčios eilutės ir jos sumos pibrėžims rodykite teigini Jei c n, ti eilutė ( ) n+ c n konverguoj ( 3 ) 3 Rskite integrl ln2 4 Ištirkite netiesioginio integrlo 3n 2 4n + 7 3n 4 4n konvergvim (2 ) konvergvim BIO, 2 sem, Ištirkite funkcijos f(, y) = 4 + y 4 + ( y) 2 ekstremumus 7 Sukeiskite integrvimo tvrk integrle 8 Rskite integrl ( 2 + y 2 ) 3 dy sritimi = {(, y) 2 + y 2 3, y } f(, y) dy
3 MIF 2 kurss, Bioinformtik, 2 semestrs, 29 2 ir jos išvd Teorem Trkime, kd f C[, b] Pžymėkime F () = f(y) dy, [, b] Td F C[, b] ir F () = f(), [, b] Išvd Jei F yr funkcijos f C[, b] pirmykštė funkcij intevle [, b], ti f() = F (b) F () 2 Teorem Jei f neneigim mžėjnti funkcij intervle [, ), ti eilutė f(n) konverguoj td ir tik td, ki konverguoj netiesioginis integrls f() Pteikite teoremos tikymo pvyzdi ( ) 3 Rskite integrl rctg 4 Ištirkite netiesioginio integrlo n 3n 2 4n + 7 konvergvim (2 + 3) konvergvim BIO, 2 sem, Ištirkite funkcijos f(, y) = 4 + y 4 ( y) 2 ekstremumus 7 Sukeiskite integrvimo tvrk integrle 8 Rskite integrl ( 2 + y 2 ) 3 dy sritimi = {(, y) 2 + y 2 3,, y } 3 2 f(, y) dy
4 MIF kurss, Bioinformtik, semestrs, 28 9, perlikyms Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A <, f() = B >, ti egzistuoj toks c [, ], kd f(c) = 2 Sekos ribos pibrėžims rodykite, kd jei n = IR, b n = b IR, ti ) ( n + b n ) = + b; 2) ( nb n ) = b 3 Seku konvergvimo Koši kriterijus 4 iferencijuojmos funkcijos ir jos išvestinės pibrėžims 5 Ar gli dvi teigimu skičiu sekos diverguoti, o ju sndug konverguoti? (Jei tip, pteikite pvyzdi, jei ne pgri skite) 6 Ar gli dvieju nediferencijuojmu funkciju (kokime nors tške ) sndug būti diferencijuojm funkcij? (Jei tip, pteikite pvyzdi, jei ne pgri skite) ( 7 Rskite rib n2 + + n ) n2 + 2n cos 8 Rskite rib sin cos 4 9 Ištirkite funkcij f() = ( ) 3 e ir nubrėžkite jos grfiko eskiz Ištirkite funkcij f() = ir nubrėžkite jos grfiko eskiz
5 MIF kurss, Bioinformtik, semestrs, Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A <, f() = B >, ti egzistuoj toks c [, ], kd f(c) = 2 Sekos ribos pibrėžims rodykite, kd jei n = IR, b n = b IR, ti ) ( n + b n ) = + b; 2) ( nb n ) = b 3 Seku konvergvimo Koši kriterijus 4 iferencijuojmos funkcijos ir jos išvestinės pibrėžims 5 Ar gli dvi teigimu skičiu sekos diverguoti, o ju sndug konverguoti? (Jei tip, pteikite pvyzdi, jei ne pgri skite) 6 Ar funkcij f() = diferencijuojm tške =? Jei tip, rskite f () ( n 2 3 ) 4n 5n+6 7 Rskite rib n 2 cos 2 8 Rskite rib 2 (cos + cos 2 ) 9 Ištirkite funkcij f() = ( ) 3 e ir nubrėžkite jos grfiko eskiz Ištirkite funkcij f() = ir nubrėžkite jos grfiko eskiz
6 MIF 2 kurss, Bioinformtik, 2 semestrs, , perlikyms Teorem Jei f C[, ], f() = A <, f() = B >, ti egzistuoj toks c [, ], kd f(c) = (4 t) 2 Teorem Jei f neneigim mžėjnti funkcij intervle [, ), ti eilutė f(n) konverguoj td ir tik td, ki konverguoj netiesioginis integrls f() (4 t) 3 Ištirkite funkcij f() = 3 e ir nubrėžkite jos grfiko eskiz Rskite rib 3 ( + n) n konvergvim ( 6 Apskičiuokite integrl + ( )e 2) Ištirkite netiesioginio integrlo (2 + 3) konvergvim 8 Ištirkite funkcijos f(, y) = 4 + y y 2 2y ekstremumus 9 Sukeiskite integrvimo tvrk integrle Rskite integrl 3 + (y 2 + ( 2 + y 2 ) 2 ) dy sritimi = {(, y) y + 3 >, 2 + y 2 3} f(, y) dy
7 MIF 2 kurss, Bioinformtik, 2 semestrs, 28 6 Teorem Jei f C[, b], f() = A, f(b) = B, A C B, ti egzistuoj toks c [, b], kd f(c) = C (4 t) 2 Teorem Jei f [, ) [, ) mžėjnti funkcij, ti f(n) < f() < (4 t) 3 Ištirkite funkcij f() = 3 ( ) 2 ir nubrėžkite jos grfiko eskiz 3 4 Rskite rib ( ) ln 2 7 Ištirkite netiesioginio integrlo n 4( 2n + 3 ) n konvergvim 3n 2 + rctg konvergvim 8 Ištirkite funkcijos f(, y) = 4 + y 4 2 y 2 + 2y ekstremumus 9 Rskite integrl y 2 cos y dy sritimi, pribot kreivėmis =, y = π ir y = Rskite integrl (y + 2 +y 2 ) dy sritimi = {(, y) y, 2 +y 2 5}
8 MIF 2 kurss, Bioinformtik, 3 semestrs, , perlikyms rodykite šiuos teiginius n ) =, jei q > qn 2) n n = 3) 4) n =, > q n n! (,5 t) =, q IR 2 rodykite teigini Jei c n, ti eilutė ( ) n+ c n konverguoj (4 t) 3 Ištirkite funkcij f() = 2 e /2 ir nubrižykite jos grfiko eskiz + 2 e 2 4 Rskite rib cos 3 3n 2n konvergvim rctg 6 Rskite nepibrėžtini integrl Ar konverguoj netiesoginis integrls (2 + )? 8 Rskite dvieju kintmu ju funkcijos f(, y) = 4 + y y 2y 2 ekstremumus 9 Apskičiuokite dvilypi integrl y dy sritimi, pribotoje funkciju y =, y = 2 ir y = grfikis Rskite kūno, priboto pviršiis z = 2 + y 2 2 ir z = y 2, tūri (,5 t)
9 MIF 2 kurss, Bioinformtik, 3 semestrs, 27 2 Apibrėžimi Konverguojnti sek ir jos rib; prėžt sek rodykite šiuos teiginius ) Kiekvien konverguojnti sek yr prėžt; 2) Jei n = ir y n = b, ti ( ny n ) = b (2,5 t) 2 rodykite teigini Trkime, kd f [, b] Pžymėkime F () = f(t) dt, [, b] Td F C[, b] Jei, be to, funkcij f tolydi tške [, b], ti F yr diferencijuojm tške ir F ( ) = f( ) (4 t) 3 Ištirkite funkcij f() = 3 e ir nubrižykite jos grfiko eskiz e 3 4 Rskite rib sin 2 2n (2n + ) 2 konvergvim ln + ln 6 Rskite nepibrėžtini integrl 7 Ar konverguoj netiesoginis integrls ( + )? 8 Rskite dvieju kintmu ju funkcijos f(, y) = 4 + y 4 ( + y) 3 /3 ekstremumus 9 Apskičiuokite dvilypi integrl y dy sritimi, pribotoje funkciju y = +2 ir y = 2 grfikis Rskite kūno, priboto pviršiis z = 2 + y 2 ir z = y 2, tūri (,5 t)
5 paskaita. 5.1 Kompaktiškosios aibės Sąvokos
5 pskit 5.1 Kompktiškosios ibės 5.1.1 Sąvokos Iš mtemtinės nlizės kurso žinome dvi svrbis prėžtu reliu ju skičiu ibiu svybes. Pirmoji Bolcno-Vejerštrso teorem: bet kuri beglinė prėžt reliu ju skičiu ibė
Labai svarbi tiesiniu operatoriu šeima kompaktiškieji operatoriai. Jiems skirtas paskutinysis?? skyrelis.
13 pskit 13.1 Tiesinii opertorii Šime skyriuje ngrinėjmos normuotu ju erdviu tiesinės funkcijos tiesinii opertorii. Bigtinės dimensijos erdvėms, kip mtysime, jie pršomi mtricomis. Tigi tiesiniu opertoriu
2.7. VIDURINIŲ REIKŠMIŲ TEOREMOS, JŲ TAIKYMAI
.7. VIDURINIŲ REIKŠMIŲ TEOREMOS, JŲ TAIKYMAI 7.. Ferm teorem. (Pierre de Fermt, 6-665, http://www-history.mcs.std.c.uk/~history/mthemticis/fermt.html). Jei fukcij, pibrėžt itervle I vidiime jo tške turi
2.6. IŠVESTINĖ, DIFERENCIJAVIMAS
6 IŠVESTINĖ DIFERENCIJAVIMAS 61 Išvestiės sąvok Fukcijos išvestiės sąvok yr mtemtikos istrumets kurio reikšmę suku įvertiti Glbūt ti glim plygiti su vidus degimo vriklio sukūrimu Diferecijuoti pprsčiusis
X galioja nelygyb f ( x1) f ( x2)
Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis
PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7
Neodreeni integrali. Glava Teorijski uvod
Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f
Matematika PIRMOJI KNYGA. Išplėstinis kursas. Vadovėlis gimnazijos IV klasei
Mtemtik Išplėstinis kurss Vdovėlis gimnzijos IV klsei PIRMOJI KNYGA Turinys Trigonometrinės funkcijos 5 Rdininis kmpo mts Posūkio kmpi 5 Bet kokio kmpo sinuss, kosinuss, tngents ir kotngents 9 Funkcijos
Matematinės analizės konspektai
Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
Seminariile 1 2 Capitolul I. Integrale improprii
Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur
NEAPIBRĖŽTINIS INTEGRALAS su MAPLE. Aleksandras KRYLOVAS
NEAPIBRĖŽTINIS INTEGRALAS su MAPLE Aleksndrs KRYLOVAS TURINYS. PIRMYKŠTĖ FUNKCIJA IR NEAPIBRĖŽTINIS INTEGRALAS 6.. PIRMYKŠTĖS FUNKCIJOS APIBRĖŽIMAS 6.. NEAPIBRĖŽTINIO INTEGRALO SAVOKA 7.. NEAPIBRĖŽTINIO
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
Matematiniai modeliai ir jų korektiškumas
1 skyrius Mtemtinii modelii ir jų korektiškums 1.1. Mtemtinių uždvinių klsifikcij Mtemtinis modelivims yr svrbus nujs žinių gvimo būds, kuris vis džniu nudojms sprendžint technologinius uždvinius, tirint
Dviejų kintamųjų funkcijos dalinės išvestinės
Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento
Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
sin d = 8 2π 2 = 32 π
.. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],
Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους
ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
10 η Διάλεξη Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης 18 Οκτωβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
1 SKYRIUS. Laplaso transformacija 2 SKYRIUS. Integralinės lygtys
1 SKYRIUS. Lplo trnformcij 3 1. Integrlinė trnformcijo..................... 3 2. Lplo trnformcij........................ 3 2.1. Lplo trnformcijo vybė.............. 4 2.2. Lplo trnformcijo tikym prendžint
Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas
Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo
Σημειώσεις Ανάλυσης Ι
Σημειώσεις Ανάλυσης Ι 6. Συναρτήσεις Πρωταρχική έννοια στη φυσική είναι η έννοια της συνάρτησης. Π.χ. η θέση ενός σωματιδίου ως συνάρτηση του χρόνου x = f(t) ή x(t). Στη πρώτη περίπτωση προσδιορίζουμε
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να
Integralni raqun. F (x) = f(x)
Mterijl pripremio Benjmin Linus U mterijlu su e definicije, teoreme, dokzi teorem (rđenih n predvƭu i primeri. Dodo sm i neke done primere d bih ilustrovo prikznu teoriju. Integrlni rqun Definicij. Nek
lim f n(x) = f(x) 1 ǫ < n ln ǫ N (ǫ, x) = ln ( )
ΟΜΟΙΟΜΟΡΦΗ ΣΥΓΚΛΙΣΗ Εστω {f n x), n N} µια ακολουθία συναρτήσεων ορισµένων στο διάστηµα I = [, b] ή, b] ή [, b) ή, b) ) ΟΡΙΣΜΟΣ Η ακολουθία συναστήσεων συγκλίνει σηµειακά point wise convergence) στην συνάρτηση
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
= (2)det (1)det ( 5)det 1 2. u
www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det
ΕΘΝΙΚΟ KAI ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μηχανική Ι (ακαδ. έτος , χειμερινό εξ.
ΕΘΝΙΚΟ KAI ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ 56. Μηχανική Ι (ακαδ. έτος 6-7, χειμερινό εξ.) Προπτυχιακός Φοιτητής: Νικολαράκης Αντώνιος Αριθμός Μητρώου: 337
Κεφάλαιο 8 Διαφορικές Εξισώσεις
Διαφορικές Εξισώσεις Κεφάλαιο 8 Διαφορικές Εξισώσεις 8. Ορισμοί Έστω ένα κύκλωμα το οποίο αποτελείται από μία πηγή ηλεκτρεργετικής δύναμης Ε (Volt), η οποία μπορεί να είναι σταθερή ή να εξαρτάται από το
Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις
Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις Ντίνα Λύκα Εαρινό Εξάμηνο, 2018 lika@uoc.gr Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν
IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,
41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή
α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y
Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ & ΘΕΜΑΤΑ: ΓΕΝΙΚΑ
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA Vrijednoti inu i koinu π π π π ϕ 6 4 3 in ϕ 3 co ϕ 3 Trigonometrijke funkcije polovičnih rgument in x = co x co x = + co x Trigonometrijke
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός Ι Ενότητα 4: Παράγωγοι Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός Ι 1 / 68 Άδειες Χρήσης Το παρόν εκπαιδευτικό
(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.
Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
ιαµέριση (Partition) ορισµένη στο διάστηµα I = [a, b]
ιαµέριση (Prtition) ορισµένη στο διάστηµα I = [, b] P = {x 0,x 1,x 2,...,x n } = x 0
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare:
Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC. Să se rte că Rezolvre: SEMINAR
Leaving Certificate Applied Maths Higher Level Answers
0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)
x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]
συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemnn Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).
ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008
ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ -11 ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΛ ΥΜΗΤΤΟΥ ΙΟΥΝΙΟΣ 11 Pappas Ath...page 1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
Matematika 1 4 dalis
Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios
στοιχεία Βιο-μηχανική:
: ορισμός Ως δύναμη ορίζεται η επίδραση, η οποία ασκούμενη σε ένα σώμα προκαλεί είτε μεταβολή στην κινητική του κατάσταση, είτε ταυτόχρονα και μεταβολή στην μορφή του. επιταχύνουν ή/και παραμορφώνουν σώματα.
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv
Mόνιμη ροή προερχόμενη από κίνηση πλάκας σε άπειρο χώρο (Ροή Couette)
Mόνιμη ροή προερχόμενη από κίνηση πλάκας σε άπειρο χώρο (Ροή Couette) Εξετάζουμε την επίπεδη ροή που λαμβάνει μεταξύ δύο επίπεδων πλακών οι οποίες έχουν απόσταση κατά την διεύθυνση y, h (h=ύψος.) Το μήκος
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών
Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.
Άσκηση. Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. α) y, β) y, γ) y, δ) y, ε) y ( ) Να προσδιοριστούν γραφικά και µε
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5
ΟΛΟΚΛΗΡΩΣΗ - ΑΣΚΗΣΕΙΣ. ) dx. 1. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα. 2. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα.
ΟΛΟΚΛΗΡΩΣΗ - ΑΣΚΗΣΕΙΣ. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα ( ( sin ( ( ( ( ( ( ( / (. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα ( ( ( ( ( ( y y 7 ( ( ( sin / ( y dy ( ( 8 cos ( ( sin
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Σύγκλιση σειρών Fourier σε χώρους L p
Σύγκλιση σειρών Fourier σε χώρους L p Μιχάλης Σαράντης και Κωνσταντίνος Τσίνας Βασικά αποτελέσµατα από την ανάλυση Fourier Ορισµός.. Ο n-οστός πυρήνας του Dirichlet ορίζεται ως (.) D n (y) Πρόταση.. Για
Η μεθόδευση στην εύρεση συνάρτησης. Μέθοδοι Παρατηρήσεις Ιδέες - Εφαρμογές - Θέματα
Σελίδα από 5 Η μεθόδευση στην εύρεση συνάρτησης Μέθοδοι Παρατηρήσεις Ιδέες - Εφαρμογές - Θέματα Μπάμπης Στεργίου Μαθηματικός ( Η παρουσίαση του θέματος έγινε στο wwwmathematicagr Οι λύσεις των ασκήσεων
taip: Q m : m Z, n N, t.y. aibę sudaro trupmenos n
SKYRIUS AIBĖS IR FUNKCIJOS Aibės ir jų veiksmi Kiekvieme gmtos moksle esm tiek tiesos, kiek esm mtemtikos IKts Aibės sąvok mtemtikoje likom pirmie, es legvi suvokim ir eturi pibrėţimo Ji vrtojm ir ksdieiime
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι. ΠΑΡΑΓΩΓΟΙ Κανόνες παραγώγισης - διαφόρισης ) (c) = dc = ) () = ) (cf) = cf 4) (f g) = f g d(f g) = df dg 5) (fg) = f g + fg d(fg) = gdf + fdg 6) d(f / g) = 7) [f(g())] = f (g)g
GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
z 3i w = z +3i + z 3i. z 3i άρα z 3i = z 3i = z 3i=w. Άρα w IR. z 3i =z-3i+ z 3i (z 3i)(z 3i) z 3i z 3i Β4. z w x yi 2x x yi ( x) y x y z
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. ΘΕΩΡΙΑ ΣΕΛΙΔΑ 6 Α. ΘΕΩΡΙΑ (ΟΡΙΣΜΟΣ) ΣΕΛΙΔΑ 8 Α3. α) Σ β) Σ γ) Λ δ) Λ ε) Σ ΘΕΜΑ Β Β. Έστω z=+yi άρα z-3i + z +3i = z-3i + = z-3i = z-3i
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
ΣΥΝΟΨΗ 3 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΑΣΚΗΣΗ η : f :[ ] IR δύο φορές αραγωγίσιµη στο διάστηµα ( ) ώστε: [ ] f () + f() f () = IR και ακόµη. Να αοδείξετε ότι f() > ( ) f() = και f () =. Να αοδείξετε ότι ο τύος της
Στήλη Β συναρτήσεις. Στήλη Α
of 56 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A Aν η συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο 0 του πεδίου ορισμού
2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS
.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame
Μεταπτυχιακή Μιγαδική Ανάλυση. Έβδομο φυλλάδιο ασκήσεων, Παραδώστε λυμένες τις 4, 9, 15, 19, 24 και 28 μέχρι
Μεταπτυχιακή Μιαδική Ανάλυση Έβδομο φυλλάδιο ασκήσεων, 5--20. Παραδώστε λυμένες τις 4, 9, 5, 9, 24 και 28 μέχρι 22--20.. Θεωρούμε τις καμπύλες (t) = t + it sin t και 2 (t) = t + it 2 sin t ια t (0, ] και
f (x) = l R, τότε f (x 0 ) = l.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη
ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Ορισµός
ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ f() τοπικά ολοκληρώσιµη στο (, b) αν για κάθε κλειστό [c, d] (, b) η f() είναι ολοκληρώσιµη. πχ f() =e είναι τοπικά ολοκληρώσιµη στο [, ) f() = είναι τοπικά ολοκληρώσιµη στο (, )
Παρεμβολή πραγματικού χρόνου σε συστήματα CNC
Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Γραμμική Κυκλική Spline Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative
Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις. Καλό πήξιμο / 1 0 /
Ολοκληρώματα Κώστας Γλυκός 58 ΑΣΚΗΣΕΙΣ ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 5 / / 8 εκδόσεις Καλό πήξιμο Επιλεγμένες ασκήσεις από βιβλία Σε όλες τις επόμενες
Μέγιστα & Ελάχιστα. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Μέγιστα & Ελάχιστα 1 μεταβλητή: Τύπος Taylor Aν y=f(x) είναι καλή συνάρτηση f '( a) f ''( a) f ( a) f x f a x a x a x a R x 1!! n! n + 1 f ( c) n + 1 Rn ( x) = ( x a), a
Θέμα Α Α. Θεωρία (Σχ.Βιβλίο σελ.34) Α2. Θεωρία (Σχ.Βιβλίο σελ.279) Α3. Θεωρία (Σχ.Βιβλίο σελ.273) Μαθηματικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου Τετάρτη 9 Μαΐου 2 Α4. (α)- Σ ( β)- Σ ( γ)- Λ (
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) Δ. Δημογιαννόπουλος,
' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4 $!&$3% 2!% #!.1 & &!" //! &-!!
..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .
L 2 -σύγκλιση σειρών Fourier
Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό
2). : 1).. 2). &. 3).. /
1, 14-05-2012.. N.Y: 119/2012 :.. / :..: 70014,..: 2813-404639 FAX: 2813-404608 e-mail: i.pachiadakis@hersonisos.gr : 1). 2).. : 1).. 2). &. 3).. / - 16 (7 15-05-2012):. ------------------------------------------
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ολοκληρωτικός Λογισμός (μέρος ) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα Σκοποί
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
y 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
W ISR i = 5 15 ISR i + 4 15 ISR i 1 + 3 15 ISR i 2 + 2 15 ISR i 3 + 1 15 ISR i 4 W ISR W ISR ) E T hreshold = (1 Ẽ Ẽ + IQR (E) Ẽ IQR(E) E T hreshold = 0.99 e 1 N N i=1 (E i) + 0.01 Ẽ h(t) = H(y )(t)
Αποδιαμόρφωση σημάτων CW με θόρυβο
Αποδιαμόρφωση σημάτων CW με θόρυβο Ορισμοί Το σήμα στη λήψη (μετά το φίλτρο προ-ανίχνευσης) είναι r( t) s( t) n( t) όπου s S, n N R Οι σηματοθορυβικές σχέσεις είναι S S W S SNR SNRb, SNRo N N0B B N Ο ζωνοπερατός