Το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού για συναρτήσεις μιας ή περισσοτέρων μεταβλητών στο πλαίσιο της γεωμετρικής εποπτείας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού για συναρτήσεις μιας ή περισσοτέρων μεταβλητών στο πλαίσιο της γεωμετρικής εποπτείας"

Transcript

1 Το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού για συναρτήσεις μιας ή περισσοτέρων μεταβλητών στο πλαίσιο της γεωμετρικής εποπτείας Δημήτρης Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας Περίληψη Με την εργασία αυτή επεκτείνουμε τα πεδία εφαρμογής των γεωμετρικών αναπαραστάσεων πέρα από την αισθητοποίηση κάποιων εννοιών και τη γεωμετρική ερμηνεία ορισμένων προτάσεων η οποία δίνεται συνήθως στο τέλος τους (μετά την ολοκλήρωση και της τυπικής - αυστηρής τους απόδειξης). Θα αναδείξουμε έναν ακόμη σημαντικό ρόλο που μπορούν να παίξουν στη διαδικασία επινόησης καθαυτής της απόδειξης μαθηματικών προτάσεων και, στο πλαίσιο της εξειδίκευσης, αναλύουμε το νέο αυτό ρόλο των γεωμετρικών αναπαραστάσεων διαμέσου της απόδειξης του θεωρήματος Μέσης Τιμής του Διαφορικού Λογισμού για πραγματικές συναρτήσεις μιας ή περισσοτέρων μεταβλητών. Εισαγωγή Σε βιβλία μαθηματικών για το Λύκειο και όχι μόνο, ο διδακτικός ρόλος της γεωμετρικής εποπτείας κατά κανόνα επικεντρώνεται: Πρώτον, στην ερμηνεία μαθηματικών προτάσεων, αφού όμως πρώτα αυτές έχουν διατυπωθεί στην τελική τους μορφή και έχει παρουσιαστεί και η απόδειξη τους. Δεύτερον, στην γεωμετρική αισθητοποίηση ορισμένων εννοιών (όπως για παράδειγμα, της παραγώγου και του ολοκληρώματος). Τρίτον, στη διασαφήνιση ορισμών, που και αυτοί πρώτα έχουν ήδη διατυπωθεί στην τελική τους μορφή. Με την εργασία αυτή στοχεύουμε να αναδείξουμε έναν ακόμη σημαντικό ρόλο που μπορούν να παίξουν οι γεωμετρικές αναπαραστάσεις στη διαδικασία επινόησης καθαυτής της απόδειξης μαθηματικών προτάσεων. Ο νέος αυτός ρόλος τους εστιάζεται από την αρχή και όχι ανακόλουθα μετά την απόδειξη στη βαθύτερη κατανόηση και ερμηνεία μιας πρότασης και στον εντοπισμό των διασυνδέσεών της με άλλες προηγούμενες γνώσεις. Η αμφίδρομη διασύνδεση των τυπικών μαθηματικών διατυπώσεων με τις γεωμετρικές τους αναπαραστάσεις, συμβάλλει, με μια σειρά προσεκτικών παρατηρήσεων και συλλογισμών, στη σύλληψη των κρίσιμων ιδεών που αποτελούν συνήθως το "κλειδί" για την επινόηση της απόδειξης μιας πρότασης. Στην παρούσα εργασία θα επιχειρήσουμε να δώσουμε με τη συμβολή και της γεωμετρικής εποπτείας πειστικές απαντήσεις σε κάποια ερωτήματα που αφορούν την Ανάλυση και τη διδασκαλία της: Καταρχάς, θεωρούμε βέβαιο ότι οι διδάσκοντες την Ανάλυση έχουμε προσέξει ότι η απόδειξη ο- ρισμένων προτάσεων βασίζεται αρκετές φορές στη θεώρηση κάποιας κα-

2 τάλληλης συνάρτησης από την αρχή. Επίσης ότι, στη γνωστή μας βιβλιογραφία, συνήθως δεν αιτιολογείται η αναγκαιότητα αυτών των θεωρήσεων, και επιπλέον δεν εξετάζεται το ερώτημα της ενδεχόμενης ύπαρξης και άλλων συναρτήσεων, η θεώρηση των οποίων μας οδηγεί και αυτή στην απόδειξη των εν λόγω προτάσεων. Είναι ανάγκη να σημειώσουμε στο σημείο αυτό με ιδιαίτερη έμφαση ότι, πριν από την τελική οργάνωση και αυστηρή διατύπωση της απόδειξης μιας μαθηματικής πρότασης, προηγείται η διαδικασία της ανακάλυψης. Και ότι αυτή συνήθως δεν επιτυγχάνεται με προκαθορισμένες γραμμικές νοητικές διαδικασίες: Εδώ κυριαρχούν οι προσεκτικές παρατηρήσεις, η προσπάθεια διασύνδεσης των εμπλεκομένων εννοιών, και βέβαια η διαίσθηση (κατά τον Richard Courant, η έλλειψη της εξάρτησης των αποδείξεων από τη διαίσθηση οδηγεί σε "μαθηματική ατροφία"). Σ αυτήν ακριβώς τη φάση της ανακάλυψης εντάσσουμε και τον επιπλέον ρόλο που θέλουμε να προσδώσουμε στις γεωμετρικές αναπαραστάσεις. Στην εργασία αυτή επιλέξαμε να διαπραγματευτούμε το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού, επειδή το θεώρημα αυτό προσφέρεται ι- διαίτερα για να αναδείξουμε τη διδακτική μας πρόταση, η οποία εστιάζεται στην επινόηση αποδείξεων με την αξιοποίηση κρίσιμων μαθηματικών αποτελεσμάτων που προκύπτουν από την δυναμική θεώρηση των σχημάτων. Το Θεώρημα Μέσης Τιμής (Θ.Μ.Τ. του Lagrange) Το εν λόγω θεώρημα αποτελεί γενίκευση του Θεωρήματος του Rolle και, λόγω των πολλών και σημαντικών εφαρμογών του, θεωρείται ένα από τα πλέον θεμελιώδη θεωρήματα της Ανάλυσης. Διατύπωση του Θ.Μ.Τ. Αν μια συνάρτηση ƒ είναι: i) συνεχής στο κλειστό διάστημα [α, β] και ii) παραγωγίσιμη στο ανοικτό διάστημα (α, β), τότε υπάρχει ένα τουλάχιστον ξ(α, β) τέτοιο, ώστε: f(β)- f(α) f (ξ)= ή ƒ(β) ƒ(α) = ƒ (ξ) (β α) β - α Σε πολλά βιβλία Ανάλυσης, η απόδειξη του Θ.Μ.Τ. επιτυγχάνεται με τη θεώρηση εξαρχής είτε της συνάρτησης: g(x) = ƒ(x) ƒ( ) ƒ( ) (x ) είτε της: ƒ(x) x 1 (x) ƒ( ) 1, x[α, β], ƒ( ) 1 και αμέσως μετά με εφαρμογή σ αυτές του θεωρήματος του Rolle. Και βεβαίως ανακύπτουν εδώ τα εντελώς φυσικά ερωτήματα: Γιατί να θεωρήσουμε αυτές τις συναρτήσεις; Ποια σειρά συλλογισμών μάς οδηγεί στην θεώρηση αυτών των συναρτήσεων; Πιστεύουμε ότι οι συλλογισμοί που θα αναπτύξουμε παρακάτω να δίνουν

3 πειστικές απαντήσεις σε ανάλογα ερωτήματα: Θα αναδείξουμε γεωμετρικά την ιδέα στην οποία βασίζεται το εν λόγω θεώρημα και έπειτα, με αφετηρία την ιδέα αυτή, θα συνθέσουμε βήμα προς βήμα την απόδειξή του. Στο σχήμα 1., ας φανταστούμε ότι το σημείο Κ(x, ƒ(x)) διατρέχει τη γραφική παράσταση της ƒ από το σημείο Α προς το σημείο Β. Κατά την κίνηση αυτή είναι εντελώς λογικό να αναμένουμε ότι θα υπάρξει θέση του Κ για την οποία το μήκος του ευθυγράμμου τμήματος ΚΛ γίνεται μέγιστο (Λ είναι η προβολή του Κ στο ευθύγραμμο τμήμα ΑΒ). Η διαίσθηση μάς λέει ότι σ αυτήν ακριβώς τη θέση του Κ ορίζεται εφαπτομένη της καμπύλης της ƒ η οποία είναι παράλληλη προς το τμήμα ΑΒ. Είναι πάρα πολύ σημαντικό να παρατηρήσουμε εδώ την εξής σύμπτωση: Έχουμε εφαπτομένη της καμπύλης της ƒ, παράλληλη προς το τμήμα ΑΒ, σ εκείνη ακριβώς τη θέση του Κ όπου το μήκος του τμήματος ΚΛ γίνεται μέγιστο (γενικότερα έχουμε εφαπτομένη της καμπύλης της ƒ, παράλληλη προς το τμήμα ΑΒ, σ εκείνες ακριβώς τις θέσεις του Κ όπου το μήκος του τμήματος ΚΛ παίρνει τοπικά ακρότατες τιμές). Οι παραπάνω σκέψεις μάς οδηγούν να ορίσουμε μία συνάρτηση η οποία θα μετράει την απόσταση των σημείων της καμπύλης της ƒ από το τμήμα ΑΒ. Στο τυχόν x του διαστήματος [α, β] η απόσταση αυτή εκφράζεται από το μήκος του τμήματος ΚΛ. Είναι (ΚΛ) = (ΚΜ) συνω Η εξίσωση του τμήματος ΑΒ είναι: ψ ƒ(α) = (x α) Άρα το τυχόν σημείο Μ της ΑΒ, με συντεταγμένες (x, ψ), θα επαληθεύει την εξίσωση: ψ = ƒ(α) + (x α) Επομένως (ΚΜ) = ƒ(x) ψ = ƒ(x) [ƒ(α) + (x α)] Άρα (ΚΛ) = συνω [ƒ(x) ƒ(α) (x α)]

4 Αν φανταστούμε ότι το ΚΛ, όπως αυτό ορίστηκε, κινείται, τότε το μήκος του γίνεται μηδέν όταν το Κ συμπέσει με τα Α ή Β, δηλαδή όταν το x γίνει α ή β αντιστοίχως. Έτσι, αν θέσουμε (ΚΛ) = g(x), έχουμε g(α) = 0 και g(β) = 0. Και επειδή η g είναι προφανώς συνεχής στο [α, β] και παραγωγίσιμη στο (α, β), σύμφωνα με το θεώρημα του Rolle, θα υπάρχει ένα τουλάχιστον ξ(α, β) τέτοιο, ώ- στε: g'(ξ) = 0. Είναι g (x) = συνω [ƒ(x) ƒ(α) (x α)] = συνω [ƒ (x) ] Οπότε g (ξ) = 0 ƒ (ξ) = Η τελευταία ισότητα βρίσκεται σε πλήρη αρμονία με τις αρχικές γεωμετρικές μας διαπιστώσεις, που ήθελαν την εφαπτομένη της καμπύλης της ƒ να είναι παράλληλη προς τo τμήμα ΑΒ. Έτσι η γεωμετρική ερμηνεία του Θ.Μ.Τ. δόθηκε από την αρχή και όχι ανακόλουθα μετά από την απόδειξη. Δεύτερη γεωμετρική προσέγγιση του Θ.Μ.Τ. Σε κάθε x του [α, β] αντιστοιχεί ένα τρίγωνο ΚΑΒ. Η διαίσθηση, που στηρίζεται στη γεωμετρική εποπτεία, μας λέει ότι εφαπτομένη της καμπύλης, παράλληλη προς το τμήμα ΑΒ, θα έχουμε σ εκείνο το σημείο όπου το εμβαδόν Ε του τριγώνου ΑΚΒ παρουσιάζει τοπικά ακρότατη τιμή. Είναι φανερό ότι το εμβαδόν Ε μηδενίζεται όταν η κορυφή Κ ταυτιστεί με το Α ή με το Β, δηλαδή όταν το το x γίνει α ή β αντιστοίχως. x ƒα ƒx 1 1 E(x) det KA, KB, x [, ] 2 2 x ƒ β ƒx Η προηγούμενη παρατήρηση επιβεβαιώνεται και τυπικά, καθώς Ε(α) = 0 και Ε(β) = 0

5 Είναι πλέον φανερό ότι για τη συνάρτηση Ε(x), και συνεπώς και για τη συνάρτηση gx, ικανοποιούνται οι προϋποθέσεις ε- x ƒ β ƒ x x ƒ α ƒ x φαρμογής του Θεωρήματος του Rolle στο διάστημα [α, β] Επομένως, θα υπάρχει ένα τουλάχιστον ξ(α, β) τέτοιο, ώστε: g (ξ) = 0 g(x) xƒ( ) ƒ(x) xƒ( ) ƒ(x) ισοδ. g(x) ƒ( ) ƒ( ) ƒ(x) ƒ( ) ƒ( ) x Άρα, g (x) ƒ (x) ƒ( ) ƒ( ) Οπότε το συμπέρασμα g (ξ) = 0, λόγω της τελευταίας ισότητας, γράφεται: ƒ( ) ƒ( ) ƒ ( ) Τρίτη γεωμετρική προσέγγιση του Θ.Μ.Τ. Ας φανταστούμε ότι ένα σημείο Κ κινείται επί της γραφικής παράστασης της ƒ από το Α προς το Β. Σε κάθε τυχούσα θέση του σημείου Κ(x, ƒ(x)), x[α, β], αντιστοιχεί ένα ευθύγραμμο τμήμα ΚΛ κάθετο στον άξονα των x και Λ σημείο της ευθείας ƒ( ) ƒ( ) y x Η διαίσθηση που στηρίζεται στη γεωμετρική εποπτεία μας λέει ότι: εφαπτομένη της C ƒ παράλληλη προς το τμήμα ΑΒ θα έχουμε σε εκείνη τη θέση του σημείου Κ, όπου το μήκος του ΚΛ παρουσιάζει τοπικά ακρότατη τιμή. Ο συλλογισμός αυτός μάς οδηγεί να ορίσουμε τη συνάρτηση δ(x), που εκφράζει τη διαφορά των τεταγμένων των σημείων Κ και Λ που έχουν την ί- δια τετμημένη x. ƒ( ) ƒ( ) (x) ƒ(x) x, x[α, β]

6 Στο σχήμα (3) η συνάρτηση δ(x) εκφράζει το μήκος τού τμήματος ΚΛ. Κρίσιμες παρατηρήσεις: Όταν το Κ βρίσκεται στο Α, τότε (ΚΛ) = (ΑΑ ), ενώ όταν το Κ βρίσκεται στο Β, τότε (ΚΛ) = (ΒΒ ). Όμως το τετράπλευρο ΑΑ Β Β είναι φανερά παραλληλόγραμμο, οπότε είναι (ΑΑ ) = (ΒΒ ) δηλαδή δ(α) = δ(β). Το τελευταίο αυτό συμπέρασμα, δ(α) = δ(β), καθώς επιπλέον η συνάρτηση δ είναι συνεχής στο [α, β] και παραγωγίσιμη στο (α, β), μάς λέει ότι για τη συνάρτηση δ ικανοποιούνται οι τρεις προϋποθέσεις του θεωρήματος του Rolle στο διάστημα [α, β]. Οπότε θα υπάρχει ένα τουλάχιστον ξ(α, β) ώστε δ (ξ) = 0 Είναι ƒ( ) ƒ( ) (x) ƒ (x), οπότε η δ (ξ) = 0 γίνεται: ƒ (ξ) =, που είναι και το ζητούμενο. Το κρίσιμο συμπέρασμα δ(α) = δ(β), που προέκυψε από τη γεωμετρική ε- ποπτεία, επιβεβαιώνεται και με τον υπολογισμό των δ(α) και δ(β) από τον τύπο της συνάρτησης: ƒ( ) ƒ( ) (x) ƒ(x) x, x[α, β] Μία ακόμα (τέταρτη) ιδέα για την απόδειξη του Θ.Μ.Τ. Η ευθεία ΑΒ προκύπτει από μια παράλληλη μετατόπιση της ευθείας Α Β : ƒ( ) ƒ( ) y x, κατά μία πραγματική σταθερά c, ίση με το μήκος του τμήματος ΑΑ. Έτσι έχουμε ΑΒ: y x c και επειδή το Λ ανήκει στην ΑΒ, ƒ( ) ƒ( ) άρα x, x c

7 Στη συνέχεια ασχολούμαστε με το τμήμα ΚΛ και τη συνάρτηση ƒ( ) ƒ( ) (x) ƒ(x) x c, x[α, β], με συλλογισμούς εντελώς ανάλογους προς εκείνους της προηγούμενης α- πόδειξης, όπου είχαμε το τμήμα ΚΛ αντί του ΚΛ και τη συνάρτηση δ(x) αντί της Φ(x). Γενίκευση του Θ.Μ.Τ. σε πραγματικές συναρτήσεις πολλών μεταβλητών Έστω ƒ: U IR n IR μια διαφορίσιμη συνάρτηση με πεδίο ορισμού το n ανοικτό και κυρτό υποσύνολο U του IR. Τότε, για οποιαδήποτε x, yu με x y υπάρχει σημείο z 0 του ευθυγράμμου τμήματος xy με z 0 x και z 0 y, τέτοιο ώστε : ƒ(y) ƒ(x) = (y x)ƒ (z 0 ). Γεωμετρική προσέγγιση απόδειξη Η απόδειξη που βρίσκουμε σε συγγράμματα Ανάλυσης συναρτήσεων πολλών μεταβλητών επιτυγχάνεται με εφαρμογή του Θ.Μ.Τ. για πραγματικές συναρτήσεις μιας πραγματικής μεταβλητής στη συνάρτηση: g: [0, 1] ΙR, g(t) = ƒ 1 t x + t y Σκοπεύουμε, διαμέσου της γεωμετρικής εποπτείας, να αιτιολογήσουμε την αναγκαιότητα της επιλογής της g και να δούμε προσεκτικά τη διασύνδεσή της με την ƒ. Μετά τη συζήτηση τού Θ.Μ.Τ. για πραγματικές συναρτήσεις μιας πραγματικής μεταβλητής, σκεπτόμενοι επαγωγικά, θεωρούμε εντελώς φυσικό να προσεγγίσουμε το θέμα μας (πρόβλημα γενίκευσης) καταρχάς διαμέσου συνάρτησης ƒ: U IR 2 IR για την οποία μπορούμε να έχουμε και εποπτεία.

8 Παίρνουμε δύο σημεία x και y του U με x y (σταθεροποιημένα). Το U στη συγκεκριμένη περίπτωση είναι ένα ανοικτό και κυρτό σημειοσύνολο του επιπέδου Οxy. Ενώ το γράφημα της ƒ: U IR 2 IR είναι μια επιφάνεια S του x, y, ƒ x, y για 3 όλα IR, η οποία αποτελείται από τα σημεία τα (x, y) του U. Θέλουμε, τώρα, τις τιμές των x και y, δηλαδή τα ƒ(x), ƒ(y) αντίστοιχα, τα οποία εμφανίζονται στη διατύπωση του θεωρήματος. Για το λόγο αυτό, στο πλαίσιο της γεωμετρικής προσέγγισης, θεωρούμε το επίπεδο Ε το κάθετο προς το επίπεδο Οxy με ευθεία τομής αυτήν που διέρχεται από τα σημεία x και y. Η τομή του Ε με την S είναι μια καμπύλη Γ και οι τιμές των x και y μέσω της ƒ υλοποιούνται από τα σημεία Μ και Ν της S αντίστοιχα. Τα ƒ(x) και ƒ(y) είναι πραγματικοί αριθμοί και εκφράζουν τις αποστάσεις των x και y από τα σημεία Μ και Ν. Σημαντική παρατήρηση Με τη διαδικασία που περιγράψαμε, γίνεται φανερό ότι η υλοποίηση του θεωρήματος μεταφέρεται στο επίπεδο Ε και επομένως η απόδειξή του θα μπορούσε πλέον να επιτευχθεί διαμέσου κάποιας πραγματικής συνάρτησης με μια πραγματική μεταβλητή.

9 Στόχος μας είναι τώρα η επινόηση μιας τέτοιας συνάρτησης g, μεταβλητής t, η οποία καθένα t από το πεδίο ορισμού της θα το αντιστοίχιζε σε ένα α- κριβώς σημείο z του xy και ακολούθως αυτό το z θα το απεικόνιζε γραφικά σε ένα ακριβώς σημείο της καμπύλης Γ. A T B x z y Αν στα σταθεροποιημένα σημεία Α και Β ενός άξονα τετμημένων απεικονίζονται τα x και y αντίστοιχα, τότε για οποιοδήποτε σημείο Τ με τετμημένη z, που διατρέχει το ευθύγραμμο τμήμα ΑΒ, ισχύει: AT t, t[0, 1] για κάθε θέση του Τ πάνω στο τμήμα ΑΒ. AB Άρα z x=(y x)t και ισοδύναμα: z 1 t x t y : (1), όπου z=z(t). Η εξίσωση (1) περιγράφει το ευθύγραμμο τμήμα xy Αναδεικνύεται έτσι μια συνάρτηση r : [0, 1] xy, μεταβλητής t, η οποία αντιστοιχίζει καθένα t του κλειστού διαστήματος [0, 1] σε ένα ακριβώς σημείο z του xy Έχουμε: z 1 t x t y : r t ( ) Άρα, (2) : ƒ z ƒ 1 t x t y : g t, g : 0,1 IR rt Η εξίσωση (2) περιγράφει το τμήμα ΜΝ της καμπύλης Γ. Η προηγούμενη πορεία μάς οδήγησε, διαμέσου μιας σειράς απλών συλλογισμών, στην επινόηση της συνάρτησης: gt ƒ 1 t x t y, t 0, 1 t[0, 1] ΙR r r(t) = z(t) : σημείο του xy g ƒ ƒ(z(t)) : = g(t)ir Τα δύο επόμενα σχήματα έχουν ως στόχο την πληρέστερη κατανόηση της διασύνδεσης των συναρτήσεων ƒ και g διαμέσου (και) της γεωμετρικής ε- ποπτείας.

10 Είναι πλέον φανερό ότι η απόδειξη ανάγεται στην εφαρμογή του γνωστού Θ.Μ.Τ. (για πραγματικές συναρτήσεις μιας πραγματικής μεταβλητής) στην gt ƒ 1 t x t y, t 0, 1, γιατί η g είναι συνεχής στο [0, 1] και παραγωγίσιμη στο (0, 1). Άρα, θα υπάρχει t 0 (0, 1) τέτοιο ώστε: g1 g01 0 g t 0 : (3) Βρίσκουμε g(1) = ƒ(y), g(0) = ƒ(x) και g (t) = (y x)ƒ ((1 t)x+ty). Η (3) γράφεται: ƒ(y) ƒ(x) = (y x)ƒ ((1 t 0 )x + t 0 y) : (4) Όμως στο t 0 (0, 1) αντιστοιχίζεται, μέσω της r, ένα σημείο z 0 του ευθύγραμμου τμήματος xy, διαφορετικό των x και y, ώστε: z 0 =(1 t 0 )x+t 0 y. Έτσι η (4) γράφεται: ƒ(y) ƒ(x) = (y x)ƒ (z 0 ) Σχόλια: Το ƒ (z 0 ) εκφράζει το ρυθμό μεταβολής της συνάρτησης ƒ στο z 0 ανά μονάδα μήκους, ως προς την κατεύθυνση που ορίζει το xy Για την επινόηση της συνάρτησης g(t) = ƒ((1 t)x + ty) εργαστήκαμε διαμέσου της ειδίκευσης ƒ : U IR n IR με n = 2. Αφότου όμως επινοήθηκε η g, από εκεί και ύστερα, η απόδειξη στο τυπικό της αυστηρό μέρος ισχύει για όλες τις συναρτήσεις ƒ : U IR n IR με n 2. Και αυτό γιατί, με σταθεροποιημένα τα x και y, η g είναι πραγματική συνάρτηση μιας πραγματικής μεταβλητής, της t, ανεξάρτητα από το n.

11 Μια ακόμη ιδέα για την απόδειξη της γενίκευσης του Θ.Μ.Τ. Ας φανταστούμε ότι το Κ διατρέχει τη γραφική παράσταση της g από το Μ προς το Ν. Έτσι για κάθε t[0, 1] παίρνουμε ακριβώς μια θέση του Κ(t, g(t)) πάνω στη C g Καθώς το Κ διατρέχει τη C g, ισοδύναμα καθώς το t διατρέχει το διάστημα [0, 1], το μήκος του τμήματος ΚΛ γίνεται 0 όταν το Κ συμπέσει με τα Μ ή Ν, δηλαδή όταν το t γίνεται 0 ή 1 αντίστοιχα. Για οποιαδήποτε θέση του Κ πάνω στη C g έχουμε: (ΚΛ) = τεταγμένη του Κ τεταγμένη του Λ Επομένως, : h t gt g0 g1 g0 t, t 0,1 όπου g(t) = ƒ((1 t)x + ty) Οι προηγούμενες παρατηρήσεις μας για το μήκος του ΚΛ, όταν το Κ συμπέσει με τα Μ ή Ν επιβεβαιώνονται πλέον και τυπικά από τον τύπο της h, αφού h(0) = 0, h(1) = 0. Και επειδή η h είναι συνεχής στο [0, 1] και παραγωγίσιμη στο (0, 1), σύμφωνα με το θεώρημα του Rolle θα υπάρχει t 0 (0, 1) ώστε h (t 0 ) = 0 Είναι: h (t) = g (t) g(1) + g(0) g (t) = (y x)ƒ ((1 t)x + ty) g(0) = ƒ(x), g(1) = ƒ(y) Οπότε, h (t) = (y x)ƒ ((1 t)x + ty) ƒ(y) + ƒ(x) Έτσι το συμπέρασμα h (t 0 ) = 0, του θεωρήματος του Rolle, γράφεται: ƒ(y) ƒ(x) = (y x)ƒ ((1 t 0 )x + t 0 y) Όμως, σε καθένα t 0 (0, 1) είδαμε ότι αντιστοιχίζεται ακριβώς ένα z 0 του

12 ευθύγραμμου τμήματος xy, διαφορετικό των x και y, ώστε: z 0 = (1 t 0 )x + t 0 y Επομένως: ƒ(y) ƒ(x) = (y x)ƒ (z 0 ) Βιβλιογραφία [1] Καδιανάκης, Ν. Καρανάσιος, Σ. Φελλούρης, Α. (2000). "Ανάλυση ΙΙ, Συναρτήσεις πολλών μεταβλητών", Αθήνα: σύγγραμμα του Ε.Μ.Π. [2] Τσίτσας, Λ. (2002). "Εφαρμοσμένος Διανυσματικός Απειροστικός Λογισμός", Αθήνα: σύγγραμμα του Ε.Κ.Π.Α., Εκδόσεις Συμμετρία. [3] Μάκρας, Στρ. "Η γεωμετρική εποπτεία στη διδασκαλία της Ανάλυσης", άρθρο στο περιοδικό "Μαθηματική Έκφραση" έκδοση του Παραρτήματος Τρικάλων της ΕΜΕ, τχ. 2 ο (Μάρτιος 1998), σσ , Θεσ/νίκη: Εκδόσεις Μαθηματική Βιβλιοθήκη. [4] Ντρίζος, Δ. (2004, Νοέμβριος). "Η συμβολή των γεωμετρικών αναπαραστάσεων στη διαδικασία επινόησης της απόδειξης μιας μαθηματικής πρότασης", Πρακτικά 21 ου Πανελληνίου Συνεδρίου της Ελληνικής Μαθηματικής Εταιρείας, Τρίκαλα.

Advantages of visualizing mathematical concepts: The proof of the Mean Value Theorem of Differential Calculus, of one or two real variables

Advantages of visualizing mathematical concepts: The proof of the Mean Value Theorem of Differential Calculus, of one or two real variables 1 Πλεονεκτήματα της γεωμετρικής αναπαράστασης των μαθηματικών εννοιών: Η απόδειξη του θεωρήματος της Μέσης Τιμής του διαφορικού λογισμού, για συναρτήσεις μιας ή δύο πραγματικών μεταβλητών Δημήτριος Α.

Διαβάστε περισσότερα

Δημήτριος Α. Ντρίζος Σχολικός Σύμβουλος Μαθηματικών

Δημήτριος Α. Ντρίζος Σχολικός Σύμβουλος Μαθηματικών ΕΥΚΛΕΙΔΗΣ γ, Τεύχος 77, 2012 Πλεονεκτήματα της γεωμετρικής αναπαράστασης των μαθηματικών εννοιών: Η απόδειξη του θεωρήματος της Μέσης Τιμής του διαφορικού λογισμού, για συναρτήσεις μιας ή δύο πραγματικών

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Στο Σημείωμα αυτό διατυπώνουμε μια σειρά μαθηματικών προτάσεων, καθεμιά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του Δημητρίου Α. Ντρίζου Σχολικού Συμβούλου Μαθηματικών Στο κείμενο που ακολουθεί διατυπώνουμε μια σειρά προτάσεων, καθεμιά από τις ο- ποίες, αφού

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΛΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ

Διαβάστε περισσότερα

Ερωτήσεις-Απαντήσεις Θεωρίας

Ερωτήσεις-Απαντήσεις Θεωρίας 1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού 4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το θεώρημα Μέσης Τιμής του διαφορικού λογισμού χωρίς την απόδειξή του. Στόχοι της δραστηριότητας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Μαθηματικές Συναντήσεις

Μαθηματικές Συναντήσεις Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ ο / ΝΟΕΜΒΡΙΟΣ ΔΕΚΕΜΒΡΙΟΣ 7 Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός Λογισμός / εκδοχή η) Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ. Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς

Γ ΛΥΚΕΙΟΥ. Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς Γ ΛΥΚΕΙΟΥ Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς Θεματικές διαδρομές στην Ανάλυση Μια πορεία από τον Διαφορικό στον Ολοκληρωτικό Λογισμό Γιάννης Λουριδάς, Δημήτρης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΕΜΙΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΕΜΙΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΗΣ ΠΑΙΔΕΙΑΣ ΛΥΚΕΙΑ ΛΑΡΙΣΑΣ 13.12.2017 Μαθηματικές Δραστηριότητες: Προκλήσεις για δημιουργική μάθηση και ανάπτυξη της διερευνητικής σκέψης Δημήτρης Ντρίζος, Μαθηματικός M.Ed Μέλος της

Διαβάστε περισσότερα

Μαθηματικές Συναντήσεις

Μαθηματικές Συναντήσεις Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 1 / ΟΚΤΩΒΡΙΟΣ 16 Ενδεικτικά θέματα μαθηματικών για τις Α, Β και Γ τάξεις του Γενικού Λυκείου Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμούλου Μαθηματικών Τρικάλων και Καρδίτσας Τα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

3o Επαναληπτικό Διαγώνισμα 2016

3o Επαναληπτικό Διαγώνισμα 2016 3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ

ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ σχολικού συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Εισαγωγή Σύντομη ιστορική αναδρομή Το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ Ενότητα 17 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ Ασκήσεις για λύση 1. Σε ένα ορθογώνιο ΑΒΓΔ η πλευρά ΑΒ αυξάνεται με ρυθμό cm / s, ενώ η πλευρά ΒΓ ελαττώνεται με ρυθμό 3 cm / s. Να βρεθούν: i) ο ρυθμός μεταβολής

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Διατύπωση: Αν μια συνάρτηση είναι: συνεχής στο κλειστό διάστημα [ α β] και παραγωγίσιμη στο ανοικτό διάστημα ( α β) τότε υπάρχει ένα τουλάχιστον ξ ( α β) τέτοιο ώστε: ( ( β) ( α) β α Γεωμετρικά αυτό σημαίνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

Εφαρμογές παραγώγων. Διαφορικός Λογισμός μιας μεταβλητής Ι

Εφαρμογές παραγώγων. Διαφορικός Λογισμός μιας μεταβλητής Ι Εφαρμογές παραγώγων Διαφορικός Λογισμός μιας μεταβλητής Ι Ακρότατα Α Θα δούμε πώς οι παράγωγοι βοηθούν στην αναζήτηση ακρότατων (μέγιστα και ελάχιστα) μιας συνάρτησης ώστε να αντιλαμβανόμαστε πώς εξελίσσεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

Μαθηματικές Συναντήσεις

Μαθηματικές Συναντήσεις Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 7ο / ΝΟΕΜΒΡΙΟΣ 4-ΙΑΝΟΥΑΡΙΟΣ 5 ΜΙΑ ΠΡΟΤΑΣΗ ΘΕΜΑΤΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ, ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΚΑΙ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ (4α θέματα) Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. lim f(x) έχουμε P(x) 2x (1 ). Επειδή. lim ( 2x )

ΑΠΑΝΤΗΣΕΙΣ. lim f(x) έχουμε P(x) 2x (1 ). Επειδή. lim ( 2x ) ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Σχολικό βιβλίο σελίδα 86 Α Σχολικό βιβλίο σελίδα 4 Α i γ) ii δ) Α4 α) Συνεχής,, f( ) β) Υπάρχει το f '() lim g'(), θετικό,,, γ),, Α5 i A ii Έστω P()

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφείο 102, Στρόβολος 2003, Λευκωσία Τηλέφωνο: 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης (2η εκδοχή, Ιανουάριος 2016)

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης (2η εκδοχή, Ιανουάριος 2016) Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Θεµατικές διαδροµές στην Ανάλυση

Θεµατικές διαδροµές στην Ανάλυση Θεµατικές διαδροµές στην Ανάλυση Μια πορεία από τον ιαφορικό στον Ολοκληρωτικό Λογισµό Γιάννης Λουριδάς, ηµήτρης Ντρίζος Τα θέµατα του παρόντος άρθρου εντάσσονται στην ύλη του ιαφορικού και Ολοκληρωτικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη e d g h g h Εκφωνήσεις 65, 6 Δίνονται η συνάρτηση και η σχέση g, 8 α) Να βρεθούν οι τιμές του πραγματικού αριθμού λ ώστε η συνάρτηση να έχει πεδίο

Διαβάστε περισσότερα

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ),

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ), Πανελλαδικές Εξετάσεις 8 Μαθηματικά Προσανατολισμού /6/8 ΘΕΜΑ Α Προτεινόμενες λύσεις Α Αφού η f είναι παραγωγίσιμη στο σημείο του πεδίου ορισμού της, ισχύει ότι: Για κάθε έχουμε: Επομένως ισχύει ότι: Δηλαδή:

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα).

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα). ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΚΥΡΙΑΚΗ, 3 ΑΠΡΙΛΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Να βρείτε την παράγουσα της συνάρτησης f() =,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 1, Στρόβολος, Λευκωσία Τηλ. 57-7811 Φαξ: 57-791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Δευτέρα, Ιουνίου 14 ΠΡΟΤΕΙΝΟΜΕΝΕΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ MICHEL ROLLE Μία μορφή του θεωρήματος Rolle δόθηκε από τον Ινδό αστρονόμο Bhaskara

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΠΙΚΑΙΡΟΠΟΙΗΜΕΝΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΝΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ ΜΕΧΡΙ ΚΑΙ Θ.ΜΤ. g είναι παραγωγίσιμη στο,τότε και η συνάρτηση f x g x

ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ ΜΕΧΡΙ ΚΑΙ Θ.ΜΤ. g είναι παραγωγίσιμη στο,τότε και η συνάρτηση f x g x ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ ΜΕΧΡΙ ΚΑΙ ΘΜΤ ΘΕΜΑ o Α Η συνάρτηση f( ), f είναι παραγωγίσιμη στο και ισχύει ( ) ln, δηλαδή ln a a a Μονάδες Α Θεωρήστε τον παρακάτω ισχυρισμό: «αν η συνάρτηση : g είναι παραγωγίσιμη

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10 ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE Θεώρημα Rolle Αν μια συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β], παραγωγίσιμη στο ανοικτό διάστημα (α, β) και ισχύει ότι f(α) f(β), τότε υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A wwwaskisopolisgr ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A Α Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα, Αν: η f είναι συνεχής στο, f f να

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013 ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 3 Εισαγωγή Μέσα Μαΐου και ο πυρετός των Πανελλαδικών όλο και ανεβαίνει! Οι μαθητές ξεκοκαλίζουν τα βιβλία για να ανακαλύψουν δύσκολα θέματα διαφορετικά από αυτά που κυκλοφορούν

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΛΥΣΗ Θεωρία, Μεθοδολογία και Ασκήσεις Επιμέλεια: Άλκης Τζελέπης Αθήνα Περιεχόμενα ΕΝΟΤΗΤΑ η:... ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΝΑΡΤΗΣΕΩΝ ΑΣΚΗΣΕΙΣ... ΕΝΟΤΗΤΑ η: ΟΡΙΑ

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά

Διαβάστε περισσότερα