koncept predavanja - dr. Esad Mulavdić, docent a) TROŠKOVI OSNOVNOG SREDSTVA - FIKSNI TROŠKOVI TROŠKOVI VLASNIŠTVA (owning costs)
|
|
- Κηφεύς Δαγκλής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 TEMA: TROŠKOVI SREDSTAVA RADA - MAŠINA a) TROŠKOVI OSNOVNOG SREDSTVA - FIKSNI TROŠKOVI TROŠKOVI VLASNIŠTVA (owning costs) Pojam trošak: to je novčani pokazatelj vrijednosti utrošenog dobra resursa. (Utrošen je onaj resurs ako više nema svoju prvobitnu upotrebnu vrijednost). Vrijednosti resursa imaju materijalni i novčani izraz. (Materijal je zapravo novac, i obrnuto. Kada imamo neku materijalnu vrijednost, to je kao da imamo i novac. Materijalne stvari nemaju stalnu / trajnu vrijednost, ona po pravilu opada!) KLASIČNA INTERPRETACIJA MODERNA INTERPRETACIJA /Socijalistička teorija, 1980/ /Caterpillar Handbook 1989.god/ 1* Amortizacija (A) * Amortizacija (A) 2* Investiciono održavanje (I) * * Kamate (K) * Kamate (K) 4* Osiguranje (O) * Osiguranje (O) 5* * Porez na imovinu (P) 6* Jednokaratni troškovi (J) ad 1) AMORTIZACIJA (a-mort = ne-umrijeti) Kada nabavimo (kupimo za novac) mašinu, onda de-facto novac zamijenimo materijalom. Naizgled, novac smo 'izgubili' ali smo dobili mašinu kao (protu-)vrijednost. Otpis vrijednosti: mašina kao materijalni proizvod ima vrijednost, koju tokom vremena gubi usljed fizičkog starenja, trošenja/gubitka radnih sposobnosti i tehnološkog zastarijevanja. Početna vrijednost mašine, izražena u novcu, tokom vremena se smanjuje i tako se 'pojavljuje' trošak (izdatak novca, kao da smo nekom drugom dali) amortizacije. Amortizacija je u novcu iskazana vrijednost kojom se 'nadoknađuje' izgubljeni/utrošeni/prevaziđeni sadržaj sredstva za rad, odnosno, novac kojim se osigurava nabavka novog sredstva kada promatrano 'umre'. Osnovica za obračun amortizacije (BA): - nabavna vrijednost mašine (NV) = prodajna cijena + porez na promet + transport + carine + skladišne i špediterske takse + troškovi prve montaže i puštanja u rad - umanjenje za vrijednost pneumatika pri otpisu (samo za mašine sa točkovima) (VP) - umanjenje za rezidualnu likvidacionu vrijednost (staro gvožđe) pri otpisu (LV) (BA) = (NV) (VP) (LV) Vijek trajanja - rada mašine (h ek - prosječan broj radnih sati u toku eksploatacije) ili (n ek - broj godina eksploatacije): broj radnih sati (ili broj godina, sa prosječnim brojem radnih sati) koji mašina može da ostvari u radu pod normalnim uvjetima. h ek broj sati omogućuje izračunavanje tzv. satne/časovne amortizacije. n ek - broj godina omogućuje izračunavanje tzv. 'godišnje stope amortizacije - ekonomski vijek (utvrđen iz uvjeta ekonomičnosti proizvodnje); izražava se brojem godina n ek ili radnih sati h ek ; / h ek =n ek *PGFRS-prosječan godišnji fond radnih sati/ - administrativni vijek (utvrđen propisima - Zakon o amortizaciji kao prosjek prosjeka i kao posljedica tzv. moralnog zastarijevanja mašina: demodiranje, tehnološko zaostajanje, neučinkovitost, povećanje troškova, smanjenje rentabilnosti); izražava se najčešće tzv. stopom amortizacije a procentom godišnjeg otpisa vrijednosti mašine: a = 100/n ek [%], gdje je n ek -broj godina ekonomskog vijeka. str.1
2 Vremenska amortizacija: - godišnji iznos: A god = (BA)*a/100 [KM/god] ili A god = (BA)/n ek [KM/god] - satni iznos: A h = (BA)*a /(100*PGFRS) [KM/h] ili A h = (BA)/(n ek *PGFRS) [KM/h] ili A h = (BA)/h ek str.2
3 Funkcionalna amortizacija: Izražava utjecaj intenziteta korištenja mašina na trošenje otpisivanje vrijednosti, pored vremenskog starenja. Bazira se na dva planska pokazatelja: - godišnji iznos (kvota) amortizacije: A god =(BA)*a/100 [KM/god] - planirani godišnji obim radova sa tom mašinom: Q god = Up*PRGFRS [j.mj./god] Odnos ta dva pokazatelja daje amortizaciju po jedinici mjere: A god / Q god = (BA)*a/(100*Up*PGFRS) [KM/j.mj.] ad 2) INVESTICIONO ODRŽAVANJE /zapravo nije fiksni, nego trošak eksploatacije!/ Investicija = ulaganje većeg novčanog iznosa u nešto /poslovni poduhvat/. Održavanje je skup aktivnosti kojima se osigurava kontinuirana radna sposobnost-učinkovitost (efektivnost) i povoljna efikasnost mašina. Postoji tzv. plansko održavanje (periodični pregledi i remonti; te generalni remont) mašina. Pored njega, postoje iznenadni kvarovi/ havarije i oštećenja kada stradaju vitalni dijelovi (npr. motor, mjenjač i sl) mašine. Oba slučaja podrazumijevaju obimne radne zahvate na mašinama, uz trošenje značanih novčanih iznosa za zabavku novih dijelova (ili temeljitu reparaciju starih). Statistički je utvrđeno da investiciono održavanje mašine u toku jedne godine čini 10%-15% od nabavne vrijednosti mašine, što daje rezultat: I god = (0,10-0,15)*(NV). Investiciono održavanje, svedeno na jedan sat: I h = (0,10-0,15)*(NV)/PGFRS ad 3) KAMATE Po pravilu, mašine se kupuju na kredit (za gotov novac, iako ga imamo, nije 'pametno' kupovati mašine i 'ulagati u polu-mrtvi kapital' jer je bolje što više (puta) 'obrtati kapital' u formi gotovog novca!). Kamata je cijena posuđenog novca koju naplaćuju banke. Kamatna stopa (k) je u svijetu na nivou od 4-6%, a kod nas oko 10% (zbog monopola banaka i zbog nestabilnosti nacionalne ekonomije). Kamate se obračunavaju, po pravilu, na ostatak duga! Postoje različiti pristupi u obračunu kamate: prost kamatni račun, složeni kamatni račun; mjesečna, polugodišnja, godišnja kamata itd. Odvje se primjenjuje pojednostavljen obrazac: obračun kamate na tzv. srednju cijenu Cs (vrijednost) mašine tokom vremena, uzimajući u obzir i otpisivanje vrijednosti, po vremenskoj amortizaciji: Cs = (NV)*(n+1)/2n, gdje je n = broj godina ekonomskog vijeka mašine. Faktor srednje vrijednosti (n+1)/2n u izrazu za Cs se dobije sabiranjem niza: n/n, (n-1)/n, (n- 2)/n,...,(n-(n-1))/n, koji odslikava niz uzastopnih vrijednosti mašine uz umanjenje otpisa tokom n godina, i dijeljenjem sa n, kako bi se dobila srednja vrijednost mašine u toku eksploatacije: (1/n)*[n+(n-1)+(n-2)+...+(n-(n-1))]/n= (1/n)*[n+n+n+...+n ( (n-1)]/n= = (1/n)*[n*n- (n-1)*n/2]/n = (1/n)*[n 2 -n 2 /2+n/2]/n = (1/n)*[(n 2 +n)/2]/n =(1/n)*[n*(n+1)/2]/n =(n+1)/2n. str.3
4 Godišnji iznos izdvajanja za kamate je K god = Cs*k/100 Troškovi kamata, izraženi u odnosu na sat: K h = Cs*k/(100*PGFRS), gdje je k odgovarajuća kamatna stopa 5-10, obično 6 [%]. ad 4) OSIGURANJE Imovina, dakle i mašine, osgurava se za slučaj havarije, više sile, krađe i slično. Osiguravajuća društva uzimaju novac za osiguranje (polisa), koji predstavlja osnovu za isplatu nastale šetete. Ako do štete ne dođe, osiguravajuća društva zadržavaju novac za sebe! Tehnika obračuna troškova osiguranja je analogna kao kod kamata, s tim da je procenat-stopa osiguranja nešto manja (zapravo, stopa osiguranja ovisi o tome koliki iznos stvarne- sadašnje vrijednosti mašine vlasnik osigurava i koliko su vjerovatne pojave šteta od kojih se mašina osigurava, te roka osiguranja). Stvarna sadašnja vrijednost se dobije kada se nabavna vrijednost umanji za otpisanu vrijednost (amortizaciju) u prethodnom periodu od n x godina: SV = NV n x *A god Troškovi osiguranja, izraženi na godinu: O god = SV*o/100 i na sat: O h = SV*o/(100*PGFRS), gdje je o odgovarajuća stopa osiguranja [%]. (Ipak, radi lakšeg izračunavanja, umjesto konkretnog iznosa SV za svaku godinu ekonomskog vijeka, može se koristiti prosječna vrijednost mašine u ekonomskom vijeku Cs!!!) ad 5) POREZ NA IMOVINU Taj trošak kod nas (još uvijek nije!) etabliran, ali postoji svuda u kapitalističkom svijetu. Osnova za izračunavanje godišnjeg iznosa jest sadašnja vrijednost (SV=NV-n x *A god ) imovine na koju se primjenjuje zakonska stopa poreza. Troškovi poreza na imovinu, izraženi na godinu: P god = SV*p/100 i na sat: P h = SV*p/(100*PGFRS), gdje je p odgovarajuća stopa poreza [%]. (Ipak, radi lakšeg izračunavanja, umjesto konkretnog iznosa SV za svaku godinu ekonomskog vijeka, može se koristiti prosječna vrijednost mašine u ekonomskom vijeku Cs!!!) ad 6) JEDNOKRATNI TROŠKOVI (ni fiksni, ni eksploatacijski!) To je opće ime za grupu troškova različitih po mjestu i načinu nastanka: ono nisu uvijek po svojoj prirodi fiksni; često se javljaju kao posljedica korištenja mašina, pa spadaju u grupu ekspolatacijskih troškova. PRIMJERI: a) fiksni J trošak: registracija (uključivo redovni i vanredne tehničke preglede vozila) b) eksplatacioni J trošak: prijevoz mašine do gradilišta i nazad, uz policijsku pratnju c) priprema podloge, transport i montaža krana; demontaža i odvoz nakon završetka radova... Svaki od ovih troškova različito se izračunava: najčešće statistički, na bazi evidencije stvarnih troškova. Ne postoje obrasci i formule; pristup je analitički. Godišnji iznos J god se dobije sumiranjem svih takvih troškova u toku godine a satni dijeljenjem sa PGFRS: J h = J god /PGFRS str.4
5 d) EKSPLOATACIJSKI TROŠKOVI TROŠKOVI KORIŠTENJA/UPOTREBE KLASIČNA INTERPRETACIJA MODERNA INTERPRETACIJA /Socijalistička teorija, 1980/ /Caterpillar Handbook 1989.god/ * Troškovi održavanja tokom rada - * Popravke (održ., inv. i tekuće) - troškovi tekućeg održavanja(tto) (TO) * Troškovi habajućih dijelova (THD) * Troškovi hab. dijelova (THD) * Troškovi guma-pneumatika (TP) * Troškovi guma-pneumatika (TP) * - * Troškovi šasije i gusjenica (TVP) * Troškovi pogonske energije -goriva (TE) * Troškovi goriva-energije (TG) * Troškovi maziva (TM) * Troškovi ulja,filtera; mazivo(tm) * Troškovi-plata rukovaoca i pom. osoblja (TR) * Plata rukovaoca (TR) Jedintveni pristup eksploatacionim troškovima: - troškovi održavanja (investiciono+tekuće): TO god = t*nv/100, troškovi iskazani po satu: TO h = t*nv/(100*pgfrs) t=iskustveni pokazatelj procenat troškova održavanja prema nabavnoj vrijednosti (u početku eksploatacije on je manji, a pri kraju sve veći; prosječna vrijednost za investiciono održavanje 10-15% a za tekuće održavanje 5 do 10%, što zajedno čini 15-25% godišnje) - troškovi dijelova izloženih naročitom habanju (gume, sječiva, užad, čeljusti,...) : THD h = n d *C d *(1,1/V d 1/h ek ) [KM/h] n d =broj istovrsnih dijelova C d =cijena dijela V d =planirani-prosječni vijek trajanja dijela h ek =ekonomski vijek mašine - troškovi pogonske energije a) SUS-motori: TE h = c n *N 0 *k as *g sp /η [KM/h] b) elektromotori: TE h = c e *N 0 *k as *g sp /(η*cosφ) [KM/h] c n, c e = cijena jedinice količine energije (kg goriva, kwh eletrične energije) N 0 = nominalna snaga pogonskog motora (kw) (za više motora N 0 = N i *K i ) k as = koeficijent naprezanja-angažiranja snage pogonskog motora (0,45-0,80) g sp = specifična potrošnja energije u pogonskom motoru (dizel: 0,15-0,25 kg/kw*h; benzin: 0,20-0,35 kg/kw*h; elektro: 1 kwh/kw*h) η= opći stepen korisnog djelovanja motora cosφ= faktor aktivne snage elektromotora (0,5-0,85) - troškovi maziva TMh = m*te h (m=0,01 0,1 ovisno o starosti i uvjetima) ne moraju posebno da se iskazuju jer su uključeni u troškove održavanja!!! - troškovi plaća rukovaoca TR= bruto-satnica (neto+ porezi i doprinosi) str.5
6 SUMA TROŠKOVA KADA MAŠINA 'NE RADI': T 1 = A+K+O+P+J' (J'- samo jednokratni godišnji troškovi: registracije i sl.) SUMA TROŠKOVA KADA MAŠINA RADI: T 2 = A+K+O+P+J+TO+THD+TE+TR CIJENA IZNAJMLJIVANJA SAME MAŠINE: C 1 = T 1 + Dobit vlasnika ( * T 1 ) CIJENA USLUGE RADA MAŠINE C 2 = T 2 + (Rež. toškovi + Dobit) ( * T 2 ) (režijski troškovi i dobit se ponekad zaračunavaju kao faktor na plaću rukovaoca: 2-3*TR) str.6
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
7. Troškovi Proizvodnje
MIKROEKONOMIJA./. 7. Troškovi Proizvodnje Autori: Penezić Andrija Miković Ivana Pod vodstvom: Prof.dr. Đurđice Fučkan Prezentacije su napravljene prema : Pindyck, R.S./ Rubinfeld, D.L. () MIKROEKONOMIJA
RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI UKUPNA RAZLIKA U CIJENI UKUPNA RAZLIKA U CIJENI
RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI Služi za pokriće troškova poslovanja i ostvarenje dobiti; Troškovi poslovanja: materijalni troškovi; amortizacija; troškovi rada; ostali troškovi; Razlikujemo
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
2. KAMATNI RAČUN 2.1. POJAM KAMATE I KAMATNE STOPE
1 2. KAMATNI RAČUN 2.1. POJAM KAMATE I KAMATNE STOPE Pod pojmom kamata podrazumijeva se naknada koju dužnik plaća za posuđenu glavnicu. Pri tom se pod glavnicom najčešće podrazumijeva određena svota novca,
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
T E H N I Č K I N A L A Z I M I Š LJ E NJ E
Mr.sc. Krunoslav ORMUŽ, dipl. inž. str. Stalni sudski vještak za strojarstvo, promet i analizu cestovnih prometnih nezgoda Županijskog suda u Zagrebu Poljana Josipa Brunšmida 2, Zagreb AMITTO d.o.o. U
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
FINANCIJSKA MATEMATIKA Zadaci za vježbu. Napomena: Zadaci u ovoj prvoj skupini se mogu smatrati početnima i služe za uvježbavanje pojedinih pojmova.
Zagreb, 24. veljače 2003. FINANCIJSKA MATEMATIKA Zadaci za vježbu Napomena: Zadaci u ovoj prvoj skupini se mogu smatrati početnima i služe za uvježbavanje pojedinih pojmova. 1. Efektivna godišnja kamatna
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju Sadržaj predavnaja: Trošak kapitala I. Trošak duga II.
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje
EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
TABLICE AKTUARSKE MATEMATIKE
Na temelju članka 160. stavka 4. Zakona o mirovinskom osiguranju («Narodne novine», br. 102/98., 127/00., 59/01., 109/01., 147/02., 117/03., 30/04., 177/04., 92/05., 43/07., 79/07., 35/08., 40/10., 121/10.,
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
UPRAVLJANJE TROŠKOVIMA
UPRAVLJANJE TROŠKOVIMA Troškovi Predstavljaju novčano izražena trošenja sredstava i rada. Postoji više različitih klasifikacija troškova, u zavisnosti od aspekta posmatranja. Vrste troškova U zavisnosti
ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA
ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA ZADATAK BR. 1 Na osnovu podataka preduzeca Valsacor u 2010.godinisastaviti bilans stanja i bilans uspeha
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
KURS ZA ENERGETSKI AUDIT 7
KURS ZA ENERGETSKI AUDIT 7 EKONOMIJA ENERGETSKE EFIKASNOSTI Dr Dečan Ivanović Ekonomija energetske efikasnosti Inženjeri posmatraju energetiku gotovo uvijek sa aspekta tehnologije energetskih transformacija,