Υπολογιστική Υλοποιήση Εναλλακτικών Μοντέλων Βελτιστοποιήσης Χαρτοφυλακίων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπολογιστική Υλοποιήση Εναλλακτικών Μοντέλων Βελτιστοποιήσης Χαρτοφυλακίων"

Transcript

1 ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Διπλωματική Εργασία Υπολογιστική Υλοποιήση Εναλλακτικών Μοντέλων Βελτιστοποιήσης Χαρτοφυλακίων Συγγραφέας: Ανδρέας Καμπιανάκης Επιβλέπων: Μιχάλης Δούμπος Σχολή: Μηχανικών Παραγωγής και Διοίκησης

2 Στην οικογένειά μου. 1

3 Ευχαριστίες Ευχαριστώ τον Αναπληρωτή Καθηγητή Μιχάλη Δούμπο για την πολύτιμη βοήθεια και τις συμβουλές του καθ όλη τη διάρκεια της εκπόνησης της διπλωματικής. Επιπλέον, ευχαριστώ τους Βασίλη Μαρκουλάκη, Γιάννη Σαράντη, Γιώργο Ζωγράφο,Μιχάλη Τσαγκαράκη, Ιάκωβο Μαστρογιαννάκη, Βασίλη Παπαδερό και Τέρψη Βελιβασάκη για τη στήριξη τους. 2

4 Περιεχόμενα 1 Εισαγωγή 5 2 Θεωρητικό Υπόβαθρο Χρηματοοικονομικός Κίνδυνος Βασική Θεωρία Χαρτοφυλακίου Αναμενόμενη Απόδοση Κίνδυνος σε Χαρτοφυλάκια Χρεογράφων Αποτελεσματικά Χαρτοφυλάκια Συμπληρωματικά Θέματα Υποθέσεις και περιορισμοί Μοντέρνας Θεωρίας Χαρτοφυλακίου Πολυκριτήριος Προγραμματισμός στη Βελτιστοποιήση Χαρτοφυλακίου Aξία σε κίνδυνο (VaR) Βελτιστοποίηση επενδυτικών χαρτοφυλακίων Μοντέλο Μέσου - Διακύμανσης Μοντέλο Μέσου - ημί-διακύμανσης Υπό Συνθήκη Αξία σε Κίνδυνο Μέση Απόλυτη Απόκλιση Μοντέλο Πολλαπλών Αποκλίσεων Μέση Διαφορά Gini Mοντέλο Μinimax Συμπληρωματικά Μοντέλα Πλήθος χρεογράφων σε ένα χαρτοφυλάκιο Προκαθορισμένες μονάδες συναλλαγών Κόστος συναλλαγών Υλοποίηση Μοντελοποιηση Περιβάλλον Εργασίας

5 4.3 Κατασκευή Περιβάλλοντος Εργασίας Παράδειγμα Χρήσης Μορφή Δεδομένων Εισαγωγής Αριθμητικά Αποτελέσματα Βελτιστοποίησης Συμπεράσματα και Μελλοντικές Κατευθύνσεις 40 4

6 Κεφάλαιο 1 Εισαγωγή Στη σύγχρονη παγκοσμιοποιημένη αγορά ο χρηματοοικονομικός κίδυνος και η διαχείριση αυτού έχει αποκτήσει εξαιρετική σημασία, ιδιαίτερα σήμερα, όπου οι παράγοντες που μπορούν να επηρεάσουν την εύθραυστη παγκόσμια οικονομία είναι χιλιάδες και πολλές φορές ασύνδετοι μεταξύ τους. Έτσι δημιουργείται ένα ερώτημα, ακαδημαϊκού αλλά και πραγματικού ενδιαφέροντος. Πώς μπορεί να προβλεφθεί αυτός ο κίνδυνος και να αποφευχθούν ή τουλάχιστον να περιοριστούν οι ζημίες; Στο πεδίο της θεωρίας των χρηματοοικονομικών αγορών έχουν αναπτυχθεί διάφορες ποσοτικές μέθοδοι οι οποίες μπορούν να δώσουν μια πρόβλεψη αυτού του κινδύνου σε επίπεδο χαρτοφυλακίων. Ως χαρτοφυλάκιο ορίζεται το σύνολο των χρεογράφων, επικίνδυνων ή μη, που έχει στα χέρια του ένας επενδυτής. Μέσα από την πληθώρα επιλογών που έχει ο επενδυτής, είναι φανερή η αξία της μέτρησης του κινδύνου καθώς και η μεγάλη σημασία της. Το πρώτο βήμα για την ποσοτική μέτρηση του κινδύνου σε χαρτοφυλάκια και την επιλογή βέλτιστων χαρτοφυλακίων πραγματοποιήθηκε από τον Harry Markowitz το 1952 [27], με την ανάπτυξη του μοντέλου μέσου-διακύμανσης, το οποίο παρουσιάζει μέχρι σήμερα ενδιαφέρον και χρησιμοποιείται από τους επενδυτές. Εν συνεχεία αναπτύχθηκαν διάφορες άλλες μέθοδοι, δίνοντας έμφαση σε εναλλακτικά μέτρα κινδύνου που μπορούσαν να γραμμικοποιήσουν το πρόβλημα βελτιστοποίησης χαρτοφυλακίων [36]. Η εργασία αυτή πραγματεύεται την υλοποίηση επτά δημοφιλών μοντέλων βελτιστοποίησης επενδυτικών χαρτοφυλακίων καθώς και την ενσωμάτωση σε αυτά συμπληρωματικών στοιχείων με στόχο τη ρεαλιστικότερη ανάλυση χαρτοφυλακίων. Η υπολογιστική υλοποίηση των μοντέλων πραγματοποιήθηκε μέσω της ανάπτυξης ενός απλού αλλά φιλικού προς το χρήστη συστήματος που βασίζεται σε ένα γραφικό περιβάλλον εργασίας. Αρχικώς θα γίνει μια παρουσίαση της έννοιας του κινδύνου και του ρόλου αυτού στην επιλογή Βέλτιστου Χαρτοφυλακίου. Θα αναλυθούν μαθηματικά όλες οι υλοποιηθείσες σε αυτήν την εργασία μέθοδοι ελέγχου του κινδύνου και της ποσοτικοποίησης αυτού. Εν συνεχεία θα πραγματοποιηθεί μια ανάλυση της μεθόδου σύνθεσης Χαρτοφυλακίων από 5

7 το κάθε μοντέλο ξεχωριστά. Τέλος, θα γίνει μια επίδειξη της διεπαφής με το χρήστη και τις δυνατότητες της. Τα δεδομένα των δοκιμών αφορούν 118 μετοχές του Χρηματιστηρίου Αθηνών, κατά τη χρονική περίοδο από τις 3/1/2005 έως 6/8/2009, δεδομένα όμως που μπορούν να μεταβληθούν ανάλογα με την είσοδο δεδομένων της αρεσκείας του χρήστη. 6

8 Κεφάλαιο 2 Θεωρητικό Υπόβαθρο Σε αυτό το κεφάλαιο θα παρουσιαστεί όλη η θεωρία πίσω από την λέξη χαρτοφυλάκιο, δηλαδή η θεωρία χαρτοφυλακίου καθώς επίσης και η έννοια του κινδύνου από την χρηματοοικονομική σκοπιά. 2.1 Χρηματοοικονομικός Κίνδυνος Η τιμή με την οποία κλείνει κάθε μετοχή στο Χρηματιστήριο επηρεάζεται από το γενικό σύνολο της πορείας της επιχείρησης, αλλά και από αστάθμητους παράγοντες ενίοτε κερδοσκοπικούς. Ο γενικός κίνδυνος που διατρέχει όμως ο επενδυτής προκύπτει απο αλληλεπιδράσεις διαφόρων ειδών κινδύνου στους οποίους εκτίθεται μια επιχείρηση, κίνδυνοι που συνοψίζονται στους [42]: Επιχειρηματικός Κίνδυνος. Το είδος αυτού του κινδύνου εξαρτάται από τον τομέα στον οποία δραστηριοποιείται μια επιχείρηση καθώς επίσης και από το είδος της ίδιας της επιχείρησης. Κίνδυνος της αγοράς. Ο κίνδυνος αυτός εμπεριέχεται σε κάθε κίνηση μιας επιχείρησης εντός της αγοράς. Παραδείγματα τέτοιου κινδύνου αποτελούν ο κίνδυνος των επιτοκίων, σε περίπτωση δανεισμού καθώς και ο κίνδυνος συναλλαγματικών ισοτιμιών σε περίπτωση που η επιχείρηση έχει συναλλαγές σε διεθνές επίπεδο (εκτός Ευρωπαϊκής Ένωσης στην περίπτωση της Ελλάδας) Πιστωτικός Κίνδυνος. Ο κίνδυνος αυτός αφορά την δυνατότητα της επιχείρησης να εισπράττει τα χρέη της από τρίτους. Λειτουργικός Κίνδυνος. Ο συγκεκριμένος τύπος κινδύνου αφορά τον βαθμό της εύρυθμης λειτουργίας της επιχείρησης, δηλαδή το κατά πόσο καλά συνεργάζεται και λειτουργεί το έμψυχο και το άψυχο κομμάτι της επιχείρησης. 7

9 Κίνδυνος Ρευστότητας. Ο κίνδυνος ρευστότητας αφορά όταν την πιθανότητα να δημιουργηθούν ζημίες από την αδιαφορία των επενδυτών ως προς κάποιο χρεόγραφο. Νομικός Κίνδυνος. Ο τύπος αυτού του κινδύνου έχει να κάνει με το ρίσκο μιας επιχείρησης που έχει συνάψει συμβόλαιο με κάποιο φυσικό πρόσωπο ή άλλη επιχείρηση και δεν υπάρχει γνώση αν θα δικαιωθεί νομικά σε περίπτωση παραβίασης του συμβολαίου. Παραπάνω λοιπόν παρουσιάζονται συνολικά οι κίνδυνοι οι οποίοι αντιμετωπίζονται από τις επιχειρήσεις σε ένα περιβάλλον ελεύθερης αγοράς και γίνεται καλύτερα αντιληπτή η αξία της έννοιας του κινδύνου σε χρηματοοικονομικούς όρους καθώς και της ποσοτικοποίηση αυτής όπου αυτό είναι δυνατόν. 2.2 Βασική Θεωρία Χαρτοφυλακίου Η σύνθεση ενός χαρτοφυλακίου, αφορά την επιλογή των χρεογράφων, που θα το αποτελέσουν και στο ποσοστό συμμετοχής του καθενός μέσα στο χαρτοφυλάκιο. Για να γίνει κάτι τέτοιο θα πρέπει να ληφθούν υπόψιν όλες οι παραπάνω μορφές κινδύνου. Έτσι η επιλογή του ποσοστού συμμετοχής κάθε χρεογράφου γίνεται μια σύνθετη διαδικασία. Για την απλούστευση της διαδικασίας αυτής έχει αναπτυχθεί η θεωρία χαρτοφυλακίου η οποία, συνοπτικά, αφού εντοπίσει την αναμενόμενη απόδοση και τον κίνδυνο, διαφορετικών χαρτοφυλακίων, προτείνει είτε το χαρτοφυλάκιο ελαχίστου κινδύνου αν πρόκειται για χαρτοφυλάκια ίδιας απόδοσης-, είτε το χαρτοφυλάκιο μέγιστης απόδοσης αν η επιλογή γίνεται από χαρτοφυλάκια ίδιου κινδύνου. Για να γίνει κατανοητό αυτό θα πρέπει να εξεταστούν οι έννοιες της αναμενόμενης απόδοσης και του κινδύνου Αναμενόμενη Απόδοση Αρχικά θα εξετάσουμε την έννοια της απόδοσης ενός χρεογράφου. Η έννοια αυτή αφορά την ποσοστιαία μεταβολή μιας μετοχής εντός συγκεκριμένου χρονικού διαστήματος. Έτσι γίνεται αντιληπτό ότι αν τη χρονική στιγμή t η αξία ενός χρεογράφου είναι P t και την χρονική στιγμή t + t η αξία του ίδιου χρεογράφου είναι P t+t τότε η απόδοση του θα δίδεται από τον τύπο [1] r t = P t+t P t P t (2.1) Αν υπάρχουν από ιστορικά στοιχεία την αξία της μετοχής κάθε ημέρας για μια χρονική περίοδο τότε είναι δυνατόν να υπολογιστεί η αναμενόμενη απόδοση της μετοχής, για την επόμενη μέρα. Ο τρόπος για να γίνει αυτό είναι μέσα απο την μέση τιμή των αποδόσεων του χρεογράφου για το χρονικό διάστημα στο οποίο γίνεται η ανάλυση. Παρουσιάζεται 8

10 λοιπόν ο παρακάτω τύπος της αναμενόμενης απόδοσης : µ = T r t t=1 T (2.2) Προχωρώντας στην έννοια της αναμενόμενης απόδοσης ολόκληρου χαρτοφυλακίου στο οποίο το ποσοστό συμμετοχής του χρεογράφου i είναι w i τότε η αναμενόμενη απόδοση ολόκληρου του χαρτοφυλακίου διαμορφώνεται μέσα από τον παρακάτω τύπο: µ p = w i E(r i ) (2.3) όπου n είναι το σύνολο των επιλεχθέντων χρεογράφων Κίνδυνος σε Χαρτοφυλάκια Χρεογράφων Η ποσοτικοποίηση του κινδύνου ενός χρεογράφου αποτελεί ουσιαστικά την τιμή της τυπικής απόκλισης του. Η τυπική απόκλιση ορίζεται ως την τετραγωνική ρίζα της διακύμανσης, και πρακτικά αποτελεί την μεταβλητότητα γύρω από την μέση τιμή του. Σύμφωνα με όλα τα παραπάνω εκφράζεται από τον τύπο [1]: σ = T [r t µ] 2 t=1 T 1 (2.4) Η έκφραση αυτή μπορεί να επεκταθεί και σε χαρτοφυλάκια χρεογράφων μέσα απο τον τύπο : σ = wi 2 σ2 i + w i w j σ ij (2.5) Με την χρήση του παραπάνω μαθηματικού τύπου είναι εφικτή η ποσοτικοποίηση του κινδύνου σε χαρτοφυλάκια σύμφωνα με την τυπική απόκλιση, άλλα θα πρέπει να επισημανθεί ότι υπάρχουν και άλλα μέτρα κινδύνου, ορισμένα από τα οποία θα αναλυθούν στη συνέχεια. j=1 j i Αποτελεσματικά Χαρτοφυλάκια Ο όρος αποτελεσματικά χαρτοφυλάκια αναπτύχθηκε τη δεκαετία του 1950 απο τον Harry Markowitz [27], [30]. Ένα αποτελεσματικό χαρτοφυλάκιο λέγεται εκείνο το οποίο σε δεδομένο επίπεδο κινδύνου παρέχει τη μεγαλύτερη απόδοση και σε δεδομένη απόδοση έχει το μικρότερο κίνδυνο. Σύμφωνα με αυτό αυτόν τον ορισμό, ένας επενδυτής θα 9

11 F Αναμενόμες Αποδόσεις Α Β D E C Ρίσκο (Τυπική Απόκλιση) Σχήμα 2.1: Αποτελεσματικά Χαρτοφυλάκια επιλέξει από το σύνολο των δυνατών χαρτοφυλακίων, το χαρτοφυλάκιο εκείνο το οποίο: α) Του προσφέρει την μέγιστη προσδοκώμενη απόδοση για διάφορα επίπεδα κινδύνου και β) Του προσφέρει τον μικρότερο κίνδυνο για διάφορα επίπεδα προσδοκώμενης απόδοσης. Τα χαρτοφυλάκια που πληρούν αυτές τις προϋποθέσεις αναφέρονται ως αποτελεσματικά. Στο Σχήμα 2.1 παρουσιάζεται ένα παράδειγμα όπου, σχηματίζονται όλα τα δυνατά χαρτοφυλάκια όπως αυτά διαγράφονται βάσει των σχέσεων αναμενόμενης απόδοσης και κινδύνου. Το σύνολο των αποτελεσματικών χαρτοφυλακίων έχει την μορφή μιας παραβολής στους άξονες της αναμενόμενης απόδοσης (κάθετος άξονας) και του κινδύνου (οριζόντιος άξονας) Τα σημεία Α, Β, C, D, Ε, F, δείχνουν μερικά από τα χαρτοφυλάκια. Από όλα τα χαρτοφυλάκια πιο αποδοτικά είναι εκείνα που βρίσκονται στο βορειοδυτικότερο μέρος της καμπύλης των αποτελεσματικών χαρτοφυλακίων μεταξύ Α και F. Όλα τα άλλα χαρτοφυλάκια είναι αναποτελεσματικά. Για παράδειγμα, το A χαρτοφυλάκιο υπερέχει του Ε γιατί προσφέρει την ίδια απόδοση με μικρότερο κίνδυνο. Αντίστοιχα το C χαρτοφυλάκιο υπερέχει του D γιατί προσφέρει μεγαλύτερη απόδοση στο ίδιο επίπεδο κινδύνου. 10

12 2.3 Συμπληρωματικά Θέματα Υποθέσεις και περιορισμοί Μοντέρνας Θεωρίας Χαρτοφυλακίου Στη Μοντέρνα Θεωρία Χαρτοφυλακίου πραγματοποιείται μια σειρά υποθέσεων αναφορικά με την αγορά και τους επενδυτές [42] [33], Οι επενδυτές είναι λογικοί και συμπεριφέρονται με τέτοιο τρόπο ώστε να μεγιστοποιήσουν την ωφέλειά τους σύμφωνα με το διαθέσιμο κεφάλαιο. Οι επενδυτές έχουν ελεύθερη πρόσβαση σε δίκαιη και ορθή πληροφόρηση αναφορικά με το ρίσκο και τις αναμενόμενες αποδόσεις. Οι αγορές είναι αποτελεσματικές και απορροφούν την πληροφορία γρήγορα και τέλεια. Οι επενδυτές αποφεύγουν το ρίσκο μέσα από την προσπάθεια μεγιστοποίησης του κέρδους και ελαχιστοποίησης του κινδύνου. Οι επενδυτές βασίζουν τις αποφάσεις τους σύμφωνα με την αναμενόμενη απόδοση και κάποιο μαθηματικώς καθορισμένο μέτρο κινδύνου. Οι επενδυτές προτιμούν υψηλότερες αποδόσεις σε σχέση με χαμηλότερες αποδόσεις σε δεδομένο επίπεδο ρίσκου. Στην βιβλιογραφία όμως έχει αναφερθεί ότι αρκετές από τις υποθέσεις αυτές δεν ισχύουν, όπως η λογική των επενδυτών όπου δείχνουν συχνά να προτιμούν χαρτοφυλάκια διαφορετικά από αυτά των αναλύσεων [8] [21]. Επιπλέον η πολυπλοκότητα αυξάνεται όσο μεγαλώνει το πρόβλημα, καθιστώντας την επίλυσή του εξαιρετικά δύσκολη έως και αδύνατη. Τέλος, η μοντέρνα θεωρία χαρτοφυλακίου δεν λαμβάνει υπόψιν την μοναδικότητα του κάθε επενδυτή, και τους λαμβάνει όλους σαν ένα σώμα, αδιαφορώντας για την συμπεριφορά που μπορεί να έχει ο καθένας από αυτούς. Έτσι η διαφορά θεσμικών και μη θεσμικών επενδυτών μπορεί να οδηγήσει σε αξίες πολύ μεγαλύτερες από τις πραγματικές, λόγω αγελαίας συμπεριφοράς της δεύτερης κατηγορίας επενδυτών, κάτι που οδηγεί σε συστηματική υπερτίμηση των χρηματιστηριακών αξιών [26] Πολυκριτήριος Προγραμματισμός στη Βελτιστοποιήση Χαρτοφυλακίου Ως πολυκριτήριος προγραμματισμός ορίζεται η επέκταση του κλασσικού μαθηματικού προγραμματισμού όπου μια σειρά απο αντικειμενικές συναρτήσεις βελτιστοποιούνται. Σε αυτό το είδος προγραμματισμού η βέλτιστη λύση δεν έχει την ίδια έννοια με αυτή 11

13 του κλασσικού μαθηματικού προγραμματισμού, αφού οι πολλαπλές αντικειμενικές συναρτήσεις έχουν αντικρουόμενο χαρακτήρα. Έτσι υπάρχει αδυναμία στην εύρεση λύσεως η οποία να βελτιστοποιεί ταυτόχρονα όλες τις αντικειμενικές συναρτήσεις που αποτελούν το πρόβλημα. Γίνεται κατανοητό ότι στόχος είναι να βρεθεί μια κατάλληλη συμβιβαστική λύση. Το αποτελεσματικό σύνολο αποτελείται από λύσεις, οι οποίες δεν κυριαρχούνται από οποιαδήποτε άλλη εφικτή λύση κάποιου από τα κριτήρια. Η ύπαρξη πολλαπλών κινδύνων κατά την βελτιστοποίηση χαρτοφυλακίων και η ανάγκη εύρεσης λύσεων οι οποίες θα έχουν λάβει υπόψιν πέρα του ενός μέτρου κινδύνου, οδήγησε τη χρήση του πολυκριτήριου προγραμματισμού για την βελτιστοποίηση χαρτοφυλακίων.τα θεμελιώδη μοντέλα ανάλυσης, που χρησιμοποιούνται συνήθως στην πράξη, τονίζουν ότι οι τιμές των μετοχών εξαρτώνται από την ευρωστία του αποθεματικού της εταιρείας και την ικανότητά της να πληρώσει τα μερίσματα. Αυτό είναι ένα επιπλέον πρόβλημα πολυκριτήριας ανάλυσης γιατί για τη λύση του πρέπει να εκτιμήσουμε την αποδοτικότητα της επιχείρησης, το επίπεδο του χρέους της (βραχυπρόθεσμα και μακροπρόθεσμα), καθώς και η ποιότητα της διαχείρισης. Τέλος, στην πράξη, ο επενδυτής έχει μια προσωπική στάση και ειδικούς στόχους. Στην βιβλιογραφία έχει περιγραφεί αναλυτικά η ανάγκη για αυτού του είδους προγραμματισμό στην περίπτωση της βελτιστοποίησης χαρτοφυλακίων [43] [44] [38] [11] [37]. Μέσα από τον πολυκριτήριο προγραμματισμό είναι δυνατή η καλύτερη μελέτη του επενδυτή ο οποίος υπόκειται σε κάποιον κίνδυνο μια συγκεκριμένη χρονική στιγμή, αντίθετα από την κλασσική θεωρία που επιβάλλει κάποιον κανόνα αναφορικά με την συμπεριφορά του [15] Aξία σε κίνδυνο (VaR) Στην κλασσική θεωρία χαρτοφυλακίου ο κίνδυνος ορίζεται από τη μεταβλητότητα των αποδόσεων μιας επένδυσης. Τις τελευταίες δύο δεκαετίες όμως έχει δοθεί ιδιαίτερη έμφαση στη χρήση μέτρων κινδύνων που εστιάζουν στις αναμενόμενες ζημίες μιας επένδυσης, με στόχο να βοηθήσουν στο σχεδιασμό επενδυτικών στρατηγικών που παρέχουν μεγαλύτερη ασφάλεια σε ακραία αρνητικά ενδεχόμενα. Το πιο δημοφιλές μέτρο που έχει αναπτυχθεί στα πλαίσια αυτά είναι η αξία σε κίνδυνο (Value at Risk, VaR), η οποία χρησιμοποιείται πλέον εκτεταμένα από επενδυτές αλλά και εποπτικούς φορείς. Η VaR αναπτύχθηκε ώστε να αποτελέσει ένα κατανοητό και γενικό μέτρο κινδύνου που μπορεί να χρησιμοποιηθεί για οποιαδήποτε επενδυτική θέση (απλής ή σύνθετης) αλλά και γενικά σε κάθε πλαίσιο που εμπλέκονται χρηματοοικονομικοί κίνδυνου κάθε τύπου. Όταν πρόκειται κανείς να υπολογίσει την τιμή της VaR για μια συγκεκριμένη επένδυση, ουσιαστικά πρόκειται να απαντήσει στην εξής απλή ερώτηση. «Ποια είναι η μέγιστη ζημία που μπορεί να υπάρξει λόγω της επένδυσης, σε ένα δεδομένο διάστημα εμπιστοσύνης» [17]. Το διάστημα εμπιστοσύνης, καθορίζει το εύρος των εκτιμήσεων ανάλογα με το επιθυμητό 12

14 βαθμό στατιστικής βεβαιότητας. Για την περίπτωση της διαχείρισης χαρτοφυλακίων χρεογράφων το όριο που επιλέγεται συνήθως κυμαίνεται σε επίπεδα άνω του 90%. Για διαστήµατα 90%, 95% και 99% οι εκτιμήσεις του κινδύνου αναφέρονται ως VaR90, VaR95 καιvar99 αντίστοιχα. Για να προσδιοριστεί η οριακή απόδοση r απαιτείται η γνώση της κατανομής πιθανότητας των αποδόσεων. Η ανάλυση μπορεί να απλοποιηθεί σημαντικά θεωρώντας ότι η απόδοση ακολουθεί κανονική κατανομή με μέση τιμή µ και τυπική απόκλιση σ, όπως παρουσιάζεται γραφικά στο Σχημα 2.2. Στην πράξη ο υπολογισμός της VaR γίνεται μέσω σύνθετων υπολογιστικών διαδικασιών που βασίζονται σε προσομοιώσεις Monte Carlo, οι οποίες επιτρέπουν την εκτίμηση της κατανομής των αποδόσεων. Ο υπολογισμός της VaR σε χαρτοφυλάκια μπορεί να πραγματοποιηθεί γνωρίζοντας την μέγιστη ζημία P = P Pt σε χρονικό ορίζοντα t με επίπεδο εμπιστοσύνης 1 α, ώστε η ζημία Pt να υπολογιστεί ως την πιθανότητα P r( P P ) = α. Γνωρίζοντας οτι: r t = P t+t P t P t από προηγούμενο κεφάλαιο μπορεί να γραφεί ότι P = rp (2.6) Επομένως: P r(rp r P ) = α P r(r r ) = α (2.7) Θεωρώντας, όπως αναφέρθηκε παραπάνω ότι οι αποδόσεις ακολουθούν κανονική κατανομή με μέση τιμή µ και τυπική απόκλιση σ η (2.7) θα μετασχηματιστεί σε P r(r r ) = α P r(z Z = r µ ) = α (2.8) σ Η τιμή του Z μπορεί εύκολα να υπολογιστεί από τους πίνακες της κανονικής κατανομής, για 1 α = 95%, Z = 1.65, άρα το r υπολογίζεται ως : r = µ + Zσ (2.9) άρα και η VaR υπολογίζεται ως V ar = P = r P = ( µ + Z σ)p (2.10) Η παραπάνω σχέση για την Αξία σε Κίνδυνο εκφράζει τη ζημία σε απόλυτους όρους, αλλά υπάρχει και ο υπολογισμός σε σχετικούς όρους που απλοποιεί τους υπολογισμούς και δίδει την ίδια πληροφορία. Έτσι η σχετική αξία σε κίνδυνο είναι : V ar = (r P µp ) = (µp + Z σp µp ) = Z σp (2.11) 13

15 Παρατηρεί κανείς παραπάνω οτι απαιτείται μόνο ο προσδιορισμός της τυπικής απόκλισης για τον προσδιορισμό της VaR υποθέτωντας πάντα ότι η κατανομή των αποδόσεων είναι κανονική [17]. Μέση Τιμή Τυπική Απόκλιση Πιαθανότητα VaR Ζημίες\Κέρδη Σχήμα 2.2: Αξία σε Κίνδυνο [1] 14

16 Κεφάλαιο 3 Βελτιστοποίηση επενδυτικών χαρτοφυλακίων Μετά την θεωρητική ανάλυση των εννοιών Αναμενόμενη Απόδοση, Κίνδυνος, Αποτελεσματικό Χαρτοφυλάκιο,Αξία σε Κίνδυνο, σε αυτό το κεφάλαιο θα παρουσιασθούν και θα μελετηθούν και άλλα μοντέλα που αναπτύχθηκαν για την μέτρηση του κινδύνου. Θα παρουσιασθούν επίσης και συμπληρωματικά μοντέλα, τα οποία ουσιαστικά προσφέρουν ρεαλιστικότερες αναλύσεις και μοντελοποιούν καλύτερα την πραγματικότητα [16]. Καθένα από αυτά χρησιμοποιεί κάποιο διαφορετικό μαθηματικό τύπο για την μέτρηση του κινδύνου. 3.1 Μοντέλο Μέσου - Διακύμανσης Το συγκεκριμένο μοντέλο βελτιστοποίησης επενδυτικών χαρτοφυλακίων αποτέλεσε την αρχή για την σύγχρονη θεωρία χαρτοφυλακίων και υπήρξε ο ακρογωνιαίος λίθος για την μελέτη του κινδύνου σε χρεόγραφα. Χρησιμοποιείται ακόμη λόγω απλότητας και καλύτερης φυσικής κατανόησης των όρων του, όμως η τετραγωνική του φύση το κάνει δύσκολο στην επίλυσή του για την εύρεση βέλτιστων χαρτοφυλακίων [23] σε σχέση με μοντέλα που είναι γραμμικά και θα αναλυθούν εκτενέστερα παρακάτω. Στην περίπτωση του μοντέλου αυτού έστω οτι υπάρχουν n χρεόγραφα. Κάθε χρεόγραφο i έχει αναμενόμενη απόδοση µ i, η διακύμανση των αποδόσεων του συμβολίζεται ως σi 2, ενώ σ ij είναι η συν-διακύμανση των αποδόσεών του σε σχέση με ένα άλλο χρεό- 15

17 γραφο j. Αν R είναι η επιθυμητή απόδοση του χαρτοφυλακίου τότε: min Υ.Π σ ij w i w j, (3.1) j=1 w i µ i R, (3.2) w i = 1, (3.3) w i 0, i = 1, 2, 3...n (3.4) Αυτό είναι ένα πρόβλημα τετραγωνικού προγραμματισμού, και ως εκ τούτου η επιλυσιμότητά του προβλημάτιζε παλαιότερα. Σήμερα όμως, τα διαθέσιμα υπολογιστικά εργαλεία επιτρέπουν τη λύση του παραπάνω τετραγωνικού προγράμματος ακόμα και για δεδομένα μεγάλων διαστάσεων [23]. 3.2 Μοντέλο Μέσου - ημί-διακύμανσης Μια εναλλακτική στο πρόβλημα της βελτιστοποίησης χαρτοφυλακίου με χρήση της γενικής διακύμανσης είναι η χρήση του όρου της μέσης ημι-διακύμανσης, που προτάθηκε από τον Markowitz [30], [28]. Επειδή ένας επενδυτής ανησυχεί για την υποαπόδοση αντί για την υπεραπόδοση, η ήμι-διακύμανση είναι ένα πιο κατάλληλο μέτρο κινδύνου από τη διακύμανση.η διαφορά του είναι ότι η ήμι-διακύμανση μετρά μόνο προς τα κάτω απόκλιση, όχι άνω και κάτω αποκλίσεις όπως η διακύμανση. To μοντέλο αυτό επιδιώκει να εντοπίσει βέλτιστα χαρτοφυλάκια λαμβάνοντας υπόψιν τις αναμενόμενες αποδόσεις του κάθε χρεογράφου καθώς και την ήμι-διακύμανση αυτών όπως αυτή αναπτύχθηκε παραπάνω [29]. Τα αποτελεσματικά χαρτοφυλάκια της επίλυσης αυτού του προβλήματος έχουν ελάχιστη ήμι-διακύμανση για μια δεδομένη αναμενόμενη απόδοση, και ανώτατες αναμενόμενες αποδόσεις για ένα δεδομένη ήμι-διακύμανση. Το σύνολο όλων των αποτελεσματικών χαρτοφυλάκια σχηματίζουν το αποτελεσματικό σύνορο στο γράφημα απόδοσης / ήμι-διακύμανσης. Το γραμμικό πρόβλημα ελαχιστοποίησης [23] που σχηματίζεται απο τα παραπάνω 16

18 είναι το εξής: min Υ.Π T zt 2, (3.5) t=1 w i = 1 (3.6) 1 (r ti µ i ) d t + z t = 0, T t = 1, 2,..., T, (3.7) w i µ i R, (3.8) w i 0, i = 1, 2, 3...n (3.9) Η παραπάνω μοντελοποίηση οδήγησε στην πρώτη μορφή χρήσης του κινδύνου επιδείνωσης ως μέτρου κινδύνου, που αν και υπολογιστικά δυσκολότερο σε περιπτώσεις όπου προστίθενται περαιτέρω περιορισμοί [14], είναι αρκετά δημοφιλείς μέθοδοι [24] όπως θα δειχθεί παρακάτω. 3.3 Υπό Συνθήκη Αξία σε Κίνδυνο Η υπό συνθήκη αξία σε κίνδυνο (Conditional Value at Risk, CVAR) αποτελεί επέκταση της αξίας σε κίνδυνο (VaR), με στόχο τη διαμόρφωση μιας καλύτερης εκτίμησης των ζημιών σε ακραία αρνητικές συνθήκες και την αντιμετώπιση ορισμένων θεωρητικών προβλημάτων της αξίας σε κίνδυνων [34]. Για συνεχείς κατανομές, CVAR ορίζεται ως η αναμενόμενη απώλεια στις περιπτώσεις εκείνες όπου οι απώλειες μιας επενδυτικής θέσης υπερβούν την αντίστοιχη VaR. Ωστόσο, για τις γενικές κατανομές, συμπεριλαμβανομένων των διακριτών κατανομών, η CVAR ορίζεται ως ο σταθμισμένος μέσος όρος της VaR και των ζημιών που αυστηρά υπερβαίνουν τη VaR [34]. Για γενικές κατανομές, η CVAR, έχει πιο ελκυστικές ιδιότητες από την VaR.H CVAR είναι υπο-πρόσθετική και κυρτή [34]. Επιπλέον,η CVAR διαθέτει όλες τις βασικές ιδιότητες ενός λογικού μέτρου κινδύνου, κάτι το οποίο δεν συμβαίνει με τη VaR, σύμφωνα με τον Artzner [3], [4]. Αν και η CVaR δεν έχει γίνει πλήρως αποδεκτή στην οικονομική βιομηχανία,η CVaR κερδίζει έδαφος στον ασφαλιστικό τομέα [12]. Η μαθηματική μοντελοποίηση της CVAR παρου- 17

19 σιάζεται ως εξής [2]: min η + 1 T d t, (3.10) T β t=1 Υ.Π w i = 1 (3.11) w i µ i R, (3.12) n + r ti w i + d t 0, (3.13) d t 0 t = 1, 2,..., T (3.14) w i 0, i = 1, 2, 3...n (3.15) Βελτιστοποιώντας τη CVaR ελαχιστοποιείται και η VaR, αφού ισχύει ότι CV ar V ar. Πέραν τούτου ένα ακόμα πλεονέκτημα της CVaR σε σχέση με την απλή VaR είναι το ότι μπορεί να βελτιστοποιηθεί με μεθόδους γραμμικού προγραμματισμού και έτσι η δημιουργία βέλτιστων χαρτοφυλακίων να γίνει μια διαδικασία επίλυσης ενός γραμμικού προβλήματος η οποία είναι σχετικά απλή στην κατανόηση και εύκολη στη χρήση αλλά και στην υλοποίηση [32]. 3.4 Μέση Απόλυτη Απόκλιση Οι δυσκολίες επίλυσης το μοντέλου του Markowitz και τον παραλλαγών του [35] [39] οδήγησε τους Konno και Yamazaki το 1988 να παρουσιάσουν ένα μοντέλο αποτελούμενο αποκλειστικά απο γραμμικούς περιορισμούς [20], το οποίο χρησιμοποιεί ως μέτρο κινδύνου την μέση απόλυτη απόκλιση (Mean Absolute Deviation, MAD). Ως μέση απόλυτη απόκλιση ορίζεται η μέση τιμή της απόλυτης απόκλισης από το μέσο των δεδομένων. Έτσι προτάθηκε το παρακάτω μέγεθος σαν μέτρο ρίσκου : MAD i = 1 T r it µ i Επεκτείνοντας το μέτρο κινδύνου για χαρτοφυλάκια μπορεί να παρατηρήσει κανείς οτι λόγω του απολύτου που εμπεριέχει το μέτρο κινδύνου το πρόβλημα που δημιουργείται δεν μπορεί να είναι γραμμικό. Όμως εύκολα μπορεί να γίνει τέτοιο προσθέτοντας μια περαιτέρω μεταβλητή. Έτσι το πρόβλημα που δημιουργείται προς επίλυση είναι το παρα- 18

20 κάτω: min Υ.Π T y t, (3.16) t=1 w i [r ti µ i ] + y t 0 (3.17) w i [r it µ i ] y t 0 (3.18) w i µ i R, (3.19) w i = 1 (3.20) y t 0 t = 1, 2, 3...T (3.21) w i 0, i = 1, 2, 3...n (3.22) Η παραπάνω μοντελοποίηση βοηθάει στην εξέταση μεγαλύτερου αριθμού χρεογράφων λόγω της ευκολίας στην επίλυση του γραμμικού προβλήματος καθώς επίσης και στην πρόσθεση περιορισμών που το κάνουν ρεαλιστικότερο [2] 3.5 Μοντέλο Πολλαπλών Αποκλίσεων Το μοντέλο MAD που παρουσιάστηκε προηγουμένως παρά την απλότητά του και το χαμηλό υπολογιστικό του φόρτο, δεν τιμωρεί μεγάλες αποκλίσεις που τυχόν παρουσιάζονται [31]. Έτσι προτάθηκε μια διαφορετική μορφή του μοντέλου, η οποία θα λαμβάνει υπόψιν της τέτοιες αποκλίσεις και θα προσφέρει καλύτερη μοντελοποίηση στην επιλογή αποφυγής του κινδύνου. Η επέκταση αυτή ονομάστηκε m-mad όπου ως m συμβολίζεται το πλήθος των αποκλίσεων ανώτερης τάξης που λαμβάνονται υπόψη για τη μοντελοποίηση του επενδυτικού κινδύνου. Έτσι σαν μοντελοποίηση στην επέκταση του προηγούμε- 19

21 νου μοντέλου διαμορφώνεται το παρακάτω γραμμικό πρόγραμμα: min Υ.Π m z j λ j, (3.23) j=1 z 0 R (3.24) z 0 w i µ i = 0, (3.25) T z j + T d tj = 0 j = 1,..m, (3.26) t=1 j 1 d tj + z k + k=0 r it w i 0, t = 1, 2,..., T, j = 1,..., m, (3.27) w i = 1 (3.28) d tj 0 t = 1,...T, j = 1...m (3.29) w i 0, i = 1, 2, 3...n (3.30) Στη διατύπωση αυτή, η μεταβλητή απόφασης z 0 ορίζει την αναμενόμενη απόδοση του χαρτοφυλακίου, η μεταβλητή z 1 τη μέση απόλυτη αρνητική απόκλιση των αποδόσεων του χαρτοφυλακίου σε σχέση με την αναμενόμενη απόδοσή του, ενώ οι υπόλοιπες μεταβλητές z 2,..., z m αντιστοιχούν σε υψηλότερης τάξης αρνητικές αποκλίσεις σε σχέση με την αναμενόμενη απόδοση και την απόκλιση z 1 : { { }} j 1 z j = E max µ i z k R p, 0, j = 2,..., m k=1 όπου ως E συμβολίζεται η μέση τιμή και ως R p η απόδοση ενός χαρτοφυλακίου. Αυτές οι αποκλίσεις διαφορετικών τάξεων σταθμίζονται στην αντικειμενική συνάρτηση με συντελεστές λ 1,..., λ m 0, ανάλογα με σημαντικότητα που τους αποδίδει ο επενδυτής. Σε σχέση με το μοντέλο MAD, η παραπάνω μοντελοποίηση έχει μεγαλύτερες διαστάσεις και υπολογιστική πολυπλοκότητα, αλλά επειδή το μοντέλο βασίζεται σε μια διατύπωση γραμμικού προγραμματισμού, παραμένει υπολογιστικά απλούστερο σε σχέση με τετραγωνικά μοντέλα που βασίζονται στη διακύμανση και την ήμι-διακύμανση [23] 3.6 Μέση Διαφορά Gini Το 1982 παρουσιάστηκε ένα μοντέλο βελτιστοποίησης χαρτοφυλακίων, στο οποίο ως μέτρο κινδύνου χρησιμοποιείται η μέση διαφορά Gini (Gini mean difference, GMD) [45], 20

22 με σκοπό αφενός την δημιουργία ενός γραμμικού μοντέλου έναντι του Markowitz καθώς επίσης και να αντιμετωπίσει το πρόβλημα όπου το αποτελεσματικό σύνολο μπορεί να εμπεριέχει χαρτοφυλάκια που χαρακτηρίζονται από χαμηλό ρίσκο αλλά και πολύ χαμηλές αποδόσεις [23].Το μοντέλο αυτό λαμβάνει σαν μέτρο κινδύνου το μέση διαφορά του Gini η οποία ορίζεται ως εξής: 1 2 T t =1 t =1 T y t y t Είναι αντιληπτό οτι το μοντέλο βελτιστοποίησης χαρτοφυλακίων που σχηματίζεται είναι: min T t =1 t t d t t, (3.31) Υ.Π d t t 0, t, t = 1, 2,..., T, t t, (3.32) d t t (r it r it )w i, t, t = 1, 2,..., T, t t, (3.33) w i = 1 (3.34) w i µ i R (3.35) w i 0, i = 1, 2, 3...n (3.36) Το θετικό που παρουσιάζει το παρόν μοντέλο σε σχέση με το μοντέλο του Markowitz είναι εναλλαξιμότητα: η GMD έχει δύο συντελεστές συσχέτισης να σχετίζονται με αυτήν, και η μεταξύ τους διαφορά είναι ευαίσθητη στην εναλλαξιμότητα μεταξύ οριακών κατανομών [45]. Όμως λόγω της φύσης της μέσης διαφοράς του Gini ο υπολογιστικός φόρτος της βελτιστοποίησης χαρτοφυλακίων με αυτή τη μέθοδο είναι αυξημένος [22]. 3.7 Mοντέλο Μinimax Το τελευταίο από τα κύρια μοντέλα βελτιστοποίησης χαρτοφυλακίου χρησιμοποιεί ένα minimax κριτήριο επιλογής [46], το οποίο ορίζεται από τη χειρότερη απόδοση του χαρτοφυλακίου σε μια σειρά χρονικών περιόδων. Η πρακτική σημασία αυτού μέτρου είναι ότι ένας επενδυτής επιθυμεί να μεγιστοποιήσει τη χειρότερη πιθανή απόδοση του χαρτοφυλακίου, δηλαδή να περιορίσει τη μέγιστη απώλεια που μπορεί να συμβεί. Το αντίστοιχο 21

23 πρόβλημα βελτιστοποίησης χαρτοφυλακίου παρουσιάζεται παρακάτω ως [41]: max M P, (3.37) Υ.Π w i r ti M P, (3.38) w i = 1, (3.39) w i µ i R (3.40) w i 0, για i = 1..n (3.41) Η απλότητα του μοντέλου, το κάνει εύκολα επιλύσιμο σαν γραμμικό πρόβλημα και είναι εύκολο να προστεθούν περαιτέρω περιορισμοί οι οποίοι θα δώσουν ρεαλισμό στις αναλύσεις [46]. 3.8 Συμπληρωματικά Μοντέλα Σε πραγματικές συνθήκες όπου οι επενδυτές εξετάζουν χαρτοφυλάκια που πληρούν διαφορετικά ρεαλιστικά χαρακτηριστικά όπως ελάχιστες παρτίδες συναλλαγών και κόστος των συναλλαγών, η επιλυσιμότητα Γραμμικών μοντέλων γίνεται μια κρίσιμη πτυχή. Ακόμη και αν η λύση των τετραγωνικών μοντέλων του Markowitz και το Semi-Variance έχει αντιμετωπιστεί για περιορισμούς πλήθους μετοχών και ελαχίστων παρτίδων συναλλαγών [9] [2], η υπολογιστική πρόκληση για την επίλυση των μεγάλων πραγματικών προβλημάτων χαρτοφυλακίου δικαιολόγησε μια μακρά παράδοση στη βιβλιογραφία του μικτού ακέραιου προγραμματισμού για επιλογή χαρτοφυλακίου με πραγματικά χαρακτηριστικά [6] [10] [18] [19] [25]. Τα μοντέλα που θα παρουσιαστούν παρακάτω, ουσιαστικά επεκτείνουν τα βασικά μοντέλα βελτιστοποίησης χαρτοφυλακίου που παρουσιάστηκαν παραπάνω και ως συνέπεια έχουν την αύξηση σε πολυπλοκότητα και σε δυσκολία επίλυσης. Όμως οι αναλύσεις που πραγματοποιούν είναι πιο κοντά στην πραγματικότητα και οι παράμετροί τους μπορούν να προσαρμοστούν ανάλογα με τη χρηματαγορά και τις απαιτήσεις του επενδυτή. Οι περιορισμοί που θα παρουσιαστούν είναι : Περιορισμοί πληθυσμού μετοχών. Ο επενδυτής επιλέγει το μέγιστο αριθμό μετοχών που θέλει να επενδύσει. Περιορισμός ελαχίστων παρτίδων συναλλαγών. Ο επενδυτής ουσιαστικά στρογγυλοποιεί τα ποσοστά που επενδύει, λόγω περιορισμών της χρηματαγοράς. Περιορισμοί επιβάρυνσης συναλλαγών. Ορισμένες χρηματαγορές έχουν ορίσει δια- 22

24 φορετική προμήθεια συναλλαγής για διαφορετικά επενδυόμενα ποσά, παράμετρος που ο επενδυτής πρέπει να συνυπολογίσει σε κάθε αναπροσαρμογή ενός χαρτοφυλακίου που ήδη διαθέτει. Παρακάτω παρουσιάζονται αναλυτικότερα το κάθε ένα από αυτά τα συμπληρωματικά μοντέλα ξεχωριστά Πλήθος χρεογράφων σε ένα χαρτοφυλάκιο Μία από τις βασικές υποθέσεις της θεωρίας χαρτοφυλακίου είναι ότι οι επενδυτές μπορούν να έχουν στην κατοχή τους καλά διαφοροποιημένα χαρτοφυλάκια. Ωστόσο, υπάρχουν ενδείξεις ότι οι επενδυτές συνήθως κατέχουν μόνο ένα μικρό αριθμό χρεογράφων. Οι ατέλειες της αγοράς όπως είναι το σταθερό κόστος των συναλλαγών παρέχουν μία από τις πιθανές εξηγήσεις για την επιλογή των ελάχιστα διαφοροποιημένων χαρτοφυλακίων [40]. Επιπλέον η ανάγκη να αποφευχθεί το κόστος της παρακολούθησης και εκ νέου στάθμισης του χαρτοφυλακίου οδηγεί τους επενδυτές στην κοινή πρακτική του περιορισμού του αριθμού των τίτλων (πληθυσμός χρεογράφων χαρτοφυλακίου) που μπορεί να επιλεγεί σε ένα χαρτοφυλάκιο. Περιορισμός Ο περιορισμός για το πλήθος των χρεογράφων σε ένα χαρτοφυλάκιο μπορεί να εκφραστεί είτε ως αυστηρή ισότητα ή ως ανισότητα επιβάλλοντας ότι ο αριθμός των επιλεγμένων τίτλων δεν μπορεί να είναι μεγαλύτερος από ένα προκαθορισμένο αριθμό. Η πρόσθεση του παραπάνω περιορισμού γίνεται σε όλα τα προαναφερθέντα μοντέλα προσθέτοντας μια μεταβλητή x i που υπόκειται στους παρακάτω περιορισμούς : x i k, (3.42) 1 x i = 0, (3.43) l i x i w i u i x i (3.44) Η μεταβλητή x i είναι όπως φαίνεται μια δυαδική μεταβλητή η οποία δείχνει ουσιαστικά αν συμμετέχει η μετοχή στο χαρτοφυλάκιο. Το k υποδεικνύει τον μέγιστο αριθμό επιθυμητών μετοχών ενώ ως l i και u i συμβολίζονται τα κάτω και άνω όρια, αντίστοιχα, του ποσοστού συμμετοχής w i του χρεογράφου. Θα πρέπει να αναφερθεί ότι ο παραπάνω περιορισμός αποτελεί μια συνέχεια του περιορισμού ελάχιστης συμμετοχής, όπως αυτός αναπτύχθηκε από τους Beale και Forrest [16],δηλαδή προσθέτοντας τους μόνο τους δύο τελευταίους περιορισμούς. 23

Πολυκριτήρια βελτιστοποίηση αποτελεσµατικών χαρτοφυλακίων : Μεθοδολογία και εφαρµογή στο Χρηµατιστήριο Αξιών Αθηνών

Πολυκριτήρια βελτιστοποίηση αποτελεσµατικών χαρτοφυλακίων : Μεθοδολογία και εφαρµογή στο Χρηµατιστήριο Αξιών Αθηνών ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Deleted: ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ Πολυκριτήρια βελτιστοποίηση αποτελεσµατικών χαρτοφυλακίων : Μεθοδολογία και εφαρµογή στο Χρηµατιστήριο Αξιών Αθηνών Formatted: Justified

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

Σύγχρονες Μορφές Χρηματοδότησης

Σύγχρονες Μορφές Χρηματοδότησης Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στη Διοίκηση Επιχειρήσεων (M.B.A.)

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στη Διοίκηση Επιχειρήσεων (M.B.A.) Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στη Διοίκηση Επιχειρήσεων (M.B.A.) Μάθημα Επιλογής Γενικό ΜΒΑ (Γ Εξάμηνο) Ανάλυση Επενδύσεων και Διοίκηση Χαρτοφυλακίου Εισηγητές: Αθανάσιος Γ. Νούλας Καθηγητής

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Επενδυτικός κίνδυνος

Επενδυτικός κίνδυνος Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή 1 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή Η ανάλυση ευαισθησίας μιάς οικονομικής πρότασης είναι η μελέτη της επιρροής των μεταβολών των τιμών των παραμέτρων της πρότασης στη διαμόρφωση της τελικής απόφασης. Η ανάλυση

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

Εντατικό-πρακτικό 2-ήμερο εργαστήριο με χρήση ηλεκτρονικού υπολογιστή (Η/Υ) για την διαχείριση χαρτοφυλακίου & ανάλυση κινδύνου.

Εντατικό-πρακτικό 2-ήμερο εργαστήριο με χρήση ηλεκτρονικού υπολογιστή (Η/Υ) για την διαχείριση χαρτοφυλακίου & ανάλυση κινδύνου. Εισηγήτρια: Άρτεμις Παναγιωτοπούλου Διάρκεια Σεμιναρίου: 8 ώρες Εντατικό-πρακτικό 2-ήμερο εργαστήριο με χρήση ηλεκτρονικού υπολογιστή (Η/Υ) για την διαχείριση χαρτοφυλακίου & ανάλυση κινδύνου. Παρουσίαση

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Μάθημα: Διαχείριση Ρίσκου

Μάθημα: Διαχείριση Ρίσκου Μάθημα: Διαχείριση Ρίσκου Ενότητα 1: Διαχείριση Ρίσκου Διδάσκων: Συμεών Καραφόλας Τμήμα: Λογιστικής και Χρηματοοικονομικών 2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΜΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΒΙΩΣΙΜΟΤΗΤΑΣ ΤΩΝ ΟΤΑ

ΜΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΒΙΩΣΙΜΟΤΗΤΑΣ ΤΩΝ ΟΤΑ ΜΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΒΙΩΣΙΜΟΤΗΤΑΣ ΤΩΝ ΟΤΑ Σάνδρα Κοέν, Εύη Νεοφύτου Οικονομικό Πανεπιστήμιο Αθηνών Μιχάλης Δούμπος, Κωσταντίνος Ζοπουνίδης Πολυτεχνείο Κρήτης S. Cohen, M. Doumpos,

Διαβάστε περισσότερα

CAPM. Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές

CAPM. Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές CAPM Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές 1 Το Capital Asset Pricing Model & Tο Κόστος Κεφαλαίου

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο. Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο. Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών Ορισµός

Διαβάστε περισσότερα

Συναλλαγματικές ισοτιμίες και επιτόκια

Συναλλαγματικές ισοτιμίες και επιτόκια Κεφάλαιο 2 Συναλλαγματικές ισοτιμίες και επιτόκια 2.1 Σύνοψη Στο δεύτερο κεφάλαιο του συγγράμματος περιγράφεται αρχικά η συνθήκη της καλυμμένης ισοδυναμίας επιτοκίων και ο τρόπος με τον οποίο μπορεί ένας

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ. Ενότητα 2: ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ. Ενότητα 2: ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 2: ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process

Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process Αναλυτική Ιεραρχική ιαδικασία Η Αναλυτική Ιεραρχική ιαδικασία ανήκει στην κατηγορία των μεθόδων συγκρίσεων σε ζεύγη και αναπτύχθηκε στα τέλη της δεκαετίας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ Υπό ΘΕΟΔΩΡΟΥ ΑΡΤΙΚΗ, ΑΝΑΣΤΑΣΙΟΥ ΣΟΥΓΙΑΝΝΗ ΚΑΙ ΓΕΩΡΓΙΟΥ ΑΡΤ1ΚΗ Ανωτάτη Βιομηχανική Σχολή Πειραιά 1. ΕΙΣΑΓΩΓΗ Τα συνήθη κριτήρια αξιολόγησης επενδύσεων βασίζονται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Αβεβαιότητα (Uncertainty)

Αβεβαιότητα (Uncertainty) Αβεβαιότητα (Uncertainty) Παράδειγμα κατασκευής μοντέλου προβλήματος στο Excel και διαχείρισης της αβεβαιότητας που το ίδιο το πρόβλημα εμπεριέχει. Ανάλυση προβλήματος Βήμα 1: Καθορισμός του προβλήματος

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 4: ΘΕΩΡΙΑ ΤΗΣ ΚΕΦΑΛΑΙΑΓΟΡΑΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 13

Περιεχόμενα. Πρόλογος... 13 Περιεχόμενα Πρόλογος... 3 Κεφάλαιο : Εισαγωγή... 9. Είδη των προβλημάτων λήψης αποφάσεων... 9.2 Το πρόβλημα της ταξινόμησης και η σημασία του... 24.3 Γενικό περίγραμμα των μεθοδολογιών ταξινόμησης... 29.4

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

www.oleclassroom.gr ΘΕΜΑ 4 Στον πίνακα που ακολουθεί παρατίθενται οι κατανομές των αποδόσεων δύο μετοχών. Πιθανότητα (π ) 0,5 0,5 0,5 0,5 r Α 10% 6% 13% 3% r Β 0% 5% -1% 16% Α. Να υπολογιστεί η εκτιμώμενη

Διαβάστε περισσότερα

Παράδειγµα (Risky Business 1)

Παράδειγµα (Risky Business 1) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 3 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Συµπεράσµατα για την αβεβαιότητα Θέµατα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΔΕΟ 31 Χρηµατοοικονοµική Διοίκηση Ακαδηµαϊκό Έτος: 2013-2014 Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Asset & Wealth Management Α.Ε.Π.Ε.Υ.

Asset & Wealth Management Α.Ε.Π.Ε.Υ. Asset & Wealth Management Α.Ε.Π.Ε.Υ. Πληροφορίες εποπτικής φύσεως σχετικά με την κεφαλαιακή επάρκεια της NEW MELLON ASSET AND WEALTH MANAGEMENT Α.Ε.Π.Ε.Υ., τους κινδύνους που αναλαμβάνει καθώς και τη διαχείρισή

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ I student Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ Ινστιτούτο Bιώσιμης Κινητικότητας και Δικτύων Μεταφορών (ΙΜΕΤ)

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 Τρίτη Γραπτή Εργασία Γενικές οδηγίες για την εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει

Διαβάστε περισσότερα

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης 1.1. Τι είναι η Οικονομική της Διοίκησης 1.2. Τι παρέχει η οικονομική θεωρία στην Οικονομική της Διοίκησης 1.3. Οι σχέσεις της οικονομικής της

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μεταπτυχιακό Πρόγραμμα MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Οτιδήποτε δύναται να μετρηθεί, δύναται και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

H ΕΡΜΗΝΕΙΑ του ΔΕΙΚΤΗ P/BV

H ΕΡΜΗΝΕΙΑ του ΔΕΙΚΤΗ P/BV INVESTMENT RESEARCH & ANALYSIS JOURNAL H ΕΡΜΗΝΕΙΑ του ΔΕΙΚΤΗ P/BV βάσει των ΛΟΓΙΣΤΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ των ΕΙΣΗΓΜΕΝΩΝ ΕΤΑΙΡΙΩΝ στην ΕΛΛΗΝΙΚΗ ΚΕΦΑΛΑΙΑΓΟΡΑ Ο Πραγματικός Βαθμός Χρησιμότητας του Δείκτη στη Διαμόρφωση

Διαβάστε περισσότερα

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm MinusXLRequirements Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm Γενικό πλαίσιο Μια από τις πιο γνωστές και ευρέως διαδεδομένες εμπορικές εφαρμογές για τη διαχείριση λογιστικών φύλλων είναι το

Διαβάστε περισσότερα

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη.

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. 4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. Η μετατροπή μιας εντολής επανάληψης σε μία άλλη ή στις άλλες δύο εντολές επανάληψης, αποτελεί ένα θέμα που αρκετές φορές έχει εξεταστεί σε πανελλαδικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή..................................................................... 17 Κεφάλαιο 1 Εισαγωγή..................................................................... 23 1.1 Επίλυση προβλημάτων

Διαβάστε περισσότερα

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών κεφάλαιο 1 Βασικές Έννοιες Επιστήμη 9 1Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ Στόχοι Στόχος του κεφαλαίου είναι οι μαθητές: να γνωρίσουν βασικές έννοιες και τομείς της Επιστήμης. Λέξεις κλειδιά Επιστήμη

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ

ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Α. Εισαγωγή Όταν μια επιχείρηση έχει περίσσια διαθέσιμα, μπορεί να πληρώσει άμεσα το διαθέσιμο χρηματικό ποσό ως μέρισμα στους μετόχους, ή να χρηματοδοτήσει κάποια νέα επένδυση.

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Πανεπιστημίου Αθηνών 1 Ανάλυση Επενδύσεων και Διαχείριση

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ 5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Το μοντέλο που δημιουργήσαμε στο προηγούμενο εργαστήριο έχει βελτιωθεί εν μέρει ώστε να συμπεριλάβει και κάποιες δυνατότητες οι οποίες απαιτούν σχετικά εξειδικευμένες

Διαβάστε περισσότερα

Ρευστότητα και Συνέπεια. Σ. Ξανθόπουλος Αθήνα, 2010

Ρευστότητα και Συνέπεια. Σ. Ξανθόπουλος Αθήνα, 2010 Ρευστότητα και Συνέπεια Σ. Ξανθόπουλος Αθήνα, 2010 Περιεχόμενα Εισαγωγή Τίτλοι και Χαρτοφυλάκια Πολιτικές Ρευστότητα και Αξία Χαρτοφυλακίου Μέτρα Κινδύνου Revisited Κίνδυνος Ρευστότητας Ένας όρος τρεις

Διαβάστε περισσότερα

«ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS»

«ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS» «ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: 2006-2007 Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS» Στοιχεία Φοιτητή: Ζυγομήτρος Αθανάσιος Π 0473 thor4bp@gmal.com Υπεύθυνος Καθηγητής: Σίσκος Ι. Φεβρουάριος

Διαβάστε περισσότερα

Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων ΟΔΗΓΟΣ ΧΡΗΣΗΣ System Συμβουλευτική Α.Ε

Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων ΟΔΗΓΟΣ ΧΡΗΣΗΣ System Συμβουλευτική Α.Ε σχετικά με τον έλεγχο της καπνιστικής συνήθειας 1 22 Λογισμικές εφαρμογές καταγραφής και αξιοποίησης πληροφοριών σχετικά με τον έλεγχο της καπνιστικής συνήθειας Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το LINDO (Linear Interactive and Discrete Optimizer) είναι ένα πολύ γνωστό λογισµικό για την επίλυση προβληµάτων γραµµικού,

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Οικονομική Επιστήμη: Η κοινωνική επιστήμη που ερευνά την οικονομική δραστηριότητα

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

11.1.2 Κριτήρια αξιολόγησης επενδύσεων

11.1.2 Κριτήρια αξιολόγησης επενδύσεων Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft:

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Specisoft ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: NPV & IRR: Αξιολόγηση & Ιεράρχηση Επενδυτικών Αποφάσεων Από Αβραάμ Σεκέρογλου, Οικονομολόγo, Συνεργάτη της Specisoft Επισκεφθείτε το Management

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάπτυξη μιας προσαρμοστικής πολιτικής αντικατάστασης αρχείων, με χρήση

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

Η ΕΠΙΔΡΑΣΗ ΤΟΥ BRAND NAME ΣΤΗ ΔΙΑΔΙΚΑΣΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ ΕΤΑΙΡΙΩΝ

Η ΕΠΙΔΡΑΣΗ ΤΟΥ BRAND NAME ΣΤΗ ΔΙΑΔΙΚΑΣΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ ΕΤΑΙΡΙΩΝ INVESTMENT RESEARCH & ANALYSIS JOURNAL Η ΕΠΙΔΡΑΣΗ ΤΟΥ BRAND NAME ΣΤΗ ΔΙΑΔΙΚΑΣΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ ΕΤΑΙΡΙΩΝ H Ύπαρξη ενός Ισχυρού Brand Name Αποτελεί Ικανή Συνθήκη Βελτίωσης

Διαβάστε περισσότερα

O ΕΙΚΤΗΣ PRICE EARNINGS GROWTH (P.E.G.)

O ΕΙΚΤΗΣ PRICE EARNINGS GROWTH (P.E.G.) INVESTMENT RESEARCH & ANALYSIS JOURNAL O ΕΙΚΤΗΣ PRICE EARNINGS GROWTH (P.E.G.) Με την ευγενική χορηγία O δείκτης αποτίµησης που συνδυάζει το λόγο «Τιµή προς Κέρδη ανά Μετοχή» µε τους διαχρονικούς ρυθµούς

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Τρόποι χρήσης των ETFs

Τρόποι χρήσης των ETFs ΔΙΑΠΡΑΓΜΑΤΕΥΣΙΜΑ ΑΜΟΙΒΑΙΑ ΚΕΦΑΛΑΙΑ (Δ.Α.Κ.) (Exchange Traded Funds ETFs) Τρόποι χρήσης των ETFs Χρηματιστήριο Αθηνών A.E. Απρίλιος 2010 Σημαντική Παρατήρηση Το Χρηματιστήριο Αθηνών (ΧΑ) πιστεύει ότι οι

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΩΝ ΚΑΙ ΣΧΗΜΑΤΩΝ ΣΤΟ ΔΟΚΙΜΙΟ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: Μερικές χρήσιμες(;) υποδείξεις. Βασίλης Παυλόπουλος

ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΩΝ ΚΑΙ ΣΧΗΜΑΤΩΝ ΣΤΟ ΔΟΚΙΜΙΟ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: Μερικές χρήσιμες(;) υποδείξεις. Βασίλης Παυλόπουλος ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΩΝ ΚΑΙ ΣΧΗΜΑΤΩΝ ΣΤΟ ΔΟΚΙΜΙΟ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: Μερικές χρήσιμες(;) υποδείξεις Βασίλης Παυλόπουλος Διάγραμμα της παρουσίασης Πότε (δεν) χρειάζονται πίνακες και σχήματα σε μια ερευνητική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα