Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)"

Transcript

1 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό σκοπό την επιλογή της άριστης λύσης από ένα σύνολο εφικτών εναλλακτικών λύσεων με βάση κάποιο προκαθορισμένο κριτήριο. 5.. Είδη συνθηκών για τη Λήψη Αποφάσεων Υπάρχουν 3 τύποι συνθηκών για τη λήψη αποφάσεων:. Λήψη Αποφάσεων σε συνθήκες βεβαιότητας.. Λήψη Αποφάσεων σε συνθήκες ρίσκου. 3. Λήψη Αποφάσεων σε συνθήκες αβεβαιότητας. 5.. Λήψη Αποφάσεων σε συνθήκες ρίσκου Στην συγκεκριμένη περίπτωση έχουμε την πιθανοθεωρητική λήψη απόφασης. Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) Έστω ότι έχουμε τις εξής εναλλακτικές αποφάσεις : d, d,..., d n με αναμενόμενες καταστάσεις : s, s,..., s m. Ορίζουμε P ( ) την πιθανότητα πραγματοποίησης της αναμενόμενης κατάστασης P ( s ) P( s ) P( s ). Έστω ( ) + m = s j s j. Επομένως θα ισχύει V d i, s j το αναμενόμενο κέρδος που αντιστοιχεί στην απόφαση d όταν πραγματοποιηθεί η αναμενόμενη κατάσταση s. i j Το αναμενόμενο κέρδος που προκύπτει από την επιλογή της απόφασης d i ορίζεται ως εξής : m ( i) ( j) ( i ) EMV d = P s V d, s j για i =,,..., n. j= Το κριτήριο της αναμενόμενης χρηματικής τιμής ορίζεται ως : { ( ) ( )} EMV = max EMV d,..., EMV dn.

2 Β) Κριτήριο Προσδοκώμενης Τιμής Ιδεώδους Πληροφόρησης Expected Value of Perfect Information (EVPI) Η Προσδοκώμενη τιμή με ιδεώδη πληροφόρηση (expected value with perfect information) = EVwPI ορίζεται ως εξής: EVwPI = (Καλύτερη αμοιβή ή αποτέλεσμα για η φυσική κατάσταση) Χ (πιθανότητα ης φυσικής κατάστασης) + (Καλύτερη αμοιβή ή αποτέλεσμα για η φυσική κατάσταση) Χ (πιθανότητα ης φυσικής κατάστασης) + + (Καλύτερη αμοιβή ή αποτέλεσμα για την m φυσική κατάσταση) Χ (πιθανότητα της m φυσικής κατάστασης). Η προσδοκώμενη τιμή ιδεώδους πληροφόρησης (expected value of perfect information) = EVPI ορίζεται ως εξής: EVPI = EVwPI - maxemv Γ) Κριτήριο Προσδοκώμενης Απώλειας Ευκαιρίας Expected Opportunity Loss (EOL) Η απώλεια ευκαιρίας ( opportunity loss or regret )είναι η διαφορά μεταξύ του καλύτερου κέρδους ή αμοιβής για μια δεδομένη φυσική κατάσταση (state of nature ) και του πραγματικού κέρδους ή αμοιβής που ελήφθη από το συνδυασμό της δεδομένης εναλλακτικής απόφασης και της φυσικής κατάστασης. Δηλαδή είναι το ποσό που χάθηκε με το να μην εκλεγεί η καλύτερη εναλλακτική για μια δεδομένη φυσική κατάσταση. Η αναμενόμενη απώλεια ευκαιρίας που προκύπτει από την επιλογή της m d EOL( di) P ( s j) OL( di, s j) απόφασης ορίζεται ως εξής : i = για i =,,..., n. Το κριτήριο της αναμενόμενης απώλειας ευκαιρίας ορίζεται ως : { ( ) ( )} EOL = min EOL d,..., EOL dn. j= 5.. Λήψη Αποφάσεων σε συνθήκες αβεβαιότητας Το άτομο που παίρνει τις αποφάσεις δεν γνωρίζει τις πιθανότητες της ευνοϊκής ή της μη ευνοϊκής αγοράς. Μπορεί να πάρει την απόφασή του επιλέγοντας κάποιο από τα επόμενα 5 κριτήρια:. Maximax (Μεγιστοποίηση κέρδους)

3 . Maximin (Ελαχιστοποίηση ζημίας) 3. Κριτήριο του ρεαλισμού (Κριτήριο του Hurwicz) 4. Κριτήριο των ισοπίθανων φυσικών καταστάσεων (Κριτήριο του Laplace) 5. Minimax απώλεια (minimax regret, Ελαχιστοποίηση κόστους ευκαιρίας) 5.. ΔΙΑΤΥΠΩΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑΣ ΑΠΟΦΑΣΕΩΝ Η επίλυση των Προβλημάτων Θεωρίας Αποφάσεων θα γίνει με τη βοήθεια του προγράμματος QM for Windows. Στη γραμμή μενού επιλέγω MODULE και στη συνέχεια DECISION ANALYSIS. Άσκηση 5.. Ένας ιδιοκτήτης εργοστασίου επίπλων στη Χαλκίδα σκέφτεται να προχωρήσει στη λειτουργία ενός δεύτερου εργοστασίου στη Λαμία. Ο ιδιοκτήτης έχει 3 εναλλακτικές αποφάσεις : α) Να δημιουργήσει μεγάλο εργοστάσιο, β) να δημιουργήσει μικρό εργοστάσιο και γ) τίποτα από τα δύο (να μη δημιουργήσει το δεύτερο εργοστάσιο). Επίσης υπάρχουν δύο φυσικές καταστάσεις με πιθανότητα 0.5 αντίστοιχα : i) Ευνοϊκή αγορά και ii) μη ευνοϊκή αγορά. Τα αντίστοιχα κέρδη δίνονται παρακάτω : ΑΠΟΦΑΣΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΥΠΟΣ ΕΡΓΟΣΤΑΣΙΟΥ ΕΥΝΟΪΚΗ ΜΗ ΕΥΝΟΪΚΗ ΜΕΓΑΛΟ 00,000-80,000 ΜΙΚΡΟ 80,000-40,000 ΤΙΠΟΤΑ 0 0 ΠΙΘΑΝΟΤΗΤΕΣ α) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Χρηματικής Τιμής (EMV); β) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Απώλειας Ευκαιρίας (EOL); γ) Ποια είναι η Προσδοκώμενη Τιμή Ιδεώδους Πληροφόρησης (EVPI); 3

4 δ) Έστω ότι ο επιχειρηματίας επιθυμεί να αναθέσει σε μια εταιρεία έρευνας αγοράς την έρευνα της αγοράς επίπλων στη Λαμία. Η εταιρεία ζητά για τη συγκεκριμένη έρευνα το ποσό των 60,000. Τι θα συμβουλεύατε τον επιχειρηματία; Λύση α) Στο πρόγραμμα QM (DECISION ANALYSIS) επιλέγουμε New File και έπειτα Decision Tables. Στη συνέχεια : Αριθμός εναλλακτικών (Number of alternatives )=3 Αριθμός φυσικών καταστάσεων (Number of nature states) = Objective: Profits (maximize) Έπειτα εισάγουμε τα δεδομένα στον πίνακα όπως φαίνεται παρακάτω : State State Probabilities 0,5 0,5 ΜΕΓΑΛΟ ΜΙΚΡΟ ΤΙΠΟΤΑ 0 0 Στη συνέχεια επιλύουμε το πρόβλημα (Solve) και έχουμε την ακόλουθη λύση : Η μέγιστη Προσδοκώμενη Χρηματική Τιμή είναι 0,000 και επιτυγχάνεται από τη λειτουργία του μικρού εργοστασίου. Άρα ο ιδιοκτήτης θα προχωρήσει στη λειτουργία ενός μικρού εργοστασίου στη Λαμία. β) Ανοίγουμε το παράθυρο Regret or Opportunity Loss. Η τελευταία στήλη (Expected Regret) μας δείχνει την αναμενόμενη απώλεια ευκαιρίας για κάθε εναλλακτική απόφαση. Σύμφωνα με το κριτήριο επιλέγουμε τη μικρότερη, δηλ. 80,000, που αντιστοιχεί στην κατασκευή μικρού εργοστασίου. Ο πίνακας απώλειας ευκαιρίας είναι ο εξής: 4

5 ΑΠΟΦΑΣΕΙΣ ΠΙΝΑΚΑΣ ΑΠΩΛΕΙΑΣ ΕΥΚΑΙΡΙΑΣ ΚΑΤΑΣΤΑΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΤΥΠΟΣ ΕΡΓΟΣΤΑΣΙΟΥ ΜΕΓΑΛΟ ΜΙΚΡΟ ΤΙΠΟΤΑ ΕΥΝΟΪΚΗ 00,000= 0 00,000-00,000-80,000= 0,000 00,000-0= 00,000 ΜΗ ΕΥΝΟΪΚΗ 0-(-80,000) = 80,000 0-(-40,000)= 40,000 Μέγιστη Απώλεια Αναμενόμενη Απώλεια 80, , =90,000 0,000 0, , =80, = 0 00,000 00, =00,000 γ) Ανοίγουμε το παράθυρο Perfect Information. Το καλύτερο αποτέλεσμα για την πρώτη φυσική κατάσταση είναι 00,000. Το καλύτερο αποτέλεσμα για την δεύτερη φυσική κατάσταση είναι 0. Επομένως : EVwPI = 00, = 00,000. Άρα αν ο επιχειρηματίας είχε πλήρη πληροφόρηση, θα μπορούσε να περιμένει κατά μέσο όρο 00,000 αν η απόφαση θα μπορούσε να επαναληφθεί πολλές φορές. Η αναμενόμενη τιμή ιδεώδους πληροφόρησης είναι: EVPI = EVwPI EMV = 00,000 0,000 = 80,000. δ) Το μεγαλύτερο ποσό που θα μπορούσε να πληρώσει ο επιχειρηματίας για ιδεώδη πληροφόρηση είναι 80,000. Αυτό το ποσό αντιπροσωπεύει την αύξηση στην EMV με την πλήρη πληροφόρηση της εταιρείας ερευνών. Επομένως ο επιχειρηματίας έχει συμφέρον να συμβουλευτεί την εταιρεία ερευνών έναντι του ποσού των 60,000. Άσκηση 5.. Θεωρήστε την προηγούμενη άσκηση. Ποια απόφαση θα επιλεγεί σε συνθήκες αβεβαιότητας με βάση: α) Το κριτήριο Maximax (Μεγιστοποίηση κέρδους) β) Το κριτήριο Maximin (Ελαχιστοποίηση ζημίας) γ) Το κριτήριο του ρεαλισμού (Κριτήριο του Hurwicz) 5

6 δ) Το κριτήριο των ισοπίθανων φυσικών καταστάσεων (Κριτήριο του Laplace) ε) Το κριτήριο Ελαχιστοποίησης κόστους ευκαιρίας (minimax regret) Λύση α) Μεγάλο εργοστάσιο (00,000 ) β) Καμία εργοστασιακή μονάδα ( 0 ) γ) Το κριτήριο του ρεαλισμού είναι ένας σταθμικός τρόπος υπολογισμού της τιμής που αντιστοιχεί σε κάθε γραμμή του πίνακα αμοιβών. Συγκεκριμένα εκλέγεται αυθαίρετα ο συντελεστής αισιοδοξίας (α) όπου 0 α. Η εκλογή του συντελεστή είναι συνέπεια των προσωπικών αισθημάτων του ατόμου που παίρνει τις αποφάσεις. Αν α = τότε το κριτήριο του ρεαλισμού είναι ίδιο με το κριτήριο maximax και αν α = 0 είναι ίδιο με το κριτήριο maximin. Η τιμή που αντιστοιχεί σε κάθε γραμμή του πίνακα αμοιβών υπολογίζεται ως εξής: Γραμμικός Συνδυασμός = α (μεγαλύτερη τιμή στη γραμμή) + (-α) (μικρότερη τιμή στη γραμμή) Υποθέστε ότι α = Τότε έχουμε τον ακόλουθο πίνακα: ΑΠΟΦΑΣΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ Hurwicz ΤΥΠΟΣ ΕΡΓΟΣΤΑΣΙΟΥ ΕΥΝΟΪΚΗ ΜΗ ΕΥΝΟΪΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΜΕΓΑΛΟ 00,000-80,000 α = , , =4,000 ΜΙΚΡΟ 80,000-40,000 80, , =56,000 ΤΙΠΟΤΑ =0 Η μεγαλύτερη τιμή είναι 4,000 που αντιστοιχεί στο μεγάλο εργοστάσιο. δ) Το κριτήριο υποθέτει ότι όλες οι φυσικές καταστάσεις είναι ισοπίθανες. Στη συγκεκριμένη άσκηση συμπίπτει με το κριτήριο της προσδοκώμενης χρηματικής τιμής γιατί έχουμε ως δεδομένο ότι οι δύο φυσικές καταστάσεις είναι ισοπίθανες (0.50). ε) Ανοίγουμε το παράθυρο Regret or Opportunity Loss. Η στήλη Maximum regret περιλαμβάνει το μέγιστο της κάθε γραμμής δηλ. τη μέγιστη απώλεια ευκαιρίας κάθε εναλλακτικής. Η μικρότερη τιμή της στήλης είναι 0,000 και αντιστοιχεί στη δημιουργία μικρού εργοστασίου. 6

7 Άσκηση 5..3 Θεωρήστε την άσκηση 5... Κατασκευάστε ένα δένδρο απόφασης για το συγκεκριμένο πρόβλημα. Επιλέξτε την καλύτερη απόφαση με βάση το κριτήριο της προσδοκώμενης χρηματικής τιμής. Άσκηση 5..4 Υποθέστε ότι ένας λήπτης αποφάσεων που αντιμετωπίζει 4 εναλλακτικές αποφάσεις και 4 φυσικές καταστάσεις κατασκευάζει τον παρακάτω πίνακα κερδών: ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΑΠΟΦΑΣΕΙΣ 3 4 ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ Οι πιθανότητες εμφάνισης της κάθε φυσικής κατάστασης είναι αντίστοιχα: PK ( ) = 0.5, PK ( ) = 0., PK ( ) = 0., PK ( ) = α) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Χρηματικής Τιμής (EMV); β) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Απώλειας Ευκαιρίας (EOL); γ) Ποια είναι η βέλτιστη στρατηγική αποφάσεων αν είναι διαθέσιμη η πλήρης πληροφόρηση; Ποια είναι η Προσδοκώμενη Τιμή Ιδεώδους Πληροφόρησης (EVPI); δ) Ποια είναι η καλύτερη απόφαση σε συνθήκες αβεβαιότητας με βάση τα κριτήρια Maximax, Maximin και Ελαχιστοποίησης κόστους ευκαιρίας (minimax regret); Λύση α) Απόφαση, EMV =.3. β) Απόφαση, EOL =.. γ) Στρατηγική αποφάσεων : Αν ισχύει η κατάσταση επιλογή της απόφασης. 7

8 3. Αν ισχύει η κατάσταση αδιαφορία μεταξύ των αποφάσεων, 3 και 4. Αν ισχύει η κατάσταση 3 επιλογή της απόφασης 4. Αν ισχύει η κατάσταση 4 επιλογή της απόφασης 4. EVPI =. ( =EOL). δ) maximax = Απόφαση, maximin = Απόφαση 3, minimax regret = Απόφαση 5.3. ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Άσκηση 5.3. Ο ακόλουθος πίνακας δείχνει τα κέρδη για ένα πρόβλημα ανάλυσης αποφάσεων με δύο εναλλακτικές αποφάσεις και τρεις φυσικές καταστάσεις. Τα ποσά αντιπροσωπεύουν χιλιάδες. ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΑΠΟΦΑΣΕΙΣ 3 ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ Οι πιθανότητες εμφάνισης της κάθε φυσικής κατάστασης είναι αντίστοιχα: PK ( ) = 0.65, PK ( ) = 0.5, PK ( ) = α) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Χρηματικής Τιμής (EMV); β) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Απώλειας Ευκαιρίας (EOL); γ) Ποια είναι η βέλτιστη στρατηγική αποφάσεων αν είναι διαθέσιμη η πλήρης πληροφόρηση; Ποια είναι η Προσδοκώμενη Τιμή Ιδεώδους Πληροφόρησης (EVPI); δ) Ποια είναι η καλύτερη απόφαση σε συνθήκες αβεβαιότητας με βάση τα κριτήρια Maximax, Maximin και Ελαχιστοποίησης κόστους ευκαιρίας (minimax regret); 8

Αβεβαιότητα (Uncertainty)

Αβεβαιότητα (Uncertainty) Αβεβαιότητα (Uncertainty) Παράδειγμα κατασκευής μοντέλου προβλήματος στο Excel και διαχείρισης της αβεβαιότητας που το ίδιο το πρόβλημα εμπεριέχει. Ανάλυση προβλήματος Βήμα 1: Καθορισμός του προβλήματος

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης Θεωρία Αποφάσεων Εισαγωγή στην θεωρία αποφάσεων Στα μέχρι τώρα μοντέλα και τεχνικές υπήρχε η προϋπόθεση της βεβαιότητας. Στην πράξη, τα προβλήματα είναι περισσότερο πολύπλοκα,

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 2011-12 Αντικείμενο της ΘΕΩΡΙΑΣ ΑΠΟΦΑΣΕΩΝ με τη λέξη ΑΠΟΦΑΣΗ εννοούμε

Διαβάστε περισσότερα

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...11 1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) 1.1 Εισαγωγή...29 1.2 Γεωμετρική Προσέγγιση Λύσης Απλών Προβλημάτων LP... 30 1.3 Η Μέθοδος Simplex Λύσης Προβλημάτων Γραμμικού

Διαβάστε περισσότερα

ΘΕΜΑ: «ΜΕΘΟΔΟΙ ΛΗΨΗΣ ΒΕΛΤΙΣΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ»

ΘΕΜΑ: «ΜΕΘΟΔΟΙ ΛΗΨΗΣ ΒΕΛΤΙΣΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΦΟΙΤΗΤΡΙΑΣ: ΒΑΪΝΑ ΕΥΤΥΧΙΑ ΘΕΜΑ:

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/6/2009

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/6/2009 Επιχειρησιακή Έρευνα Θεωρία Αποφάσεων. Μέρος Α Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 6-0 Αντικείμενο της

Διαβάστε περισσότερα

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 2011-12 Ένα άλλο πρόβλημα Ο Θωμάς κληρονόμησε $1000 από κάποιο

Διαβάστε περισσότερα

Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος

Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος Βασικές Παράμετροι: Στόχοι του αποφασίζοντα Τεχνικά δεδομένα Οικονομικά δεδομένα Καταστάσεις

Διαβάστε περισσότερα

Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος

Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος Βασικές Παράμετροι: Στόχοι του αποφασίζοντα Τεχνικά δεδομένα Οικονομικά δεδομένα Καταστάσεις

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΜΕ ΑΓΝΩΣΤΕΣ ΠΙΘΑΝΟΤΗΤΕΣ ΕΚΒΑΣΗΣ ΤΩΝ ΔΙΑΦΟΡΩΝ ΕΝΔΕΧΟΜΕΝΩΝ

ΜΕΘΟΔΟΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΜΕ ΑΓΝΩΣΤΕΣ ΠΙΘΑΝΟΤΗΤΕΣ ΕΚΒΑΣΗΣ ΤΩΝ ΔΙΑΦΟΡΩΝ ΕΝΔΕΧΟΜΕΝΩΝ ΜΕΘΟΔΟΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΜΕ ΑΓΝΩΣΤΕΣ ΠΙΘΑΝΟΤΗΤΕΣ ΕΚΒΑΣΗΣ ΤΩΝ ΔΙΑΦΟΡΩΝ ΕΝΔΕΧΟΜΕΝΩΝ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΕΦΗΜΕΡΙΔΟΠΩΛΗ Ένα μικρό μαγαζί πωλεί μια εφημερίδα. Πληρώνει 30 χ.μ. ανά φύλλο για να τα προμηθευτεί, ενώ

Διαβάστε περισσότερα

Αξιολόγηση και επιλογή δράσης (έργου)

Αξιολόγηση και επιλογή δράσης (έργου) Αξιολόγηση και επιλογή δράσης (έργου) Η διαδικασία για αξιολόγηση ξεχωριστών δράσεων, έργων ή ομάδων έργων και η επιλογή υλοποίησης μερικών από αυτών, για την επίτευξη του αντικειμενικού σκοπού της επιχείρησης.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΥΠΟ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΥΠΟ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΥΠΟ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ Του σπουδαστή ΚΑΡΑΜΑΝΙΔΗ ΓΕΩΡΓΙΟΥ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2005 Τ.Ε.Ι. ΚΑΒΑΛΑΣ

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

acg 2/4/2016 Στοιχεία Ανάλυσης Αποφάσεων

acg 2/4/2016 Στοιχεία Ανάλυσης Αποφάσεων acg 2/4/206 Στοιχεία από την Ανάλυση Αποφάσεων Στοιχεία Ανάλυσης Αποφάσεων με τη λέξη ΑΠΟΦΑΣΗ εννοούμε την επιλογή κάποιας/κάποιων από τις εναλλακτικές πράξεις που είναι στη διάθεσή μας για την αντιμετώπιση

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 1ης σειράς ασκήσεων Προθεσμία παράδοσης: 22 Απριλίου 2015 Πρόβλημα 1.

Διαβάστε περισσότερα

Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Θεωρία Αποφάσεων. Μέρος Α

Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Θεωρία Αποφάσεων. Μέρος Α Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Θεωρία Αποφάσεων. Μέρος Α Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στη ιοίκηση Επιχειρήσεων Πανεπιστήμιο Μακεδονίας, Ακαδημαϊκό έτος -0 Αντικείμενο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Δένδρα Αποφάσεων. Δρ. Β. Βασιλειάδης ΔΙΚΣΕΟ, ΑΤΕΙ Μεσολογγίου

Δένδρα Αποφάσεων. Δρ. Β. Βασιλειάδης ΔΙΚΣΕΟ, ΑΤΕΙ Μεσολογγίου Δένδρα Αποφάσεων Δρ. Β. Βασιλειάδης ΔΙΚΣΕΟ, ΑΤΕΙ Μεσολογγίου Τι είναι τα Δένδρα Αποφάσεων (ΔΑ) Εργαλείο που υποστηρίζει τη λήψη αποφάσεων σε στρατηγικό, διοικητικό και οικονοµικό επίπεδο Χρησιµοποιείται

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

Διάλεξη 6 η :Δένδρα Αποφάσεων. Β. Βασιλειάδης Τµ. Διοικ. Επιχειρήσεων, ΤΕΙ ΔΥΤ. ΕΛΛΑΔΑΣ

Διάλεξη 6 η :Δένδρα Αποφάσεων. Β. Βασιλειάδης Τµ. Διοικ. Επιχειρήσεων, ΤΕΙ ΔΥΤ. ΕΛΛΑΔΑΣ Διάλεξη 6 η :Δένδρα Αποφάσεων Β. Βασιλειάδης Τµ. Διοικ. Επιχειρήσεων, ΤΕΙ ΔΥΤ. ΕΛΛΑΔΑΣ Τι είναι τα Δένδρα Αποφάσεων (ΔΑ) Εργαλείο που υποστηρίζει τη λήψη αποφάσεων σε στρατηγικό, διοικητικό και οικονοµικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού

Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού Ασκήσεις ΠΣΔ Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού Μια επιχείρηση παράγει 3 προϊόντα και έχει 4 διαθέσιμαεργοστάσια. Ο χρόνος παραγωγής (σε λεπτά) για κάθε προϊόν διαφέρει από εργοστάσιο

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΠΟΛΥΣΤΑΔΙΑΚΩΝ ΑΠΟΦΑΣΕΩΝ

ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΠΟΛΥΣΤΑΔΙΑΚΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΠΟΛΥΣΤΑΔΙΑΚΩΝ ΑΠΟΦΑΣΕΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΓΓΕΛΟΣ ΧΡΙΣΤΟΠΟΥΛΟΣ, ΣΤΑΜΑΤΙΝΑ

Διαβάστε περισσότερα

Ανάλυση και Λήψη Αποφάσεων Decision Analysis & Decision Making

Ανάλυση και Λήψη Αποφάσεων Decision Analysis & Decision Making Ανάλυση και Λήψη Αποφάσεων Decision Analysis & Decision Making 1 1.1 Ο Ρόλος της Ανάλυσης Αποφάσεων Σε έναν αβέβαιο και πολύπλοκο περιβάλλον, απαιτούνται τεχνικές που θα προσφέρουν βοήθεια στη διαδικασία

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙI

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙI ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙI Τίτλος διάλεξης: ΔΕΝΤΡΑ ΑΠΟΦΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Διδάσκοντας: Αθανάσιος Τόλης Επίκουρος

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Επενδυτικός κίνδυνος

Επενδυτικός κίνδυνος Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Συστήματα Χρηματοοικονομικής Διοίκησης

Συστήματα Χρηματοοικονομικής Διοίκησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήματα Χρηματοοικονομικής Διοίκησης Ακαδημαϊκό Έτος 2007 2008 Εξάμηνο 8 ο 7η Διάλεξη: Αξιολόγηση Επενδύσεων Ιωάννης Ψαρράς

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι 3. Θεωρία της Επιχείρησης 3. Η Ανταγωνιστική Επιχείρηση. Το τµήµα αυτό έχει δύο στόχους. Πρώτα να δείξει ότι αν υπάρχει ουδετερότητα απέναντι στον κίνδυνο, τότε η µέση αξία ενός αβέβαιου γεγονότος είναι

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Διάλεξη 5 η : ΕΠΙΛΟΓΗ ΕΡΓΟΥ. Δρ. Β. Βασιλειάδης ΔΙΚΣΕΟ, ΑΤΕΙ Μεσολογγίου

Διάλεξη 5 η : ΕΠΙΛΟΓΗ ΕΡΓΟΥ. Δρ. Β. Βασιλειάδης ΔΙΚΣΕΟ, ΑΤΕΙ Μεσολογγίου Διάλεξη 5 η : ΕΠΙΛΟΓΗ ΕΡΓΟΥ Δρ. Β. Βασιλειάδης ΔΙΚΣΕΟ, ΑΤΕΙ Μεσολογγίου Εngineering Economic Analysis Η εκπλήρωση των στόχων ενός έργου µπορεί να επιτευχθεί µε πολλούς τρόπους, Εξαρτάται από n τεχνικούς

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΜΗΧΑΝΙΚΗ ΓΝΩΣΕΩΝ ΠΑΡΑΣΚΕΥΗ 2 ΔΕΚΕΜΒΡΙΟΥ 2016, ώρα ΑΣΚΗΣΗ 1 Ένα ιδιωτικό κέντρο τεχνικού ελέγχου

2 Η ΠΡΟΟΔΟΣ ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΜΗΧΑΝΙΚΗ ΓΝΩΣΕΩΝ ΠΑΡΑΣΚΕΥΗ 2 ΔΕΚΕΜΒΡΙΟΥ 2016, ώρα ΑΣΚΗΣΗ 1 Ένα ιδιωτικό κέντρο τεχνικού ελέγχου 2 Η ΠΡΟΟΔΟΣ ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΜΗΧΑΝΙΚΗ ΓΝΩΣΕΩΝ ΠΑΡΑΣΚΕΥΗ 2 ΔΕΚΕΜΒΡΙΟΥ 2016, ώρα 15.00-18.00 ΑΣΚΗΣΗ 1 Ένα ιδιωτικό κέντρο τεχνικού ελέγχου οχημάτων (ΙΚΤΕΟ) θέλει να αντιμετωπίσει την αυξημένη ζήτηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Οι κλασικές προσεγγίσεις αντιμετωπίζουν τη διαδικασία της επιλογής του τόπου εγκατάστασης των επιχειρήσεων ως αποτέλεσμα επίδρασης ορισμένων μεμονωμένων παραγόντων,

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2014-2015 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2014 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η Ανάλυση Ευαισθησίας αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η μεταβολή των αντικειμενικών συντελεστών c μεταβολή των όρων b i στο δεξιό μέλος του συστήματ των περιορισμ μεταβολή των συντελεστών

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική 5. Οικονομική Αξιολόγηση Ενεργειακών Επενδύσεων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Γρ. 0.2.7. Ισόγειο Σχολής Ηλεκτρολόγων

Διαβάστε περισσότερα

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value)

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Σύμφωνα με αυτή την τεχνική θα πρέπει να επιλέγουμε επενδυτικά σχέδια τα οποία έχουν Καθαρή Παρούσα Αξία μεγαλύτερη του μηδενός. Συγκεκριμένα δίνεται

Διαβάστε περισσότερα

Ένα Πρόγραμμα για την Ανάλυση Αποφάσεων σε Λογιστικό Φύλλο

Ένα Πρόγραμμα για την Ανάλυση Αποφάσεων σε Λογιστικό Φύλλο Τεχν. Χρον. Επιστ. Έκδ. ΤΕΕ, Ι, τεύχ. 3 2001, Tech. Chron. Sci. J. TCG, I, No 3 35 Ένα Πρόγραμμα για την Ανάλυση Αποφάσεων σε Λογιστικό Φύλλο Κ. Π. ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ Λ. Κώτσικας Επίκουρος Καθηγητής Δ.Π.Θ.

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

Στο δέντρο απόφασης που ακολουθεί βρείτε ποια είναι η βέλτιστη επένδυση, η Α ή η Β.

Στο δέντρο απόφασης που ακολουθεί βρείτε ποια είναι η βέλτιστη επένδυση, η Α ή η Β. ΑΣΚΗΣΗ 1 Στο δέντρο απόφασης που ακολουθεί βρείτε ποια είναι η βέλτιστη επένδυση, η Α ή η Β. ΑΣΚΗΣΗ 2 Mr. and Mrs. Smith, γνωστοί έμποροι αυτοκινήτων, αποφάσισαν να επεκταθούν με το άνοιγμα ενός καινούριου

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 4: Το Πρόβλημα Ανάθεσης Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη.

Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη. Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη. Είδη κόστους Άμεσο Κόστος απάνες για αγορά ή μίσθωση ΣΠ Έμμεσο Κόστος Τεκμαιρόμενο κόστος

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Κεφάλαιο 1 Η ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Επιτόκιο: είναι η αμοιβή του κεφαλαίου για κάθε μονάδα χρόνου

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ανάλυση Αποφάσεων και Διαχείριση Ρίσκου: Αποφάσεις υπό αβεβαιότητα, η έννοια της μέτρησης VAR και η χρήση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD H Έννοια και η Φύση του Προγραμματισμού Αθανασία Καρακίτσιου, PhD 1 Η Διαδικασία του προγραμματισμού Προγραμματισμός είναι η διαδικασία καθορισμού στόχων και η επιλογή μιας μελλοντικής πορείας για την

Διαβάστε περισσότερα

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΗΣ ΓΕΩΡΓΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

Η ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΗΣ ΓΕΩΡΓΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Η ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΗΣ ΓΕΩΡΓΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Β. ΜΑΝΟΥ και Γ. ΚΙΤΣΟΠΑΝΙΔΗ Τομέα Αγροτικής Οικονομικής Πανεπιστημίου Θεσσαλονίκης ΠΕΡΙΛΗΨΗ Στην εργασία αυτή γίνεται μια προσπάθεια να δοθεί

Διαβάστε περισσότερα

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ. 1. 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρων όπως., με τρόπο που να οδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΣΕΩΝ ιδάσκων:

Διαβάστε περισσότερα

Η παρούσα αξία της επένδυσης αν αυτή υλοποιηθεί άµεσα είναι 0 K 0 1 K

Η παρούσα αξία της επένδυσης αν αυτή υλοποιηθεί άµεσα είναι 0 K 0 1 K 6. Αβεβαιότητα και µη Αναστρέψιµες Επενδύσεις Στην περίπτωση που µία επένδυση δεν µπορεί να αντιστραφεί χωρίς κόστος, δηλαδή αφού έχει πραγµατοποιηθεί η αγορά κεφαλαιακού εξοπλισµού, κατασκευή κτηρίων

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές

Διαβάστε περισσότερα

Τμήμα Εφαρμοσμένης Πληροφορικής

Τμήμα Εφαρμοσμένης Πληροφορικής Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Δυϊκή Θεωρία (1) Θεώρημα : Το δυϊκό πρόβλημα του γραμμικού προβλήματος 0 0 1 1 2 2 0 0 T

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ. ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ. ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1 ΒΑΣΙΚΑ ΒΗΜΑΤΑ ΕΡΩΤΗΜΑΤΑ Είναι η επένδυση συμφέρουσα; Ποιός είναι ο πραγματικός χρόνος αποπληρωμής της επένδυσης; Κατά πόσο επηρεάζεται

Διαβάστε περισσότερα

Θέμα: ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΠΛΟΚΑ ΠΡΟΒΛΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ

Θέμα: ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΠΛΟΚΑ ΠΡΟΒΛΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, TECHNOLOGICAL EDUCATIONAL INSTITUTE

Διαβάστε περισσότερα

«ΘΕΩΡΙΑ ΔΕΝΔΡΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΘΕΩΡΙΑ ΔΕΝΔΡΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΔΕΝΔΡΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Του σπουδαστή ΣΤΑΛΕΝΤΣΗ ΒΛΑΔΙΜΗΡΟΥ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2005 ΠΕΡΙΕΧΟΜΕΝA Σελίδα

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 5: Εφαρμογές Γραμμικού Προγραμματισμού (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ 2011-2012 ΜΟΝΑΔΑ ΚΑΙΝΟΤΟΜΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ (ΜΚΕ)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ 2011-2012 ΜΟΝΑΔΑ ΚΑΙΝΟΤΟΜΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ (ΜΚΕ) ΕΠΙ ΧΕΙΡ Η ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ 2011-2012 ΜΟΝΑΔΑ ΚΑΙΝΟΤΟΜΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ (ΜΚΕ) ΜΑΤΙ ΚΟ ΤΗ ΤΑ Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράµµατος «Εκπαίδευση και Δια Βίου Μάθηση»

Διαβάστε περισσότερα