Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)"

Transcript

1 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό σκοπό την επιλογή της άριστης λύσης από ένα σύνολο εφικτών εναλλακτικών λύσεων με βάση κάποιο προκαθορισμένο κριτήριο. 5.. Είδη συνθηκών για τη Λήψη Αποφάσεων Υπάρχουν 3 τύποι συνθηκών για τη λήψη αποφάσεων:. Λήψη Αποφάσεων σε συνθήκες βεβαιότητας.. Λήψη Αποφάσεων σε συνθήκες ρίσκου. 3. Λήψη Αποφάσεων σε συνθήκες αβεβαιότητας. 5.. Λήψη Αποφάσεων σε συνθήκες ρίσκου Στην συγκεκριμένη περίπτωση έχουμε την πιθανοθεωρητική λήψη απόφασης. Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) Έστω ότι έχουμε τις εξής εναλλακτικές αποφάσεις : d, d,..., d n με αναμενόμενες καταστάσεις : s, s,..., s m. Ορίζουμε P ( ) την πιθανότητα πραγματοποίησης της αναμενόμενης κατάστασης P ( s ) P( s ) P( s ). Έστω ( ) + m = s j s j. Επομένως θα ισχύει V d i, s j το αναμενόμενο κέρδος που αντιστοιχεί στην απόφαση d όταν πραγματοποιηθεί η αναμενόμενη κατάσταση s. i j Το αναμενόμενο κέρδος που προκύπτει από την επιλογή της απόφασης d i ορίζεται ως εξής : m ( i) ( j) ( i ) EMV d = P s V d, s j για i =,,..., n. j= Το κριτήριο της αναμενόμενης χρηματικής τιμής ορίζεται ως : { ( ) ( )} EMV = max EMV d,..., EMV dn.

2 Β) Κριτήριο Προσδοκώμενης Τιμής Ιδεώδους Πληροφόρησης Expected Value of Perfect Information (EVPI) Η Προσδοκώμενη τιμή με ιδεώδη πληροφόρηση (expected value with perfect information) = EVwPI ορίζεται ως εξής: EVwPI = (Καλύτερη αμοιβή ή αποτέλεσμα για η φυσική κατάσταση) Χ (πιθανότητα ης φυσικής κατάστασης) + (Καλύτερη αμοιβή ή αποτέλεσμα για η φυσική κατάσταση) Χ (πιθανότητα ης φυσικής κατάστασης) + + (Καλύτερη αμοιβή ή αποτέλεσμα για την m φυσική κατάσταση) Χ (πιθανότητα της m φυσικής κατάστασης). Η προσδοκώμενη τιμή ιδεώδους πληροφόρησης (expected value of perfect information) = EVPI ορίζεται ως εξής: EVPI = EVwPI - maxemv Γ) Κριτήριο Προσδοκώμενης Απώλειας Ευκαιρίας Expected Opportunity Loss (EOL) Η απώλεια ευκαιρίας ( opportunity loss or regret )είναι η διαφορά μεταξύ του καλύτερου κέρδους ή αμοιβής για μια δεδομένη φυσική κατάσταση (state of nature ) και του πραγματικού κέρδους ή αμοιβής που ελήφθη από το συνδυασμό της δεδομένης εναλλακτικής απόφασης και της φυσικής κατάστασης. Δηλαδή είναι το ποσό που χάθηκε με το να μην εκλεγεί η καλύτερη εναλλακτική για μια δεδομένη φυσική κατάσταση. Η αναμενόμενη απώλεια ευκαιρίας που προκύπτει από την επιλογή της m d EOL( di) P ( s j) OL( di, s j) απόφασης ορίζεται ως εξής : i = για i =,,..., n. Το κριτήριο της αναμενόμενης απώλειας ευκαιρίας ορίζεται ως : { ( ) ( )} EOL = min EOL d,..., EOL dn. j= 5.. Λήψη Αποφάσεων σε συνθήκες αβεβαιότητας Το άτομο που παίρνει τις αποφάσεις δεν γνωρίζει τις πιθανότητες της ευνοϊκής ή της μη ευνοϊκής αγοράς. Μπορεί να πάρει την απόφασή του επιλέγοντας κάποιο από τα επόμενα 5 κριτήρια:. Maximax (Μεγιστοποίηση κέρδους)

3 . Maximin (Ελαχιστοποίηση ζημίας) 3. Κριτήριο του ρεαλισμού (Κριτήριο του Hurwicz) 4. Κριτήριο των ισοπίθανων φυσικών καταστάσεων (Κριτήριο του Laplace) 5. Minimax απώλεια (minimax regret, Ελαχιστοποίηση κόστους ευκαιρίας) 5.. ΔΙΑΤΥΠΩΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑΣ ΑΠΟΦΑΣΕΩΝ Η επίλυση των Προβλημάτων Θεωρίας Αποφάσεων θα γίνει με τη βοήθεια του προγράμματος QM for Windows. Στη γραμμή μενού επιλέγω MODULE και στη συνέχεια DECISION ANALYSIS. Άσκηση 5.. Ένας ιδιοκτήτης εργοστασίου επίπλων στη Χαλκίδα σκέφτεται να προχωρήσει στη λειτουργία ενός δεύτερου εργοστασίου στη Λαμία. Ο ιδιοκτήτης έχει 3 εναλλακτικές αποφάσεις : α) Να δημιουργήσει μεγάλο εργοστάσιο, β) να δημιουργήσει μικρό εργοστάσιο και γ) τίποτα από τα δύο (να μη δημιουργήσει το δεύτερο εργοστάσιο). Επίσης υπάρχουν δύο φυσικές καταστάσεις με πιθανότητα 0.5 αντίστοιχα : i) Ευνοϊκή αγορά και ii) μη ευνοϊκή αγορά. Τα αντίστοιχα κέρδη δίνονται παρακάτω : ΑΠΟΦΑΣΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΥΠΟΣ ΕΡΓΟΣΤΑΣΙΟΥ ΕΥΝΟΪΚΗ ΜΗ ΕΥΝΟΪΚΗ ΜΕΓΑΛΟ 00,000-80,000 ΜΙΚΡΟ 80,000-40,000 ΤΙΠΟΤΑ 0 0 ΠΙΘΑΝΟΤΗΤΕΣ α) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Χρηματικής Τιμής (EMV); β) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Απώλειας Ευκαιρίας (EOL); γ) Ποια είναι η Προσδοκώμενη Τιμή Ιδεώδους Πληροφόρησης (EVPI); 3

4 δ) Έστω ότι ο επιχειρηματίας επιθυμεί να αναθέσει σε μια εταιρεία έρευνας αγοράς την έρευνα της αγοράς επίπλων στη Λαμία. Η εταιρεία ζητά για τη συγκεκριμένη έρευνα το ποσό των 60,000. Τι θα συμβουλεύατε τον επιχειρηματία; Λύση α) Στο πρόγραμμα QM (DECISION ANALYSIS) επιλέγουμε New File και έπειτα Decision Tables. Στη συνέχεια : Αριθμός εναλλακτικών (Number of alternatives )=3 Αριθμός φυσικών καταστάσεων (Number of nature states) = Objective: Profits (maximize) Έπειτα εισάγουμε τα δεδομένα στον πίνακα όπως φαίνεται παρακάτω : State State Probabilities 0,5 0,5 ΜΕΓΑΛΟ ΜΙΚΡΟ ΤΙΠΟΤΑ 0 0 Στη συνέχεια επιλύουμε το πρόβλημα (Solve) και έχουμε την ακόλουθη λύση : Η μέγιστη Προσδοκώμενη Χρηματική Τιμή είναι 0,000 και επιτυγχάνεται από τη λειτουργία του μικρού εργοστασίου. Άρα ο ιδιοκτήτης θα προχωρήσει στη λειτουργία ενός μικρού εργοστασίου στη Λαμία. β) Ανοίγουμε το παράθυρο Regret or Opportunity Loss. Η τελευταία στήλη (Expected Regret) μας δείχνει την αναμενόμενη απώλεια ευκαιρίας για κάθε εναλλακτική απόφαση. Σύμφωνα με το κριτήριο επιλέγουμε τη μικρότερη, δηλ. 80,000, που αντιστοιχεί στην κατασκευή μικρού εργοστασίου. Ο πίνακας απώλειας ευκαιρίας είναι ο εξής: 4

5 ΑΠΟΦΑΣΕΙΣ ΠΙΝΑΚΑΣ ΑΠΩΛΕΙΑΣ ΕΥΚΑΙΡΙΑΣ ΚΑΤΑΣΤΑΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΤΥΠΟΣ ΕΡΓΟΣΤΑΣΙΟΥ ΜΕΓΑΛΟ ΜΙΚΡΟ ΤΙΠΟΤΑ ΕΥΝΟΪΚΗ 00,000= 0 00,000-00,000-80,000= 0,000 00,000-0= 00,000 ΜΗ ΕΥΝΟΪΚΗ 0-(-80,000) = 80,000 0-(-40,000)= 40,000 Μέγιστη Απώλεια Αναμενόμενη Απώλεια 80, , =90,000 0,000 0, , =80, = 0 00,000 00, =00,000 γ) Ανοίγουμε το παράθυρο Perfect Information. Το καλύτερο αποτέλεσμα για την πρώτη φυσική κατάσταση είναι 00,000. Το καλύτερο αποτέλεσμα για την δεύτερη φυσική κατάσταση είναι 0. Επομένως : EVwPI = 00, = 00,000. Άρα αν ο επιχειρηματίας είχε πλήρη πληροφόρηση, θα μπορούσε να περιμένει κατά μέσο όρο 00,000 αν η απόφαση θα μπορούσε να επαναληφθεί πολλές φορές. Η αναμενόμενη τιμή ιδεώδους πληροφόρησης είναι: EVPI = EVwPI EMV = 00,000 0,000 = 80,000. δ) Το μεγαλύτερο ποσό που θα μπορούσε να πληρώσει ο επιχειρηματίας για ιδεώδη πληροφόρηση είναι 80,000. Αυτό το ποσό αντιπροσωπεύει την αύξηση στην EMV με την πλήρη πληροφόρηση της εταιρείας ερευνών. Επομένως ο επιχειρηματίας έχει συμφέρον να συμβουλευτεί την εταιρεία ερευνών έναντι του ποσού των 60,000. Άσκηση 5.. Θεωρήστε την προηγούμενη άσκηση. Ποια απόφαση θα επιλεγεί σε συνθήκες αβεβαιότητας με βάση: α) Το κριτήριο Maximax (Μεγιστοποίηση κέρδους) β) Το κριτήριο Maximin (Ελαχιστοποίηση ζημίας) γ) Το κριτήριο του ρεαλισμού (Κριτήριο του Hurwicz) 5

6 δ) Το κριτήριο των ισοπίθανων φυσικών καταστάσεων (Κριτήριο του Laplace) ε) Το κριτήριο Ελαχιστοποίησης κόστους ευκαιρίας (minimax regret) Λύση α) Μεγάλο εργοστάσιο (00,000 ) β) Καμία εργοστασιακή μονάδα ( 0 ) γ) Το κριτήριο του ρεαλισμού είναι ένας σταθμικός τρόπος υπολογισμού της τιμής που αντιστοιχεί σε κάθε γραμμή του πίνακα αμοιβών. Συγκεκριμένα εκλέγεται αυθαίρετα ο συντελεστής αισιοδοξίας (α) όπου 0 α. Η εκλογή του συντελεστή είναι συνέπεια των προσωπικών αισθημάτων του ατόμου που παίρνει τις αποφάσεις. Αν α = τότε το κριτήριο του ρεαλισμού είναι ίδιο με το κριτήριο maximax και αν α = 0 είναι ίδιο με το κριτήριο maximin. Η τιμή που αντιστοιχεί σε κάθε γραμμή του πίνακα αμοιβών υπολογίζεται ως εξής: Γραμμικός Συνδυασμός = α (μεγαλύτερη τιμή στη γραμμή) + (-α) (μικρότερη τιμή στη γραμμή) Υποθέστε ότι α = Τότε έχουμε τον ακόλουθο πίνακα: ΑΠΟΦΑΣΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ Hurwicz ΤΥΠΟΣ ΕΡΓΟΣΤΑΣΙΟΥ ΕΥΝΟΪΚΗ ΜΗ ΕΥΝΟΪΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΜΕΓΑΛΟ 00,000-80,000 α = , , =4,000 ΜΙΚΡΟ 80,000-40,000 80, , =56,000 ΤΙΠΟΤΑ =0 Η μεγαλύτερη τιμή είναι 4,000 που αντιστοιχεί στο μεγάλο εργοστάσιο. δ) Το κριτήριο υποθέτει ότι όλες οι φυσικές καταστάσεις είναι ισοπίθανες. Στη συγκεκριμένη άσκηση συμπίπτει με το κριτήριο της προσδοκώμενης χρηματικής τιμής γιατί έχουμε ως δεδομένο ότι οι δύο φυσικές καταστάσεις είναι ισοπίθανες (0.50). ε) Ανοίγουμε το παράθυρο Regret or Opportunity Loss. Η στήλη Maximum regret περιλαμβάνει το μέγιστο της κάθε γραμμής δηλ. τη μέγιστη απώλεια ευκαιρίας κάθε εναλλακτικής. Η μικρότερη τιμή της στήλης είναι 0,000 και αντιστοιχεί στη δημιουργία μικρού εργοστασίου. 6

7 Άσκηση 5..3 Θεωρήστε την άσκηση 5... Κατασκευάστε ένα δένδρο απόφασης για το συγκεκριμένο πρόβλημα. Επιλέξτε την καλύτερη απόφαση με βάση το κριτήριο της προσδοκώμενης χρηματικής τιμής. Άσκηση 5..4 Υποθέστε ότι ένας λήπτης αποφάσεων που αντιμετωπίζει 4 εναλλακτικές αποφάσεις και 4 φυσικές καταστάσεις κατασκευάζει τον παρακάτω πίνακα κερδών: ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΑΠΟΦΑΣΕΙΣ 3 4 ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ Οι πιθανότητες εμφάνισης της κάθε φυσικής κατάστασης είναι αντίστοιχα: PK ( ) = 0.5, PK ( ) = 0., PK ( ) = 0., PK ( ) = α) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Χρηματικής Τιμής (EMV); β) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Απώλειας Ευκαιρίας (EOL); γ) Ποια είναι η βέλτιστη στρατηγική αποφάσεων αν είναι διαθέσιμη η πλήρης πληροφόρηση; Ποια είναι η Προσδοκώμενη Τιμή Ιδεώδους Πληροφόρησης (EVPI); δ) Ποια είναι η καλύτερη απόφαση σε συνθήκες αβεβαιότητας με βάση τα κριτήρια Maximax, Maximin και Ελαχιστοποίησης κόστους ευκαιρίας (minimax regret); Λύση α) Απόφαση, EMV =.3. β) Απόφαση, EOL =.. γ) Στρατηγική αποφάσεων : Αν ισχύει η κατάσταση επιλογή της απόφασης. 7

8 3. Αν ισχύει η κατάσταση αδιαφορία μεταξύ των αποφάσεων, 3 και 4. Αν ισχύει η κατάσταση 3 επιλογή της απόφασης 4. Αν ισχύει η κατάσταση 4 επιλογή της απόφασης 4. EVPI =. ( =EOL). δ) maximax = Απόφαση, maximin = Απόφαση 3, minimax regret = Απόφαση 5.3. ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Άσκηση 5.3. Ο ακόλουθος πίνακας δείχνει τα κέρδη για ένα πρόβλημα ανάλυσης αποφάσεων με δύο εναλλακτικές αποφάσεις και τρεις φυσικές καταστάσεις. Τα ποσά αντιπροσωπεύουν χιλιάδες. ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΑΠΟΦΑΣΕΙΣ 3 ΑΠΟΦΑΣΗ ΑΠΟΦΑΣΗ Οι πιθανότητες εμφάνισης της κάθε φυσικής κατάστασης είναι αντίστοιχα: PK ( ) = 0.65, PK ( ) = 0.5, PK ( ) = α) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Χρηματικής Τιμής (EMV); β) Ποια είναι η καλύτερη απόφαση από το σύνολο των εφικτών εναλλακτικών λύσεων με βάση το κριτήριο της Προσδοκώμενης Απώλειας Ευκαιρίας (EOL); γ) Ποια είναι η βέλτιστη στρατηγική αποφάσεων αν είναι διαθέσιμη η πλήρης πληροφόρηση; Ποια είναι η Προσδοκώμενη Τιμή Ιδεώδους Πληροφόρησης (EVPI); δ) Ποια είναι η καλύτερη απόφαση σε συνθήκες αβεβαιότητας με βάση τα κριτήρια Maximax, Maximin και Ελαχιστοποίησης κόστους ευκαιρίας (minimax regret); 8

Αβεβαιότητα (Uncertainty)

Αβεβαιότητα (Uncertainty) Αβεβαιότητα (Uncertainty) Παράδειγμα κατασκευής μοντέλου προβλήματος στο Excel και διαχείρισης της αβεβαιότητας που το ίδιο το πρόβλημα εμπεριέχει. Ανάλυση προβλήματος Βήμα 1: Καθορισμός του προβλήματος

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης Θεωρία Αποφάσεων Εισαγωγή στην θεωρία αποφάσεων Στα μέχρι τώρα μοντέλα και τεχνικές υπήρχε η προϋπόθεση της βεβαιότητας. Στην πράξη, τα προβλήματα είναι περισσότερο πολύπλοκα,

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...11 1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) 1.1 Εισαγωγή...29 1.2 Γεωμετρική Προσέγγιση Λύσης Απλών Προβλημάτων LP... 30 1.3 Η Μέθοδος Simplex Λύσης Προβλημάτων Γραμμικού

Διαβάστε περισσότερα

ΘΕΜΑ: «ΜΕΘΟΔΟΙ ΛΗΨΗΣ ΒΕΛΤΙΣΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ»

ΘΕΜΑ: «ΜΕΘΟΔΟΙ ΛΗΨΗΣ ΒΕΛΤΙΣΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΦΟΙΤΗΤΡΙΑΣ: ΒΑΪΝΑ ΕΥΤΥΧΙΑ ΘΕΜΑ:

Διαβάστε περισσότερα

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 2011-12 Ένα άλλο πρόβλημα Ο Θωμάς κληρονόμησε $1000 από κάποιο

Διαβάστε περισσότερα

Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος

Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ορισμός: Τα Δ.Α. Είναι μια μέθοδος για ορθολογική λήψη αποφάσεων σε συνθήκες αβέβαιου μέλλοντος Βασικές Παράμετροι: Στόχοι του αποφασίζοντα Τεχνικά δεδομένα Οικονομικά δεδομένα Καταστάσεις

Διαβάστε περισσότερα

Αξιολόγηση και επιλογή δράσης (έργου)

Αξιολόγηση και επιλογή δράσης (έργου) Αξιολόγηση και επιλογή δράσης (έργου) Η διαδικασία για αξιολόγηση ξεχωριστών δράσεων, έργων ή ομάδων έργων και η επιλογή υλοποίησης μερικών από αυτών, για την επίτευξη του αντικειμενικού σκοπού της επιχείρησης.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΥΠΟ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΥΠΟ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΥΠΟ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ Του σπουδαστή ΚΑΡΑΜΑΝΙΔΗ ΓΕΩΡΓΙΟΥ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2005 Τ.Ε.Ι. ΚΑΒΑΛΑΣ

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 1ης σειράς ασκήσεων Προθεσμία παράδοσης: 22 Απριλίου 2015 Πρόβλημα 1.

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Ανάλυση και Λήψη Αποφάσεων Decision Analysis & Decision Making

Ανάλυση και Λήψη Αποφάσεων Decision Analysis & Decision Making Ανάλυση και Λήψη Αποφάσεων Decision Analysis & Decision Making 1 1.1 Ο Ρόλος της Ανάλυσης Αποφάσεων Σε έναν αβέβαιο και πολύπλοκο περιβάλλον, απαιτούνται τεχνικές που θα προσφέρουν βοήθεια στη διαδικασία

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙI

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙI ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙI Τίτλος διάλεξης: ΔΕΝΤΡΑ ΑΠΟΦΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Διδάσκοντας: Αθανάσιος Τόλης Επίκουρος

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Επενδυτικός κίνδυνος

Επενδυτικός κίνδυνος Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

ΔΠΜΣ: «Τεχνο-οικονομικά Τ ά συστήματα» Διαχείριση Ενεργειακών Πόρων

ΔΠΜΣ: «Τεχνο-οικονομικά Τ ά συστήματα» Διαχείριση Ενεργειακών Πόρων ΔΠΜΣ: «Τεχνο-οικονομικά Τ ά συστήματα» Διαχείριση Ενεργειακών Πόρων Οικονομική Αξιολόγηση Ενεργειακών Επενδύσεων Καθηγητής Ιωάννης Ψαρράς e-mail: john@epu.ntua.gr Δρ. Αλέξανδρος Φλάμος e-mail: aflamos@epu.ntua.gr

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2014-2015 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2014 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Ένα Πρόγραμμα για την Ανάλυση Αποφάσεων σε Λογιστικό Φύλλο

Ένα Πρόγραμμα για την Ανάλυση Αποφάσεων σε Λογιστικό Φύλλο Τεχν. Χρον. Επιστ. Έκδ. ΤΕΕ, Ι, τεύχ. 3 2001, Tech. Chron. Sci. J. TCG, I, No 3 35 Ένα Πρόγραμμα για την Ανάλυση Αποφάσεων σε Λογιστικό Φύλλο Κ. Π. ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ Λ. Κώτσικας Επίκουρος Καθηγητής Δ.Π.Θ.

Διαβάστε περισσότερα

Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Οι κλασικές προσεγγίσεις αντιμετωπίζουν τη διαδικασία της επιλογής του τόπου εγκατάστασης των επιχειρήσεων ως αποτέλεσμα επίδρασης ορισμένων μεμονωμένων παραγόντων,

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική 5. Οικονομική Αξιολόγηση Ενεργειακών Επενδύσεων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Γρ. 0.2.7. Ισόγειο Σχολής Ηλεκτρολόγων

Διαβάστε περισσότερα

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η Ανάλυση Ευαισθησίας αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η μεταβολή των αντικειμενικών συντελεστών c μεταβολή των όρων b i στο δεξιό μέλος του συστήματ των περιορισμ μεταβολή των συντελεστών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value)

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Σύμφωνα με αυτή την τεχνική θα πρέπει να επιλέγουμε επενδυτικά σχέδια τα οποία έχουν Καθαρή Παρούσα Αξία μεγαλύτερη του μηδενός. Συγκεκριμένα δίνεται

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD H Έννοια και η Φύση του Προγραμματισμού Αθανασία Καρακίτσιου, PhD 1 Η Διαδικασία του προγραμματισμού Προγραμματισμός είναι η διαδικασία καθορισμού στόχων και η επιλογή μιας μελλοντικής πορείας για την

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη.

Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη. Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη. Είδη κόστους Άμεσο Κόστος απάνες για αγορά ή μίσθωση ΣΠ Έμμεσο Κόστος Τεκμαιρόμενο κόστος

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Κεφάλαιο 1 Η ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Επιτόκιο: είναι η αμοιβή του κεφαλαίου για κάθε μονάδα χρόνου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝ ΥΣΕΩΝ ιδάσκων:

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ. ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ. ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1 ΒΑΣΙΚΑ ΒΗΜΑΤΑ ΕΡΩΤΗΜΑΤΑ Είναι η επένδυση συμφέρουσα; Ποιός είναι ο πραγματικός χρόνος αποπληρωμής της επένδυσης; Κατά πόσο επηρεάζεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

«ΘΕΩΡΙΑ ΔΕΝΔΡΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΘΕΩΡΙΑ ΔΕΝΔΡΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΔΕΝΔΡΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Του σπουδαστή ΣΤΑΛΕΝΤΣΗ ΒΛΑΔΙΜΗΡΟΥ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2005 ΠΕΡΙΕΧΟΜΕΝA Σελίδα

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ 2011-2012 ΜΟΝΑΔΑ ΚΑΙΝΟΤΟΜΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ (ΜΚΕ)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ 2011-2012 ΜΟΝΑΔΑ ΚΑΙΝΟΤΟΜΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ (ΜΚΕ) ΕΠΙ ΧΕΙΡ Η ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ 2011-2012 ΜΟΝΑΔΑ ΚΑΙΝΟΤΟΜΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ (ΜΚΕ) ΜΑΤΙ ΚΟ ΤΗ ΤΑ Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράµµατος «Εκπαίδευση και Δια Βίου Μάθηση»

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση

Διαβάστε περισσότερα

ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι. Ενότητα 3Γ Κριτήρια και Διακρίσεις Κόστους. Λογιστική Κόστους Ι 1

ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι. Ενότητα 3Γ Κριτήρια και Διακρίσεις Κόστους. Λογιστική Κόστους Ι 1 ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι Ενότητα 3Γ Κριτήρια και Διακρίσεις Κόστους Λογιστική Κόστους Ι 1 Εισαγωγή Κόστος είναι η επένδυση ή διάθεση αγοραστικής δύναμης για την απόκτηση υλικών ή άυλων αγαθών και υπηρεσιών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize z = x

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 011-01

Διαβάστε περισσότερα

«ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS»

«ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS» «ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: 2006-2007 Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS» Στοιχεία Φοιτητή: Ζυγομήτρος Αθανάσιος Π 0473 thor4bp@gmal.com Υπεύθυνος Καθηγητής: Σίσκος Ι. Φεβρουάριος

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το LINDO (Linear Interactive and Discrete Optimizer) είναι ένα πολύ γνωστό λογισµικό για την επίλυση προβληµάτων γραµµικού,

Διαβάστε περισσότερα

Πρώτη ενότητα: «Η ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ»

Πρώτη ενότητα: «Η ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ» Πρώτη ενότητα: «Η ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ» Επιχειρηματίας είναι ο άνθρωπος που κινητοποιεί τους απαραίτητους πόρους και τους εκμεταλλεύεται παραγωγικά για την υλοποίηση μιας επιχειρηματικής ευκαιρίας με σκοπό

Διαβάστε περισσότερα

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται Βασικές Έννοιες Οικονομικών των Επιχειρήσεων - Τα οικονομικά των επιχειρήσεων μελετούν: (α) Τον τρόπο με τον οποίο λαμβάνουν τις αποφάσεις τους οι επιχειρήσεις. (β) Τις μορφές στρατηγικής αλληλεπίδρασης

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Άρα, ο χρόνος απλής επανείσπραξης της επένδυσης Α, είναι τα 3 έτη.

Άρα, ο χρόνος απλής επανείσπραξης της επένδυσης Α, είναι τα 3 έτη. Άσκηση Έστω δυο επενδυτικές προτάσεις, Α και Β, αρχικού κόστους 200000000 και 236000000 η καθεμία αντίστοιχα. Το ελάχιστο απαιτούμενο ποσοστό απόδοσης που θέτεται ως manager είναι 8%. Οι μελλοντικές ταμιακές

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΝΘΡΩΠΙΝΩΝ. (Human Resources Scheduling Human Resources Programming)

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΝΘΡΩΠΙΝΩΝ. (Human Resources Scheduling Human Resources Programming) ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ (Human Resources Scheduling Human Resources Programming) Management Ανθρώπινων Πόρων Κεφάλαιο 1 Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη του κεφαλαίου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΜΗΧΑΝΙΚΟΥ ΚΕΦΑΛΑΙΟ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΑ ΕΡΓΑ

ΟΙΚΟΝΟΜΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΜΗΧΑΝΙΚΟΥ ΚΕΦΑΛΑΙΟ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΑ ΕΡΓΑ ΟΙΚΟΝΟΜΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΜΗΧΑΝΙΚΟΥ ΚΕΦΑΛΑΙΟ 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Βασικοί ορισμοί Χαρακτηριστικά έργου Κατηγορίες τεχνικών έργων Παράγοντες των έργων Κριτήρια επιτυχίας Κύκλος ζωής του έργου Επιρροή

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

Βασικές έννοιες για αξία χρήματος και επενδύσεις. Δρ. Αθανάσιος Δαγούμας, Λέκτορας Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Παν.

Βασικές έννοιες για αξία χρήματος και επενδύσεις. Δρ. Αθανάσιος Δαγούμας, Λέκτορας Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Παν. Βασικές έννοιες για αξία χρήματος και επενδύσεις Δρ. Αθανάσιος Δαγούμας, Λέκτορας Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Παν. Πειραιώς Βασικοί Ορισμοί Διαχρονική Αξία Χρήματος Το χρήµα έχει δύο

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (άσκηση για το εργαστήριο)

Επιχειρησιακή έρευνα (άσκηση για το εργαστήριο) Επιχειρησιακή έρευνα (άσκηση για το εργαστήριο) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (13-01-2015) Μια επιχείρηση πρόκειται να εκμεταλλευτεί μια έκταση 50 στρεμμάτων προκειμένου

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ Υπό ΘΕΟΔΩΡΟΥ ΑΡΤΙΚΗ, ΑΝΑΣΤΑΣΙΟΥ ΣΟΥΓΙΑΝΝΗ ΚΑΙ ΓΕΩΡΓΙΟΥ ΑΡΤ1ΚΗ Ανωτάτη Βιομηχανική Σχολή Πειραιά 1. ΕΙΣΑΓΩΓΗ Τα συνήθη κριτήρια αξιολόγησης επενδύσεων βασίζονται

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες) Ένας κοσμηματοπώλης, κατασκευάζει μπρασελέ και κολιέ αναμειγνύοντας ασήμι με κάποιο άλλο μέταλλο. Το μοντέλο π.γ.π. που ανέπτυξε για την εύρεση της εβδομαδιαίας παραγωγής (x 1 μπρασελέ και x 2 κολιέ) η

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση:

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Θέμα (.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Να βρεθεί η ποσότητα που ελαχιστοποιεί το κόστος παραγωγής και στη συνέχεια να υπολογιστεί το ελάχιστο κόστος παραγωγής. (0%) Κριτήριο

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Από ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Η UCC είναι μια μικρή εταιρεία παραγωγής εντομοκτόνων. Σε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 12: ΠΡΟΕΞΟΦΛΗΣΗ ΤΑΜΕΙΑΚΩΝ ΡΟΩΝ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

4. ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΕΠΕΝΔΥΣΕΩΝ I

4. ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΕΠΕΝΔΥΣΕΩΝ I Χρηματοοικονομική Διοίκηση I 4. ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΕΠΕΝΔΥΣΕΩΝ I 1 Είδη Επενδύσεων Χρηματιστηριακές και Επενδύσεις Παγίων Είναι κάθε τοποθέτηση διαθεσίμων κεφαλαίων σε ενεργητικά στοιχεία μακράς χρονικής

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Ανάλυση του Βασικού Προβλήµατος

Ανάλυση του Βασικού Προβλήµατος Ανάλυση του Βασικού Προβλήµατος 1.1 Ορισµός του Προβλήµατος Υποθέτουµε ότι έχουµε 1000 δοχεία τα οποία περιέχουν κόκκινες και µαύρες µπάλες µε συγκεκριµένους συνδυασµούς. Ονοµάζουµε: α) τα δοχεία που περιέχουν

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α.1 α. Σ, β. Λ, γ. Σ, δ. Σ, ε. Λ Α2. α, Α3. γ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Σχολικό Βιβλίο,σελ.83-84,

Διαβάστε περισσότερα

Ανάλυση Κόστους Κύκλου Ζωής

Ανάλυση Κόστους Κύκλου Ζωής Ανάλυση Κόστους Κύκλου Ζωής ρ Γ. Γιαννακίδης Εισαγωγή Στόχοι και Οφέλη Ανάλυση Κόστους Κύκλου Ζωής Life Cycle Cost Analysis - LCCA Μέθοδος οικονοµικής σύγκρισης εναλλακτικών επενδύσεων που βασίζεται στο

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα