ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ"

Transcript

1 ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1-

2 ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ: ΑΝΤΙΣΤΟΙΧΙΣΗ ΑΝΤΙΚΕΙΜΕΝΩΝ Αντιστοίχιση: Ένα πρόβλημα καλείται «πρόβλημα αντιστοίχισης» όταν η μορφή της λύσης του προβλήματος εκφράζεται ως αντιστοιχίσεις των στοιχείων ενός συνόλου με τα στοιχεία ενός άλλου συνόλου. Διαφορετικές αντιστοιχίσεις στοιχείων παράγουν διαφορετικές λύσεις. a 1 a 2 a a n b 1 b 2 b 3 b m ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 2-

3 ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΤΙΣΤΟΙΧΙΣΗΣ a 1 a 2 a 3... a n... b 1 b 2 b 3 b m Τα Προβλήματα Αντιστοίχισης αφορούν την εύρεση της βέλτιστης αντιστοίχισης στοιχείων των δυο αυτών συνόλων, με σκοπό την επίτευξη κάποιου στόχου. Παραδείγματα: Αντιστοίχιση κιβωτίων σε αποθήκες Αντιστοίχιση αποθηκών σε τοποθεσίες Αντιστοίχιση εργαζομένων σε χρονικά διαστήματα Αντιστοίχιση αεροσκαφών σε πτήσεις ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 3-

4 ΠΡΟΒΛΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 4-

5 ΠΡΟΒΛΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 5-

6 ΠΡΟΒΛΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ Να εφαρμοσθεί ένας ΠΚΑ για την επίτευξη του στόχου του προβλήματος. Να υπολογισθεί το κόστος της λύσης. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 6-

7 ΧΩΡΟΘΕΤΗΣΗ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΠΙΛΥΣΗ ΜΕΣΩ ΠΚΑ Μορφή Λύσης: Ένα σύνολο 1 αντιστοιχίσεων που θα απαρτίζονται από 1 πυροσβεστικά οχήματα και 3 πυροσβεστικές μονάδες. Στοιχείο Λύσης: Μία αντιστοίχιση πυροσβεστικού οχήματοςπυροσβεστικής μονάδας. Κριτήριο Επιλογής: Το κριτήριο επιλογής θα καθορίζει την εφικτή (να ικανοποιεί τους περιορισμούς του προβλήματος, δηλαδή, της χωρητικότητας κάθε πυροσβεστικής μονάδας και του συνολικού αριθμού πυροσβεστικών μονάδων που θα αποτελούν την ολοκληρωμένη λύση τους προβλήματος μας) αντιστοίχιση «πυροσβεστικού οχήματος πυροσβεστικής μονάδας» που θα προστίθεται, σε κάθε επανάληψη, στην ημιτελή λύση του προβλήματος. Συνεπώς το κριτήριο επιλογής θα πρέπει να καθορίζει, σε κάθε επανάληψη, ποιο συγκεκριμένα όχημα θα αντιστοιχηθεί σε ποια συγκεκριμένη μονάδα. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 7-

8 ΧΩΡΟΘΕΤΗΣΗ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΠΙΛΥΣΗ ΜΕΣΩ ΠΚΑ Κριτήριο Επιλογής: Το κριτήριο επιλογής διατυπώνεται ως εξής: Επέλεξε, σε κάθε επανάληψη, την αντιστοίχιση οχήματος-μονάδας που προκύπτει από την αντίστοιχη ελάχιστη απόσταση (από το σημείο αναμονής) του κάθε οχήματος από την κάθε μονάδα. Προσοχή οι επιλεγμένες αντιστοιχίσεις (μια αντιστοίχιση σε κάθε επανάληψη) να μην υπερβαίνουν τον αριθμό των τριών (3) πυροσβεστικών μονάδων. Κριτήριο Αξιολόγησης: Υπολόγισε τη συνολική απόσταση που θα διανύουν τα οχήματα από τα δέκα σημεία αναμονής προς τις τρεις επιλεγμένες πυροσβεστικές μονάδες, αθροίζοντας τις αντίστοιχες αποστάσεις μεταξύ των δέκα σημείων αναμονής και των τριών πυροσβεστικών μονάδων που επιλέγηκαν βάσει του Κριτηρίου Επιλογής. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 8-

9 ΧΩΡΟΘΕΤΗΣΗ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΠΙΛΥΣΗ ΜΕΣΩ ΠΚΑ Επανάληψη 1: Εφαρμόζοντας το Κριτήριο Επιλογής σε κάθε επανάληψη, επιλέγουμε την αντιστοίχιση 8Ζ. Άρα S: (8Z) με κόστος της ημιτελούς λύσης ίσο με c(s)= 22 Επανάληψη 2: Ανάλογα, επιλέγουμε την αντιστοίχιση 1Ζ. Άρα S: (8Z,1Ζ). Επανάληψη 3: Ανάλογα, επιλέγουμε την αντιστοίχιση 5Γ. Άρα S: (8Z,1Ζ,5Γ). Επανάληψη 4: Ανάλογα, επιλέγουμε την αντιστοίχιση 7Β. Με άλλα λόγια διαλέξαμε και την τρίτη μονάδα στην οποία θα επιστρέφουν τελικώς τα 1 οχήματα από τα σημεία αναμονής τους. Άρα S: (8Z,1Ζ,5Γ,7Β). Επειδή στην Επανάληψη 4 επιλέχθηκε και η τρίτη πυροσβεστική μονάδα (δηλαδή η B), οι κατατάξεις των αποστάσεων των σημείων αναμονής των οχημάτων από τις πυροσβεστικές μονάδες, βάσει του Κριτηρίου Επιλογής, θα αφορούν (για τις επόμενες επαναλήψεις) αποκλειστικά τις τρεις ήδη επιλεγμένες πυροσβεστικές μονάδες Z,Γ,Β. Αυτό συμβαίνει γιατί η λύση του προβλήματος απαιτεί την ελαχιστοποίηση της συνολικής απόστασης από τα 1 σημεία αναμονής των οχημάτων προς 3 (τρεις) πυροσβεστικές μονάδες. Άρα το μόνο που μένει να καθοριστεί στις επόμενες επαναλήψεις είναι σε ποιες, από τις τρεις (Z, Γ και Β) μονάδες θα επιστρέψουν τα εναπομείναντα οχήματα. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 9-

10 ΣΧΕΔΙΑΣΜΟΣ ενός ΠΚΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΧΩΡΟΘΕΤΗΣΗΣ Επανάληψη 5: Με βάση το προηγούμενο σκεπτικό, επιλέγουμε την αντιστοίχιση 1Β. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β) Επανάληψη 6: Ανάλογα, επιλέγουμε την αντιστοίχιση 6Β. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β) Επανάληψη 7: Ανάλογα, επιλέγουμε την αντιστοίχιση 3Ζ. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ) Επανάληψη 8: Ανάλογα, επιλέγουμε την αντιστοίχιση 2Ζ. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ,2Ζ) Επανάληψη 9: Ανάλογα, επιλέγουμε την αντιστοίχιση 9Ζ. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ,2Ζ,9Ζ) Επανάληψη 1: Ανάλογα, επιλέγουμε την αντιστοίχιση 4Β. Άρα S: (8Z,1Ζ,5Γ,7Β,1Β,6Β,3Ζ,2Ζ,9Ζ,4Β) Το κόστος της ολοκληρωμένης λύσης σύμφωνα με το Κριτήριο Αξιολόγησης θα είναι το c(s) = 34 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1-

11 ΔΙΑΝΟΜΗ ΠΡΟΪΟΝΤΩΝ ΣΕ ΡΑΦΙΑ Η ιδιαίτερα ανταγωνιστική παγκόσμια αγορά έχει επιβάλλει νέους όρους, νέους κανόνες, με αποτέλεσμα όλοι οι λιανέμποροι να επιδιώκουν τη διαφοροποίηση και την εξασφάλιση ανταγωνιστικού πλεονεκτήματος. Κλειδί αυτής της λογικής είναι η εφαρμογή ενός αποτελεσματικού συστήματος διανομής των προϊόντων στα ράφια τους. Το Πρόβλημα Διανομής Προϊόντων σε Ράφια (Shelf-Space Allocation Problem -SSAP) πραγματεύεται τη βέλτιστη διανομή προϊόντων πάνω σε ράφια με σκοπό τη μεγιστοποίηση του κέρδους, την ικανοποίηση των πελατών και τον περιορισμό φαινόμενων out-of-stock. Παράλληλα, το σημείο που είναι τοποθετημένα πάνω στο ράφι και ο αριθμός των τεμαχίων ενός προϊόντος επηρεάζει καταλυτικά τις προτιμήσεις των καταναλωτών. Για όλους τους παραπάνω λόγους οι λιανέμποροι δίνουν τεράστια σημασία στην αποτελεσματική διανομή των προϊόντων στα ράφια. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 11-

12 TO ΠΡΟΒΛΗΜΑ SHELF-SPACE ALLOCATION To πρόβλημα Shelf-Space Allocation περιγράφεται ως εξής: Υποθέτουμε για ένα λιανέμπορο, πχ. ένα super market, τα εξής δεδομένα: k: ένασυγκεκριμένοράφι, όπου: k = 1,2, m m: ο αριθμός των διαθέσιμων ραφιών του λιανέμπορου Τ k : τομήκοςκάθε kραφιού, όπου το k m i = ένα συγκεκριμένο προϊόν, όπου: i = 1,2, n α i = τομήκοςκάθετεμαχίου ενός συγκεκριμένου προϊόντος L i = κάτωόριοτωντεμαχίωνγιαέναi προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι U i = άνωόριοτωντεμαχίωνγιαέναi προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι Α i = ησυνολικήδιαθεσιμότητατεμαχίων ενός i προϊόντος P ik = το κέρδος/τεμάχιο του λιανέμπορου από το i προϊόν στο k ράφι ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 12-

13 TO ΠΡΟΒΛΗΜΑ SHELF-SPACE ALLOCATION Το μήκος όλων των προϊόντων που είναι τοποθετημένα σε ένα ράφι δε θα πρέπει να υπερβαίνει το συνολικό μήκος του ραφιού. O αριθμός τεμαχίων ενός i προϊόντος σε ένα k ράφι πρέπει να είναι μεταξύ των άνω και κάτω ορίων διαθεσιμότητας ενός i προϊόντος. Ο αριθμός τεμαχίων ενός i προϊόντος σε ένα k ράφι παίρνει ακέραιες τιμές. Σκοπός του προβλήματος είναι η βέλτιστη διανομή διαφόρων προϊόντων σε ορισμένα ράφια ενός λιανέμπορου (supermarket). Στο πρόβλημα Shelf-Space Allocation μπορούμε να ορίσουμε ανάλογα με το στόχο μας ως αντικειμενική συνάρτηση: την μεγιστοποίηση του κέρδους που αποφέρει κάθε προϊόν ή το πόσο πλήρη είναι τα ράφια μας ή ακόμα και το πόσο διαφορετικά προϊόντα έχουν τα ράφια μας ή το αντίστροφο. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 13-

14 ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION PROBLEM m = 2 διαθέσιμα ράφια Το μήκος κάθε ραφιού είναι Τ κ1 = 2 και Τ κ2 =2 i = ένα συγκεκριμένο προϊόν, όπου: i= 1,2, 6 k = ένα συγκεκριμένο ράφι, όπου: k= 1,2 το κέρδος/τεμάχιο του λιανέμπορου από το i προϊόν στο k ράφι είναι το ίδιο, ανεξάρτητα το ράφι. Παρακάτω φαίνονται οι πληροφορίες για τα i προϊόντα: Προϊόν No.1 No.2 No.3 No.4 No.5 No.6 Τεμάχια α i P ik L i U i Τ k : το μήκος κάθε k ραφιού α i : το μήκος κάθε τεμαχίου ενός συγκεκριμένου προϊόντος P ik : το κέρδος/τεμάχιο του λιανέμπορου από το i προϊόν στο k ράφι L i = κάτω όριο των τεμαχίων για ένα i προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι U i = άνω όριο των τεμαχίων για ένα i προϊόν που πρέπει να είναι διαθέσιμα σε ένα συγκεκριμένο ράφι ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 14-

15 ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION Στόχος είναι να βρεθεί η λύση που μεγιστοποιεί το συνολικό κέρδος ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 15-

16 ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION Μορφή Λύσης: Η μορφή της λύσης είναι ένας αριθμός αντιστοιχίσεων τεμαχίων προϊόντων με ράφια. ΣτοιχείοΛύσης: Μια αντιστοίχιση τεμαχίου προϊόντος με ράφι Κριτήριο επιλογής του υποψήφιου στοιχείου της λύσης: Υπολόγισε το κλάσμα P ik /α i για κάθε προϊόν και κατάταξε τα προιόντα ανάλογα με τα αντίστοιχα κλάσματα (φθίνουσα κατάταξη). Σε κάθε επανάληψη προσθέτουμε στην ημιτελή μας λύση μια εφικτή αντιστοίχιση του μη-τοποθετημένου τεμαχίου του προϊόντος i με ένα ράφι. Το προϊόν i είναι αυτό με το μεγαλύτερο κλάσμα P ik /α i σε κάθε επανάληψη. Κριτήριο Αξιολόγησης: Tο συνολικό κέρδος/τεμάχιο του λιανέμπορου από την τοποθέτηση των επιλεγμένων τεμαχίων των προϊόντων στα 2 ράφια ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 16-

17 ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION Υπολογίζουμε τα κλάσματα P ik /α i και τα κατατάσσουμε. ΑΡΙΘΜΟΣ ΚΑΤΑΤΑΞΗΣ ΠΡΟΪΟΝ TEMAXIA P ik /α i L i U i 1 No No No No No No ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 17-

18 ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION 1 η Επανάληψη: Ράφι1(16) Ράφι2(2) 3 η Επανάληψη: Ράφι1(12) 2 η Επανάληψη: Ράφι1(12) Ράφι2(2) Ράφι2(16) 4 η Επανάληψη: Ράφι1(12) Ράφι2(12) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 18-

19 ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION 5η Επανάληψη: Ράφι1(7) Ράφι2(12) 6η Επανάληψη: Ράφι1(2) Ράφι2(12) 7η Επανάληψη: Ράφι1(2) Ράφι2(9) 8η Επανάληψη: Ράφι1(2) Ράφι2(6) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 19-

20 ΕΦΑΡΜΟΓΗ: SHELF-SPACE ALLOCATION 9 η Επανάληψη: Ράφι1(2) Ράφι2(3) 1 η Επανάληψη: Ράφι1(2) Ράφι2() 11 η Επανάληψη: Ράφι1() Προϊόν5(2) Ράφι2() Κ(S) = (4*8)+(2*7)+ (4*3) + 2 = =6 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 2-

21 ΕΡΩΤΗΣΕΙΣ ΠΑΡΑΚΑΛΩ ;;;;; , Πατησίων 95, 3 ος όροφος Ώρες Γραφείου: Παρασκευή ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 21-

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 1 η Διάλεξη: Βασικές Έννοιες στην Εφοδιαστική Αλυσίδα - Εξυπηρέτηση Πελατών 2015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στη Διοίκηση

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή Διάκριση Τιμών ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) -H διάκριση τιμών 1 ου βαθμού προϋποθέτει ότι η μονοπωλιακή επιχείρηση γνωρίζει τις ατομικές συναρτήσεις ζήτησης όλων των καταναλωτών.

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN. Εισαγωγή

ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN. Εισαγωγή ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN Εισαγωγή Η κατάρτιση ενός Επιχειρηματικού Σχεδίου αποτελεί ένα εργαλείο στο οποίο καταγράφεται ουσιαστικά το «Πλάνο Δράσης» της επιχείρησης, τα βήματα που θα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή..................................................................... 17 Κεφάλαιο 1 Εισαγωγή..................................................................... 23 1.1 Επίλυση προβλημάτων

Διαβάστε περισσότερα

Μακροοικονομική - Μικροοικονομική

Μακροοικονομική - Μικροοικονομική Μακροοικονομική Μικροοικονομική Η Μακροοικονομική είναι ο κλάδος της Οικονομικής Επιστήμης που ασχολείται με τη μελέτη του οικονομικού συστήματος στο σύνολό του ή μεγάλων επιμέρους τομέων του Η Μικροοικονομική

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρομεσαίες

Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρομεσαίες ΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΒΑΣΙΚΟΣ ΠΑΡΑΓΟΝΤΑΣ ΓΙΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΚΟΙΝΩΝΙΚΗ ΑΝΑΠΤΥΞΗ ΤΟΥ ΑΙΓΑΙΟΠΕΛΑΓΙΤΙΚΟΥ ΧΩΡΟΥ Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρομεσαίες

Διαβάστε περισσότερα

Πτυχιακή Εργασία. Η στάση των Ελλήνων καταναλωτών έναντι των προϊόντων ιδιωτικής ετικέτας και των σούπερ μάρκετ

Πτυχιακή Εργασία. Η στάση των Ελλήνων καταναλωτών έναντι των προϊόντων ιδιωτικής ετικέτας και των σούπερ μάρκετ Πτυχιακή Εργασία Η στάση των Ελλήνων καταναλωτών έναντι των προϊόντων ιδιωτικής ετικέτας και των σούπερ μάρκετ Σπουδαστής: Καραλάγας Γεώργιος Εισηγητής: Ντάνος Αναστάσιος Τμήμα Διοίκησης Επιχειρήσεων Τ.Ε.Ι

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Τεχνικές αριστοποίησης

Τεχνικές αριστοποίησης ΚΕΦΑΛΑΙΟ 9 Τεχνικές αριστοποίησης Εισαγωγή Τα µοντέλα αριστοποίησης, ευρέως γνωστά ως µοντέλα µαθηµατικού προγραµµατισµού, είναι αναµφίβολα η δηµοφιλέστερη τεχνική λήψης αποφάσεων στο χώρο της Επιχειρησιακής

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

Τεχνική μελέτη & οικονομική προσφορά

Τεχνική μελέτη & οικονομική προσφορά Το πρόγραμμα που ταιριάζει στο δικό σας περιβάλλον ΟΡΓΑΝΩΣΗ ΚΑΤΑΣΤΗΜΑΤΟΣ Τεχνική μελέτη & οικονομική προσφορά REFLEXIS RETAIL: ΤΟ ΠΡΟΓΡΑΜΜΑ ΠΟΥ ΣΑΣ ΛΥΝΕΙ ΤΑ ΧΕΡΙΑ Περιεχόμενα Η εταιρεία Γενικά... 3 Η πορεία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. 2. Τι περιλαμβάνει ο στενός και τι ο ευρύτερος δημόσιος τομέας και με βάση ποια λογική γίνεται ο διαχωρισμός μεταξύ τους;

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. 2. Τι περιλαμβάνει ο στενός και τι ο ευρύτερος δημόσιος τομέας και με βάση ποια λογική γίνεται ο διαχωρισμός μεταξύ τους; Μάθημα: Εισαγωγή στα δημόσια οικονομικά Διδάσκουσα: Καθηγήτρια Μαρία Καραμεσίνη Οι παρακάτω ερωτήσεις είναι οργανωτικές του διαβάσματος. Τα θέματα των εξετάσεων δεν εξαντλούνται σε αυτές, αλλά περιλαμβάνουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Εισαγωγή

ΚΕΦΑΛΑΙΟ 1. Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΠΕΡΙΕΧΟΜΕΝΑ 1.1 Επίλυση προβλημάτων και λήψη αποφάσεων 1.2 Ποσοτική ανάλυση και λήψη αποφάσεων 1.3 Ποσοτική ανάλυση Ανάπτυξη μοντέλου Προετοιμασία δεδομένων Επίλυση μοντέλου Δημιουργία

Διαβάστε περισσότερα

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Γ. Λυμπερόπουλος Ιανουάριος 2012 Θέμα 1 Ένα εργοστάσιο που δουλεύει ασταμάτητα έχει τέσσερις (4) πανομοιότυπες γραμμές παραγωγής. Από αυτές, μπορούν

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 3 ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 3 ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών : Θεματική Ενότητα : Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 11 Εισαγωγή στη Διοικητική Επιχειρήσεων & Οργανισμών Ακαδ. Έτος: 2007-08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΑΝΤΙΣΤΟΙΧΙΣΗΣ Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 Κ.Α.Δ. 1997 Κ.Α.Δ. 2008

ΠΙΝΑΚΑΣ ΑΝΤΙΣΤΟΙΧΙΣΗΣ Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 ΠΙΝΑΚΑΣ ΑΝΤΙΣΤΟΙΧΙΣΗΣ Κ.Α.Δ. 1997 Κ.Α.Δ. 2008 265 00010000 00010000 00020000 00020000 00030000 00030000 01000000 01000000 01110000 01110000 01111100 01111100 01111200 01111200 01111201 01111201 01111300

Διαβάστε περισσότερα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο «ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» ΜΠΙΘΗΜΗΤΡΗ ΒΑΣΙΛΙΚΗ ΣΤΕΛΛΑ Επιβλέπουσα: Αν. Καθηγήτρια

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

www.arnos.gr κλικ στη γνώση Τιμολόγηση

www.arnos.gr κλικ στη γνώση Τιμολόγηση ΚΕΦΑΛΑΙΟ 8 Τιμολόγηση Παράγοντες επηρεασμού της τιμής Στόχος της τιμολογιακής πολιτικής πρέπει να είναι ο καθορισμός μιας ιδανικής τιμής η οποία θα ικανοποιεί τόσο τους πωλητές όσο και τους αγοραστές.

Διαβάστε περισσότερα

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL 1. Στο Tools menu, click Solver. 2. Εάν η επιλογή Solver δεν είναι διαθέσιµη στο Tools menu, πρέπει να το

Διαβάστε περισσότερα

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού 1. Εισαγωγή Παίζοντας με τα νομίσματα (Ευρώ) Το εκπαιδευτικό λογισμικό «Παίζοντας με τα νομίσματα (Ευρώ)» είναι κυρίως κατάλληλο για τις μικρές τάξεις του δημοτικού σχολείου και ενισχύει τη διδασκαλία

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Φυσική Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΡΑΠΕΖΑΣ

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ιοίκηση Λειτουργιών και Εφοδιαστικής Αλυσίδας

ιοίκηση Λειτουργιών και Εφοδιαστικής Αλυσίδας ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΚΑΤΕΥΘΥΝΣΕΩΝ ιοίκηση Λειτουργιών και Εφοδιαστικής Αλυσίδας Λέκτορας Κωνσταντίνος Ν. Ανδρουτσόπουλος Τμήμα ιοικητικής Επιστήμης

Διαβάστε περισσότερα

Ομιλία του Ειδικού Γραμματέα για την Κοινωνία της Πληροφορίας Καθ. Β. Ασημακόπουλου

Ομιλία του Ειδικού Γραμματέα για την Κοινωνία της Πληροφορίας Καθ. Β. Ασημακόπουλου Ομιλία του Ειδικού Γραμματέα για την Κοινωνία της Πληροφορίας Καθ. Β. Ασημακόπουλου στο συνέδριο «Δημόσιος Τομέας: Ανάπτυξη και Ανταγωνιστικότητα σε ένα παγκοσμιοποιημένο περιβάλλον» Θέμα ομιλίας: «Αρκεί

Διαβάστε περισσότερα

Διοίκηση Λειτουργιών. τετράδιο 1

Διοίκηση Λειτουργιών. τετράδιο 1 Λορέντζος Χαζάπης Γιάννης Ζάραγκας Διοίκηση Λειτουργιών τα τετράδια μιας Οδύσσειας τετράδιο 1 Εισαγωγή στη διοίκηση των λειτουργιών Αθήνα 2012 τετράδιο 1 Εισαγωγή στη διοίκηση των λειτουργιών ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

Ολοκληρωμένα Συστήματα Επικοινωνίας

Ολοκληρωμένα Συστήματα Επικοινωνίας Προβολή 1. Ολοκληρωμένα Συστήματα Επικοινωνίας 2. Σκοπός της Επικοινωνίας 3. Παράγοντες που επηρεάζουν το μίγμα προβολής 4. Το πρόγραμμα προβολής 5. Διαφήμιση 6. Προσωπική Πώληση 7. Προώθηση των Πωλήσεων

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Ηλεκτρονική κονσόλα 5.7e

Ηλεκτρονική κονσόλα 5.7e Ηλεκτρονική κονσόλα 5.7e COMPUTER MANUAL Reebok C/B 5.7e-20090219 ! Πριν συναρμολογήσετε ή χρησιμοποιήσετε τον εξοπλισμό σας, παρακαλούμε διαβάστε προσεκτικά τις προφυλάξεις που περιλαμβάνονται στις οδηγίες

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΡΑΕ ΥΠ. ΑΡΙΘΜ. 104/2007. Μεθοδολογία αξιολόγησης αιτήσεων για χορήγηση άδειας παραγωγής από φωτοβολταϊκούς σταθµούς

ΑΠΟΦΑΣΗ ΡΑΕ ΥΠ. ΑΡΙΘΜ. 104/2007. Μεθοδολογία αξιολόγησης αιτήσεων για χορήγηση άδειας παραγωγής από φωτοβολταϊκούς σταθµούς Πανεπιστηµίου 69 & Αιόλου, 105 64 Αθήνα Τηλ.: 210-3727400 Fax: 210-3255460 E-mail: info@rae.gr Web: www.rae.gr ΑΠΟΦΑΣΗ ΡΑΕ ΥΠ. ΑΡΙΘΜ. 104/2007 Μεθοδολογία αξιολόγησης αιτήσεων για χορήγηση άδειας παραγωγής

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

E-SHOP.GR Η ΑΝΑΤΡΟΠΗ ΜΙΑΣ ΚΛΑΣΣΙΚΗΣ ΑΓΟΡΑΣ ΧΑΡΗ ΣΤΗΝ ΚΑΙΝΟΤΟΜΙΑ

E-SHOP.GR Η ΑΝΑΤΡΟΠΗ ΜΙΑΣ ΚΛΑΣΣΙΚΗΣ ΑΓΟΡΑΣ ΧΑΡΗ ΣΤΗΝ ΚΑΙΝΟΤΟΜΙΑ E-SHOP.GR Η ΑΝΑΤΡΟΠΗ ΜΙΑΣ ΚΛΑΣΣΙΚΗΣ ΑΓΟΡΑΣ ΧΑΡΗ ΣΤΗΝ ΚΑΙΝΟΤΟΜΙΑ Ιανουάριος 2006-1 - AGENDA E-shop.gr με μια ματιά Πληροφορική:μια κλασσική αγορά Καινοτομία στην e-shop.gr Αποτελέσματα/Συμπεράσματα - 2

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ Κεφάλαιο 8 Ε. Σαρτζετάκης Διαφορισμός τιμών Τιμολόγησηότανηεπιχείρησηέχειισχυρήθέσηστηναγορά: διαφορισμός τιμών Οι επιχειρήσεις οι οποίες έχουν σε κάποιο βαθμό δύναμη σε κάποια αγορά

Διαβάστε περισσότερα

Αποτίμηση δημόσιων αγαθών

Αποτίμηση δημόσιων αγαθών : ορισμός Διάλεξη 5 Τα αμιγώς δημόσια αγαθά έχουν δύο βασικά χαρακτηριστικά Μη ανταγωνιστικάστην κατανάλωση Το κόστος για την κατανάλωση του αγαθού από ένα επιπλέον άτομο είναι μηδέν ή σχεδόν μηδέν. Αδυναμία

Διαβάστε περισσότερα

4 ο Συνέδριο e Business και Social Media World

4 ο Συνέδριο e Business και Social Media World 4 ο Συνέδριο e Business και Social Media World Του Παναγιώτη Πιέρρου, Διευθύνοντα Συμβούλου της My Call Center Οι περισσότεροι ειδικοί θα σας πουν: 1. SEO 2. Ευκολία στην χρήση για τον πελάτη 3. Corporate

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Μεγάλες καθυστερήσεις πληρωμών από ασφαλιστικά ταμεία

Μεγάλες καθυστερήσεις πληρωμών από ασφαλιστικά ταμεία ΠΡΑΚΤΙΚΕΣ ΕΠΙΒΙΩΣΗΣ ΣΕ ΠΕΡΙΟΔΟ ΥΦΕΣΗΣ Ο Δεκάλογος των Προβλημάτων που αντιμετωπίζει το Φαρμακείο 1. Μεγάλος αριθμός φαρμακείων 3. Μεγάλες καθυστερήσεις πληρωμών από ασφαλιστικά ταμεία 2. 4. 5. 6. 7. 8.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ FV Η συνάρτηση αυτή υπολογίζει την μελλοντική αξία μιας επένδυσης βάσει περιοδικών, σταθερών πληρωμών και σταθερού επιτοκίου. =FV(επιτόκιο; αριθμός περιόδων; δόση αποπληρωμής; παρούσα

Διαβάστε περισσότερα

Συνεργάτες στην. επιτυχία

Συνεργάτες στην. επιτυχία Συνεργάτες στην επιτυχία Παρέχοντας το υπόβαθρο Tα πλεονεκτήματα των ολοκληρωμένων λύσεων για τις καλλιέργειες Η υγιεινή διατροφή αποτελεί παράγοντα ζωτικής σημασίας για κάθε άνθρωπο. Δε μας βοηθά μόνο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΟΥ ΜΑΡΚΕΤΙΝΓΚ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ Έρευνα μάρκετινγκ Τιμολόγηση Ανάπτυξη νέων προϊόντων ΜΑΡΚΕΤΙΝΓΚ Τμηματοποίηση της αγοράς Κανάλια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΥΣΤΗΜΑΤΑ ΑΠΟΘΗΚΕΥΣΗΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΥΣΤΗΜΑΤΑ ΑΠΟΘΗΚΕΥΣΗΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΑΠΟΘΕΜΑΤΑ Αποθέματα: Αποθηκευμένη συγκέντρωση πόρων που έχουν υποστεί κάποια επεξεργασία

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ 1. Δίνεται η αριθμητική πρόοδος με α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

Εισαγωγή. www.arnos.gr κλικ στη γνώση info@arnos.co.gr. ΣΟΛΩΜΟΥ 29 ΑΘΗΝΑ 210.38.22.157 495 Fax: 210.33.06.463

Εισαγωγή. www.arnos.gr κλικ στη γνώση info@arnos.co.gr. ΣΟΛΩΜΟΥ 29 ΑΘΗΝΑ 210.38.22.157 495 Fax: 210.33.06.463 Εισαγωγή Η ελαχιστοποίηση του περιβαλλοντικού κόστους μπορεί να χρησιμοποιηθεί ως κριτήριο για τον προσδιορισμό της βέλτιστης τιμής της συγκέντρωσης C του ρυπαντή στο περιβάλλον ή στο σημείο εκροής από

Διαβάστε περισσότερα

Εργασία ΔΕΟ 11. www.arnos.gr www.oktonia.com www.uni-learn.gr

Εργασία ΔΕΟ 11. www.arnos.gr www.oktonia.com www.uni-learn.gr Εργασία ΔΕΟ 11 1.1 Προγραμματισμός είναι η λειτουργία του προσδιορισμού των αντικειμενικών στόχων ενός οικονομικού οργανισμού και των μέσων που απαιτούνται για την υλοποίησή τους. Ενώ ο σχεδιασμός αφορά

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Μάθηµα: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ Ηµεροµηνία και ώρα εξέτασης: ευτέρα 9 Ιουνίου 2008 7:30-10:00

Διαβάστε περισσότερα

Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο ΤΕΙ. Νικόλαος Καρανάσιος Επίκουρος Καθηγητής MARKETING

Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο ΤΕΙ. Νικόλαος Καρανάσιος Επίκουρος Καθηγητής MARKETING Νικόλαος Καρανάσιος Επίκουρος Καθηγητής MARKETING Τα στοιχεία του Marketing Διαπίστωση των μεταβαλλόμενων αναγκών Επιθυμιών και προτιμήσεων Σχεδιασμός του προϊόντος Τα σημεία πώλησης Δίκτυα Διανομής Κοστολόγηση

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πολυμορφισμός Αφηρημένες κλάσεις Interfaces (διεπαφές)

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πολυμορφισμός Αφηρημένες κλάσεις Interfaces (διεπαφές) ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Πολυμορφισμός Αφηρημένες κλάσεις Interfaces (διεπαφές) Βρείτε τα λάθη Στο πρόγραμμα στην επόμενη διαφάνεια υπάρχουν διάφορα λάθη Ποια είναι? public abstract

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

Ο Ρόλος της ιεύθυνσης Marketing σε Έναν Οργανισμό

Ο Ρόλος της ιεύθυνσης Marketing σε Έναν Οργανισμό Ο Ρόλος της ιεύθυνσης σε Έναν Οργανισμό Νικόλαος Α. Παναγιώτου Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών 1 @ Ιούνιος 2003 Περιεχόμενα 1.Βασικές αρχές - Πώς επηρεάζεται

Διαβάστε περισσότερα

Το πρόγραμμα που ταιριάζει στο δικό σας περιβάλλον ΟΡΓΑΝΩΣΗ ΛΟΓΙΣΤΗΡΙΟΥ REFLEXIS ERP: ΤΟ ΠΡΟΓΡΑΜΜΑ ΠΟΥ ΣΑΣ ΛΥΝΕΙ ΤΑ ΧΕΡΙΑ

Το πρόγραμμα που ταιριάζει στο δικό σας περιβάλλον ΟΡΓΑΝΩΣΗ ΛΟΓΙΣΤΗΡΙΟΥ REFLEXIS ERP: ΤΟ ΠΡΟΓΡΑΜΜΑ ΠΟΥ ΣΑΣ ΛΥΝΕΙ ΤΑ ΧΕΡΙΑ Το πρόγραμμα που ταιριάζει στο δικό σας περιβάλλον ΟΡΓΑΝΩΣΗ ΛΟΓΙΣΤΗΡΙΟΥ REFLEXIS ERP: ΤΟ ΠΡΟΓΡΑΜΜΑ ΠΟΥ ΣΑΣ ΛΥΝΕΙ ΤΑ ΧΕΡΙΑ Περιεχόμενα Η εταιρεία Γενικά... 3 Η πορεία της εταιρείας... 4 Προϊόντα... 4 Υπηρεσίες...

Διαβάστε περισσότερα

Οι προσφορές καθώς και όλα τα απαραίτητα έγγραφα θα είναι συνταγμένα στην Ελληνική γλώσσα. Θα

Οι προσφορές καθώς και όλα τα απαραίτητα έγγραφα θα είναι συνταγμένα στην Ελληνική γλώσσα. Θα ΆΡΘΡΟ 14 -Γλώσσα Σύνταξης των Προσφορών Οι προσφορές καθώς και όλα τα απαραίτητα έγγραφα θα είναι συνταγμένα στην Ελληνική γλώσσα. Θα είναι πλήρεις και σαφείς σε όλα τους τα σημεία. Οποιαδήποτε ασάφεια

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι 2η Γραπτή Εργασία: ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΗ 1 (Μονάδες 23) Το συνολικό κόστος μιας επιχείρησης είναι TC=550 ευρώ όταν η παραγωγή είναι Q=100 τεμάχια και το σταθερό κόστος είναι FC=50

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 23 MARKETING I

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 23 MARKETING I ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 23 MARKETING I Ακαδημαϊκό Έτος 2012-2013 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Σελίδα 1 από 12 Περιεχόμενα ΕΙΣΑΓΩΓΗ...

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

ΕΥΡΩΠΑΙΚΟ ΕΡΓΟ SARA «ΥΠΟΣΤΗΡΙΚΤΙΚΕΣ ΕΝΕΡΓΕΙΕΣ ΓΙΑ ΑΥΞΗΣΗ ΚΑΙΝΟΤΟΜΙΑΣ ΣΤΙΣ ΜΜΕ ΤΡΟΦΙΜΩΝ»

ΕΥΡΩΠΑΙΚΟ ΕΡΓΟ SARA «ΥΠΟΣΤΗΡΙΚΤΙΚΕΣ ΕΝΕΡΓΕΙΕΣ ΓΙΑ ΑΥΞΗΣΗ ΚΑΙΝΟΤΟΜΙΑΣ ΣΤΙΣ ΜΜΕ ΤΡΟΦΙΜΩΝ» ΕΥΡΩΠΑΙΚΟ ΕΡΓΟ SARA «ΥΠΟΣΤΗΡΙΚΤΙΚΕΣ ΕΝΕΡΓΕΙΕΣ ΓΙΑ ΑΥΞΗΣΗ ΚΑΙΝΟΤΟΜΙΑΣ ΣΤΙΣ ΜΜΕ ΤΡΟΦΙΜΩΝ» Σεπτέμβριος 2005 1 ΣΚΟΠΟΣ ΕΡΓΟΥ o Ανάπτυξη, προώθηση καινοτομίας, o Αξιοποίηση εμπειρίας, o Διάχυση βέλτιστων πρακτικών,

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού Πρόγραμμα Γενικό γραμμικό πρόβλημα με πολύγωνη περιοχή εφικτών λύσεων Να λυθεί το παρακάτω γραμμικό πρόγραμμα: ma z μ. π. 4

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΕΦΑΡΜΟΓΗ «ΟΔΗΓΩ ΛΙΓΟ - ΠΛΗΡΩΝΩ ΛΙΓΟ»

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΕΦΑΡΜΟΓΗ «ΟΔΗΓΩ ΛΙΓΟ - ΠΛΗΡΩΝΩ ΛΙΓΟ» ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΕΦΑΡΜΟΓΗ «ΟΔΗΓΩ ΛΙΓΟ - ΠΛΗΡΩΝΩ ΛΙΓΟ» Ιούλιος 2015 Εφαρμογή για κινητά: «Οδηγώ λίγο Πληρώνω λίγο» Διαθεσιμότητα εφαρμογής Η εφαρμογή είναι διαθέσιμη δωρεάν στο App Store (έκδοση ios 7.1 και

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι στις Κατασκευές

Υπολογιστικές Μέθοδοι στις Κατασκευές Γενικά Για Τη Βελτιστοποίηση Η βελτιστοποίηση µπορεί να χωριστεί σε δύο µεγάλες κατηγορίες: α) την Βελτιστοποίηση Τοπολογίας (Topological Optimization) και β) την Βελτιστοποίηση Σχεδίασης (Design Optimization).

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων

Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων Αιμ. Κονδύλη, Ι. Κ. Καλδέλλης, Χρ. Παπαποστόλου ΤΕΙ Πειραιά, Τμήμα Μηχανολογίας Απρίλιος 2007 Στόχοι της εργασίας Η τεχνική

Διαβάστε περισσότερα

Μετατρέπουμε τον ήλιο σε κινητήρια δύναμη. ΦΩΤΟΒΟΛΤΑΪΚΟΙ ΣΤΑΘΜΟΙ ΑΠΟ ΤΗΝ Phoenix Solar

Μετατρέπουμε τον ήλιο σε κινητήρια δύναμη. ΦΩΤΟΒΟΛΤΑΪΚΟΙ ΣΤΑΘΜΟΙ ΑΠΟ ΤΗΝ Phoenix Solar Μετατρέπουμε τον ήλιο σε κινητήρια δύναμη. ΦΩΤΟΒΟΛΤΑΪΚΟΙ ΣΤΑΘΜΟΙ ΑΠΟ ΤΗΝ Phoenix Solar ΣΤΟΧΟΣ μας είναι ΝΑ ΑΞΙΟΠΟΙΟΥΜΕ ΟΛΟ ΤΟ ΔΙΑΘΕΣΙΜΟ ΔΥΝΑΜΙΚΟ ΣΕ κάθε ΦΩΤΟΒΟΛΤΑΪΚΟ ΕΡΓΟ. phoenix solar ΣΗΜΑΙΝΕΙ ΣΥΝΔΥΑΣΜΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

ΙΔΙΩΤΙΚΑ ΠΡΟΤΥΠΑ BRC IFS ΤΗΣ ΠΡΟΜΗΘΕΥΤΙΚΗΣ ΑΛΥΣΙΔΑΣ ΤΡΟΦΙΜΩΝ ΔΙΑΧΕΙΡΙΣΗ ΑΣΦΑΛΕΙΑΣ ΤΡΟΦΙΜΩΝ

ΙΔΙΩΤΙΚΑ ΠΡΟΤΥΠΑ BRC IFS ΤΗΣ ΠΡΟΜΗΘΕΥΤΙΚΗΣ ΑΛΥΣΙΔΑΣ ΤΡΟΦΙΜΩΝ ΔΙΑΧΕΙΡΙΣΗ ΑΣΦΑΛΕΙΑΣ ΤΡΟΦΙΜΩΝ ΙΔΙΩΤΙΚΑ ΠΡΟΤΥΠΑ BRC IFS ΤΗΣ ΠΡΟΜΗΘΕΥΤΙΚΗΣ ΑΛΥΣΙΔΑΣ ΤΡΟΦΙΜΩΝ ΔΙΑΧΕΙΡΙΣΗ ΑΣΦΑΛΕΙΑΣ ΤΡΟΦΙΜΩΝ Ημερίδα 7-8/07/2005 Αθήνα.. Α Νούλης Δρ Χημικός Επικεφαλής Επιθεωρητής LRQA Slide 1 BRC Global Standard Food BRITISH

Διαβάστε περισσότερα

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι,

Διαβάστε περισσότερα

ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΚΑΙΝΟΤΟΜΙΑΣ ΣΤΑ ΠΡΟΪΟΝΤΑ, ΣΤΙΣ ΔΙΑΔΙΚΑΣΙΕΣ ΚΑΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΚΑΙΝΟΤΟΜΙΑΣ ΣΤΑ ΠΡΟΪΟΝΤΑ, ΣΤΙΣ ΔΙΑΔΙΚΑΣΙΕΣ ΚΑΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΚΑΙΝΟΤΟΜΙΑΣ ΣΤΑ ΠΡΟΪΟΝΤΑ, ΣΤΙΣ ΔΙΑΔΙΚΑΣΙΕΣ ΚΑΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Δρ. Ιωάννης Χατζηκιάν, Επιστημονικός Συνεργάτης Τμήματος Διοίκησης Επιχειρήσεων, ΣΔΟ,

Διαβάστε περισσότερα

ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0)

ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0) ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0) (Module 5 Using Databases) Συνολική ιάρκεια: Προτεινόµενο * Χρονοδιάγραµµα Εκπαίδευσης 10-16 (δέκα έως δεκαέξι) ώρες

Διαβάστε περισσότερα

Τα 4P Προώθηση Προϊόντων. Νικόλαος Α. Παναγιώτου Λέκτορας Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών

Τα 4P Προώθηση Προϊόντων. Νικόλαος Α. Παναγιώτου Λέκτορας Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Τα 4P Προϊόντων Νικόλαος Α. Παναγιώτου Λέκτορας Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών 1 @ Νοέμβριος 2004 Περιεχόμενα ιαδικασία Βασικά Στοιχεία ς ιαφήμιση 2 ιαδικασία

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα