Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).
|
|
- Ησιοδ Πολίτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, ) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : (2014) ,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov. [7]. [8]. HJBI,. [8]. [8] : : ( ); (XJ120106; XJ120109; XJ130246). : (1983 ),,,, :.
2 780 Vol HJBI, -. 2.,, [8] : (1) ; (2) ; (3)., (Ω, F t, P ),, F t P. [9], dc(t) = αdt βdw 1 (t),, α > 0, β > 0,, W 1 (t). dc(t) = (1 + v)αdt, v > 0. dx(t) = c(t)dt dc(t) = vαdt + βdw 1 (t)., a(t) 1. 0 a(t) 1, a(t) = 1, a(t) = 0. a(t) < 0,. η, η > v. dx(t, a(t)) = (v ηa(t))αdt + (1 a(t))βdw 1 (t).,, (), t {B(t), t 0} db(t) = r 0 B(t)dt, r 0 > 0. (), t {S(t), t 0} ds(t) = S(t)[rdt + dw 2 (t)], r r 0, > 0, W 2 (t), W 1 (t), W 2 (t).. π(t) t, X(t, u(t)) π(t), X(t, u(t)), u(t) = (a(t), π(t))., X(t, u(t)) dx(t, u(t)) = [(v ηa(t))α + π(t)(r r 0 ) + r 0 X(t, u(t))]dt +(1 a(t))βdw 1 (t) + π(t)dw 2 (t). (2.1) 1 u( ) = (a( ), π( )), u( ) {F t }, t 0 u( ) : (1) T 0 [π(t)] 2 dt < a.e. T < ;
3 No. 4 : 781 (2) a(t) 1; (3) (1) {u(t), t 0}. U. {θ(t), t 0} (Ω, F t, P ), (1) {θ(t), t 0} F t ; (2) (t, ω) [0, + ) Ω, θ(t) = θ(t, ω) < 1; (3) E T 0 θ2 (t)dt <. θ(t) Θ(t). {θ(t), t 0} Θ {Z θ (t), t 0} Z θ (t) = ex{ Ito t 0 θ(s)dw 1 (s) t 0 θ(s)dw 2 (s) t 0 θ 2 (s)ds}. dz θ (t) = Z θ (t)θ[dw 1 (t) + dw 2 (t)]. (2.2) Z θ (t) (F t, P ), {θ(t), t 0} P -, Z θ (0) = Z 0 (0 < Z 0 < 1), Z θ (t) (F t, P ), EZ θ (T ) = EZ θ (0) = 1. dp θ dp = Zθ (T ), θ Θ, P θ. 2.2 W, W > 0, W < 0, W. u( ), P θ V u,θ (t, x) = E θ [W (XT u) Xu t = x], E θ P θ.,.,, u( ). su inf V u,θ (t, x) = V u,θ (t, x) = V (t, x), (2.3) θ Θ u U u, θ., u, θ V (t, x) W (x) = 1 m e mx, m > 0., ηα β(r r0) 1 g 1 (t) g 1(t) + g 1 (t)mα(η v)e r0(t t) g 1(t) 4 (r r 0 ηα β )2 = 0, g 1 (T ) = 1, (3.1) g 1 (t) = ex{ mα(η v) r 0 [e r0(t t) 1] T t ( r r 0 ηα 4 β )2 }. (3.2)
4 782 Vol. 34 (3.1) (3.2).. 1 (2.3) π = a = 1 e r0(t t) 2m 2 e r0(t t) (r r 0 ηα ); (3.3) β (ηα β(r r 0) 2mβ 2 θ = 1 2 (r r 0 + ηα β ); (3.4) ). (3.5) V (t, x) = 1 m g 1(t) ex{ mxe r0(t t) }, (3.6) g 1 (t) (3.2). u( ), θ( ), X(t, u) (2.1), Ito, (3.1) d[ 1 m g 1(t)Z θ (t)e mx(t,u)er 0 (T t) ] 1 m zg 1(t)e mxer 0 (T t) = Z θ (t)e mx(t,u)er 0 (T t) { 1 m g r0(t t) 1(t) r 0 X(t, u)g 1 (t)e m 2 g 1(t)e 2r0(T t) [β 2 (1 a) π 2 ] +g 1 (t)e r0(t t) [(v ηa(t))α + π(t)(r r 0 ) + r 0 X(t, u(t))] g 1 (t)e r0(t t) [(1 a)β + π]θ}dt + 1 m g 1(t)θZ θ (t)e mx(t,u)er 0 (T t) [dw 1 (t) + dw 2 (t)] +g 1 (t)θz θ (t)e r0(t t) e mx(t,u)er 0 (T t) θ[(1 a)βdw 1 (t + πdw 2 (t] = Z θ (t)e mx(t,u)er 0 (T t) { m2 2 g 1(t)e 2r0(T t) [π(t) π (t)] 2 mβ2 2 g 1(t)e 2r0(T t) [a(t) a (t)] 2 + g 1(t) 2m [θ(t) θ (t)] 2 }dt + 1 m g 1(t)θZ θ (t)e mx(t,u)e r 0 (T t) [dw 1 (t) + dw 2 (t)] +g 1 (t)θz θ (t)e r0(t t) e mx(t,u)er 0 (T t) θ[(1 a)βdw 1 (t) + πdw 2 (t)], π, a, θ (3.3) (3.5), t T, Z θ (t) = z, X(t, u) = x P, Beyes, V u,θ (t, x) = 1 m g 1(t)e mxer 0 (T t) + 1 z E{ T t Z θ (s)e mx(s,u)er 0 (T s) [ m2 2 g 1(s)e 2r0(T s) [π(s) π (s)] 2 mβ2 2 g 1(s)e 2r0(T s) [a(s) a (s)] 2 + g 1(s) 2m [θ(s) θ (s)] 2 ]}ds.
5 No. 4 : 783 g 1 (t) > 0, Z θ (t) > 0,.. 1 (3.3), (3.4), a < 1,, (π < 0) ηα < β(r r0) 2 g 2 (t) g 2(t) + g 2 (t)mα(η v)e r0(t t) = 0, g 2 (T ) = 1, (3.7) mα(η v) g 2 (t) = ex{ [e r0(t t) 1]}. (3.8) r 0 (3.7) (3.8).. 2 (2.3) π = 0; (3.9) a = 1; (3.10) θ = r r 0. (3.11) V (t, x) = 1 m g 2(t) ex{ mxe r0(t t) }, (3.12) g 2 (t) (3.8). (3.4) ηα < β(r r0), a > 1, a = 1. a = 1 (2.1), 1 zg m 2(t)e mxer 0 (T t) Ito, (3.8) (3.9), (3.10), a = 1,,. 3 [8], ρ = [8] HJBI, - ( ρ = 0, ρ 0 - ). 3.2 W (x) = x (0 < < 1),, ηα β(r r0) 3 f 1 (t), h 1 (t) f 1(t) + f 1 (t)[r 0 + 4(1 ) (r r 0 ηα) 2 ] = 0, f 1 (T ) = 1, (3.13) h 1(t) r 0 h 1 (t) + (η v)α = 0, h 1 (T ) = 0, (3.14)
6 784 Vol. 34 f 1 (t) = ex{[r 0 + 4(1 ) (r r 0 ηα) 2 ](T t)}, (3.15) (η v)α h 1 (t) = [1 e r0(t t) ]. r 0 (3.16) (3.13), (3.14) (3.15), (3.16).. 3 (2.3) π = x h 1(t) 2(1 ) (r r 2 0 ηα ); (3.17) β π = 1 x h 1(t) 2(1 )β (ηα β(r r 0) ); (3.18) 2 θ = 1 2 ((r r 0) + ηα β ). (3.19) V (t, x) = f 1 (t) [x h 1(t)], (3.20) f 1 (t), h 1 (t) (3.15), (3.16). u( ), θ( ), X(t, u) (2.1), Ito, (3.13), (3.14) d[f 1 (t) [x h 1(t)] Z θ (t)] f 1 (t) [X(t, u) h 1(t)] z θ = Zθ (t) {f 1(t)[X(t, u) h 1 (t)] + f 1 (t)( [X(t, u) h 1 (t)] 1 h 1(t) +[X(t, u) h 1 (t)] 1 [(v ηa(t))α + π(t)(r r 0 ) + r 0 X(t, u(t))] ( 1)[X(t, u) h 1(t)] 2 [β 2 (1 a) π 2 ] [X(t, u) h 1 (t)] 1 [(1 a)β + π]θ)}dt f 1 (t) [x h 1(t)] Z θ (t)θ(t)[dw 1 (t) + dw 2 (t)] +f 1 (t)[x(t, u) h 1 (t)] Z θ (t)[(1 a)βdw 1 (t) + πdw 2 (t) = Zθ (t) { 1 2 ( 1)2 [X(t, u) h 1 (t)] 2 [π(t) π (t)] ( 1)β2 [X(t, u) h 1 (t)] 2 [a(t) a (t)] (1 )β [θ(t) 2 θ (t)] 2 }dt f 1 (t) [x h 1(t)] Z θ(t)θ (t)[dw 1 (t) + dw 2 (t)] +f 1 (t)[x(t, u) h 1 (t)] Z θ (t)[(1 a)βdw 1 (t) + πdw 2 (t)],
7 No. 4 : 785 π, a, θ (3.17) (3.19), t T, Z θ (t) = z, X(t, u) = x P, Beyes, V u,θ (t, x) = f 1 (t) [X(t, u) h 1(t)] + 1 z E{ T t Z θ (s) [ 1 2 ( 1)2 [X(s, u) h 1 (s)] 2 [π(s) π (s)] ( 1)β2 [X(s, u) h 1 (s)] 2 [a(s) a (s)] ( 1)β [X(s, u) h 1(s)] 2 [θ(s) θ (s)] 2 }ds, (3.17), (3.18), a < 1,, ( π < 0 ) ηα < β(r r0) 4 f 2 (t), h 2 (t) f 2(t) + r 0 f 2 (t) = 0, f 2 (T ) = 1, (3.21) h 2(t) r 0 h 2 (t) + (η v)α = 0, h 2 (T ) = 0, (3.22) f 2 (t) = e r0(t t), (3.23) (η v)α h 2 (t) = h 1 (t) = [1 e r0(t t) ]. r 0 (3.24) (3.21), (3.22) (3.23), (3.24).. 4 (2.3) π = 0; (3.25) π = 1; (3.26) θ = r r 0. (3.27) V (t, x) = f 2 (t) [x h 2(t)], (3.28) f 2 (t), h 2 (t) (3.23), (3.24). (3.4) ηα < β(r r0), a > 1, a = 1. a = 1 (2.1), f 2 (t) [X(t,u) h2(t)] z θ Ito, (3.23), (3.24) (3.25), (3.26), a = 1,,..
8 786 Vol. 34 [1] Browne S. Otimal investment olicies for a firm with a random risk rocess: exonential utility and minimizing the robability of ruin[j]. Mathematics Methods Oerator Research, 1995, 20(4): [2] Yang H, Zhang L. Otimal investment for insurer with jum diffusion risk rocess[j]. Insurance: Mathematics and Economics, 2005, 37(3): [3] Bai L, Guo J. Otimal roortional reinsurance and investment with multile risky assets and no-shorting constraint[j]. Insurance: Mathematics and Economics, 2008, 42(3): [4] Isaacs R. Differential games [M]. New York: Wiley, [5] Mataramvura S, Sendal B. Risk minimizing ortfolios and HJBI equations for stochastic differential games [J]. Stochastics An International Journal of Probability and Stochastic Processes, 2008, 4: [6] Siu T K. A game theoretic aroach to otion valuation under Markovian regime-switching models[j]. Insurance: Mathematics and Economics, 2008, 42(3): [7] Browne S. Stochastic differential ortfolio games [J]. Journal of Alied Probability, 2000, 37(1): [8],. [J]., 2101, 8: [9] Promislow D S, Young V R. Minimizing the robability of ruin when claims follow Brownian motion with drift[j]. North American Actuarial Journal, 2005, 9(3): STOCHASTIC DIFFERENTIAL GAMES WITH REINSURANCE AND INVESTMENT YANG Peng (Deartment of Basic, Xijing College, Xi an , China) Abstract: This aer investigates a stochastic differential games roblem with reinsurance and investment. Under exonential utility and ower utility, by using linear-quadratic control theory, we obtain otimal reinsurance strategies, investment strategies and otimal market strategies as well as the value function closed form exressions. We generalize the results of aer [8]. Through this research when the market is worst, we can guide insurance comany to select the aroriate reinsurance and investment strategies to maximize his wealth. Keywords: stochastic differential games; linear-quadratic control; exonential utility; ower utility 2010 MR Subject Classification: 91A30; 91B30
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []
2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula.,
Robust Markowitz Portfolio Selection in a Stochastic Factor Model
Robust Markowitz Portfolio Selection in a Stochastic Factor Model Dariusz Zawisza Institute of Mathematics, Jagiellonian University in Krakow, Poland 5 May, 2010 Financial Market Probability space (Ω,
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
DOI /J. 1SSN
4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two
Decision making under model uncertainty: Hamilton-Jacobi-Belman-Isaacs approach, weak solutions and applications in Economics and Finance
Βιογραφικό Σημείωμα Ιωάννης Μπαλτάς (Τελευταία Ενημέρωση: Φεβρουάριος, 2017) Προσωπικά Στοιχεία Επίθετο : Μπαλτάς Ονομα : Ιωάννης Υπηκοότητα : Ελληνική Ημερομηνία γεννήσεως : 22 Οκτωβρίου 1983 Τόπος γεννήσεως
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)
Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Mean-Variance Hedging on uncertain time horizon in a market with a jump
Mean-Variance Hedging on uncertain time horizon in a market with a jump Thomas LIM 1 ENSIIE and Laboratoire Analyse et Probabilités d Evry Young Researchers Meeting on BSDEs, Numerics and Finance, Oxford
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
(020) (020)
135 510275 (020) 8411 1989 (020) 8411 6924 lnslzf@mail.sysu.edu.cn http://www.lingnan.net/cferm/lizf/cn/ 1997/09-2000/08 1987/08-1990/07/ 1981/09-1985/07 2016/02-, 2011/03-2016/01 2000/09-2013/08 1990/08-2000/09
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις
1 ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ Ονοµατεπώνυµο: Παπαγεωργίου Γεώργιος του Ιωάννη. ιεύθυνση κατοικίας: ηµητρακοπούλου 10 Φάρσαλα Έγγαµος, πατέρας δύο (2) παιδιών. Τηλέφωνα: 6984143143, 2491022594
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.
Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ
ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ
A MAXIMUM PRINCIPLE FOR STOCHASTIC DIFFERENTIAL GAMES WITH PARTIAL INFORMATION
Dept. of Math./CMA Univ. of Oslo Pure Mathematics No 4 ISSN 86 2439 April 27 A MAXIMUM PINCIPLE FO STOCHASTIC DIFFEENTIAL GAMES WITH PATIAL INFOMATION TA THI KIEU AN AND BENT ØKSENDAL Abstract. In this
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters
32 Vol 32 2 Journal of Harbin Engineering Univerity Jan 2 doi 3969 /j in 6-743 2 23 5 2 F83 9 A 6-743 2-24-5 he martingale pricing method for pricing fluctuation concerning tock model of callable bond
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΧΡΕΟΚΟΠΙΑΣ ΚΑΙ ΤΩΝ
Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ
Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Κνηζακπφπνπινο Υ. Παλαγηψηεο Δπηβιέπσλ: Νηθφιανο Υαηδεαξγπξίνπ Καζεγεηήο Δ.Μ.Π Αζήλα, Μάξηηνο 2010
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Slides 4. Matthieu Gomez Fall 2017
Slides 4 Matthieu Gomez Fall 2017 Portfolio Problem Optimization A typical optimization problem has the form { + } J(x t ) = maxe t e ρ(τ t) h(u τ )dτ u t t s.t. dx = µ(x, u)dt + σ(x, u)dz t Bellman s
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία
Mathematical model for HIV spreads control program with ART treatment
Journal of Physics: Conference Series PAPER OPEN ACCESS Mathematical model for HIV spreads control program with ART treatment To cite this article: Maimunah and Dipo Aldila 208 J. Phys.: Conf. Ser. 974
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
Risk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.
212 2 28 1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O174.12 A 18-5513(212)1-99-1 1, [2]. 1965,
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Η Έννοια και η Σημασία της Τιμής
1 κ ε φ ά λ α ι ο Η Έννοια και η Σημασία της Τιμής 1.1 Εισαγωγή Το παρόν κεφάλαιο εξετάζει την έννοια της τιμής σε συνδυασμό με τη σημασία της τόσο για την ίδια την επιχείρηση όσο και γενικότερα για την
Stochastic Target Games with Controlled Loss
Stochastic Target Games with Controlled Loss B. Bouchard Ceremade - Univ. Paris-Dauphine, and, Crest - Ensae-ParisTech USC, February 2013 Joint work with L. Moreau (ETH-Zürich) and M. Nutz (Columbia) Plan
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q
40 4 Vol 40 No 4 206 7 Journal of Jiangxi Normal UniversityNatural Science Jul 206 000-586220604-033-07 p q -φ 2 * 330022 Nevanlinna p q-φ 2 p q-φ p q-φ O 74 52 A DOI0 6357 /j cnki issn000-5862 206 04
Heisenberg Uniqueness pairs
Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,
Part III - Pricing A Down-And-Out Call Option
Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Stoqastikˆ montèla gia ta epitìkia. Oikonomikì Panepist mio Ajhn n
Stoqastikˆ montèla gia ta epitìkia Ν. Ε. Φράγκος Α. Ν. Γιαννακόπουλος Ε. Α. Καλπινέλλη Oikonomikì Panepist mio Ajhn n 17 Ιουλίου 2010 To upìdeigma twn Heath Jarrow Morton: Το υπόδειγμα των Heath-Jarrow-Morton
Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών
Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2 3, (, 76 ;2, 749 ; 3, 64) :, ;,, ;, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )
3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).
1439 2017, 3,29, 1658 7677: 1439 2017,323 299, 3,29, 1 1438 09 06 ; 1438 02 23 : 33,,,,,,,,,,, : The attitudes of lecturers at the University College of Applied Sciences in Gaza (BA - Diploma) towards
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
36 ( ) Ω λk(k= + )-Δ <γ < (4) L (Ω) φ k λk : (-Δ) /φ γ / k=λγ k φ k { <λ λ λk (k ) D((-Δ) γ / )= {u L (Ω)stu Ω = ; (-Δ) γ / u L (Ω) = k=+ λ γ / k u φ
5 3 ( ) Vol5 No3 5 JournalofXiamenUniversity (NaturalScience) May ( 365) : D +α u-δu+(-δ) γ/ D β u= u >-
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation