, κάθετο στο επίπεδο των ράβδων.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ", κάθετο στο επίπεδο των ράβδων."

Transcript

1 Κοίλος κύλινδρος µάζας m, ακτίνας r και ύψους L µπορεί να κινείται πάνω σε δύο λείες και αµελητέας ωµικής αντίστασης µεταλλικές ράβδους, που είναι παράλληλες και στερεωµέ νες µε το επίπεδό τους να σχηµατίζει γωνία φ µε το οριζόντιο επίπεδο. Oι ράβδοι έχουν αρκετά µεγάλο µήκος και στο κάτω άκρο τους είναι συνδεδεµένες µε αντιστάτη, ωµικής αντίστασης R. Η παρά πλευρη επιφάνεια του κυλίνδρου είναι από µονωτικό υλικό και έχουν κολληθεί πάνω της λεπτές και στενές πρισµατικές χάλκινες λωρίδες αµελητέας αντίστασης, παράλληλες προς τον άξονά του που είναι ηλεκτρικά µονωµένες µεταξύ τους, τα δε διάκενά τους είναι ασή µαντα. Κάποια στιγµή που λαµβάνεται ως αρχή µέτρησης του χρόνου ο κύλινδρος αφήνεται ελεύθερος µε τον άξονά του οριζόντιο και κάθε το στις ράβδους και καθώς κινείται πάνω σ αυτές µία χάλκινη λωρί δα είναι πάντα σε επαφή µε αυτές, ώστε να δηµιουργείται κλειστό κύκλωµα. Το όλο σύστηµα βρίσκεται µέσα σε οµογενές µαγνητικό πεδίο έντασης B, κάθετο στο επίπεδο των ράβδων. i) Να δείξετε ότι κάθε χρονική στιγµή t το µέτρο της ταχύτητας v του άξονα του κυλίνδρου και το µέτρο της γωνιακής ταχύτητας περιστρο φής του περί τον άξονα αυτόν, ικανοποιούν την σχέση: v + r = gt"µ# ii) Nα δείξετε, ότι ο κύλινδρος δεν µπορεί να κυλίεται πάνω στις µεταλλικές ράβδους. iii) Να υπολογίσετε σε συνάρτηση µε τον χρόνο την ένταση του ρεύ µατος στον αντιστάτη. Δίνεται η ροπή αδράνειας I=mr του κυλίνδρου ως προς τον άξονά του και η επιτάχυνση g της βαρύτητας. ΛΥΣΗ: i) Όταν ο κυλινδρος αφήνεται ελεύθερος πάνω στις µεταλλικές ράβ δους αποκτά µεταφορική κίνηση µε ταχύτητα κάθετη στον άξονά του και λόγω αυτής της κίνησης δηµιουργείται κατά µήκος κάθε χάλκινης λωρίδας της παράπλευρης επιφάνειας του κυλίνδρου επαγωγική ηλεκτρεγερτική δύ ναµη. Εστιάζοντας κάθε φορά στην λωρίδα επαφής ΜΝ µε τις µεταλλικές ράβδους, παρατηρούµε ότι αυτή µετέχει σε κλειστό κύκλωµα µε αποτέλεσµα να προ πύπτει σ αυτό επαγωγικό ρεύµα. Έτσι η λωρίδα αυτή δέχεται από το µαγνητι κό πεδίο δύναµη Laplace F L, µε φορέα που εφάπτεται του κυλίνδρου και φορά που ανταποκρίνεται στον κανόνα του δεξιού χεριού (σχ. 10). Η δύναµη αυτή παρουσιάζει ροπή περί τον άξονα του κυλίνδρου µε αποτέλεσµα να προκύψει) για τον κύλινδρο δεξιόστροφη περιστροφική κίνηση, που σηµαίνει ότι η όλη κίνηση του κυλίνδρου είναι µια επίπεδη κίνηση που συνίσταται από µια ευθύγ ραµµη µεταφορική κίνηση και µια περιστροφική κίνηση περί τον άξονά του. Εάν v είναι η µεταφορική ταχύτητα του κυλίνδρου κατά µια τυχαία χρονική στιγµή t και η αντίστοιχη γωνιακή του ταχύτητα, τότε το µέτρο της αντί στοιχης ταχύτητας v της λωρίδας επαφης ΜΝ είναι ίσο µε v-ωr. H αντίστοι χη επαγωγική ηλεκτρεγερτική δύναµη που είναι εντοπισµένη πάνω στην λωρί δα ΜΝ έχει την πολικότητα που φαίνεται στο σχήµα (9), η δε τιµή της δίνεται

2 από την σχέση: E " = BLv = BL(v - #r) (1) H ένταση του επαγωγικού ρεύµατος την χρονική στιγµή t είναι: (1) I " = E " /R I " = BL(v - #r)/r () Σχήµα 9 Σχήµα 10 Tο µέτρο της αντίστοιχης δύναµης Laplace είναι: () F L = BLI " F L = B L (v - r)/r (3 Eξάλλου ο κύλινδρος στην διάρκεια της κινήσεώς του εκτός από την δύναµη Laplace δέχεται το βάρος του w, το οποίο αναλύεται στην παράλληλη προς τις ράβδους συνιστώσα w 1 και την κάθετη προς αυτές συνιστώσα w και τέλος την αντίδραση N των ράβδων, της οποίας ο φορέας διέρχεται από το κέντρο µάζας του κυλίνδρου (σχ. 10). Εφαρµόζοντας τον δεύτερο νόµο κίνησης του Νεύτωνα για την µεταφορική κίνηση του κυλίνδρου παίρνουµε την σχέση: (3) w 1 - F L = ma C mgµ" - B L R dv (v - #r) = m dt dv dt + B L (v - r) = g"µ# (4) mr όπου η a C επιτάχυνση του κέντρου µάζας του κυλίνδρου την χρονική στιγµή t που τον εξετάζουµε. Ακόµη εφαρµόζοντας για την περιστροφική κίνηση του κυλίνδρου τον θεµελιώδη νόµο της στροφικής κίνησης παίρνουµε: (3) F L r= mr ' B L R (v - r)= mr d dt r d dt = B L mr d(r) (v - r) - B L (v - r) = 0 (5) dt mr

3 όπου ' η γωνιακή επιτάχυνση του κυλίνδρου την χρονική στιγµή t. Συνδυά ζοντας τις σχέσεις (4) και (5) παίρνουµε: dv dt + d(r) = g"µ# dv + d(r) = g"µ#dt dt Ολοκληρώνοντας την παραπάνω σχέση παίρνουµε: v + r = gt"µ# + C (6) Eπειδή για t=0 είναι v=0 και ω=0, η σταθερά ολοκλήρωσης C είναι µηδενική και η (6) γράφεται: v + r = gt"µ# (7) ii) Aφαιρώντας κατά µέλη τις σχέσεις (4) και (5) παίρνουµε: dv dt - d(r) + B L (v - r) = g"µ# dt mr d(v - r) dt + B L mr (v - r) = g"µ# dv dt + "v = g#µ (8) όπου τέθηκε α=β L /mr. H (8) είναι µια µη οµογενής γραµµική διαφορική εξί σωση πρώτου βαθµού µε σταθερούς συντελεστές και δέχεται µερική λύση της µορφής: [v (t)] 1 = g"µ# / (9) H αντίστοιχη οµογενής εξίσωση της (8) δέχεται λύση της µορφής: [v (t)] = Ke -"t (10) όπου Κ σταθερά ολοκλήρωσης που θα καθορισθεί από τις αρχικές συνθήκες κινήσεως του κυλίνδρου. Η γενική λύση της (8) έχει την µορφή: (9),(10) v (t) = [v (t)] 1 + [v (t)] v (t) = g"µ# / + Ke -t (11) Όµως για t=0 είναι v ε (0)=0, οπότε η (11) δίνει: 0 = gµ" /# + K K = -gµ" /# και η (11) γράφεται: v (t) = g"µ# - g"µ# e-t v (t) = g"µ# ( 1 - e ) -t

4 v - r = g"µ# ( 1 - e ) -t (1) Aπό την(1) προκύπτει ότι η ποσότητα v-ωr δεν µπορεί να µηδενιστεί, που σηµαίνει ότι δεν υπάρχει χρονική στιγµή µετά από την οποία αρχίζει η χωρίς ολίσθηση κύλιση του κυλίνδρου. iii) Συνδυάζοντας τις σχέσεις () και (1) παίρνουµε: I " = BL R g#µ ( 1 - e ) -t I " = gm#µ BL ( 1 - ) e-t (13) Παρατηρούµε από την (13) ότι η ένταση του επαγωγικού ρεύµατος στον αντι στάτη αυξάνεται εκθετικά µε τον χρόνο, από την µηδενική τιµή στην τιµή mgηµφ/βl την οποία λαµβάνει ασυµπτωτικά. Παρατήρηση Α Προσθέτοντας κατά µέλη τις σχέσεις (7) και (1) παίρνουµε: v = gµ" ( 1 - e ) -#t + gtµ" v = gµ" 1 + #t - e -#t # # Όµως για τον εκθετικό όρο e -αx ισχύει: ( ) (14) e -t = 1 - t 1 + t - 3 t οπότε η σχέση (14) γράφεται: v = gµ" # & 1 + #t #t 1 - # t + # 3 t 3 3 ' -...) ( v = gµ" # & #t 1 - # t + # 3 t 3 3 ' -...) (15) ( Eάν η τιµή της ποσότητας α είναι πολύ µικρή, (λόγου χάρη το µαγνητικό πεδίο είναι εξαιρετικά ασθενές), µπορούµε στην σχέση (15) να παραλείψουµε τους όρους στους οποίους η ποσότητα αt είναι υψωµένη σε δύναµη µεγαλύτερη ή ίση του δύο, οπότε η (15) παίρνει την προσεγγιστική µορφή: v gt"µ# = mr"µ# ( ' & B L * t ) δηλαδή στην περίπτωση αυτή η µεταφορική κίνηση του κυλίνδρου είναι περίπου οµαλά επιταχυνόµενη µε επιτάχυνση µέτρου mrηµφ/β L. Χρησι µοποιώντας τις σχέσεις (1) και (14) καταλήγουµε σε ανάλογη παρατήρηση για την γωνιακή ταχύτητα της περιστροφικής κίνησης του κυλίνδρου. Παρατήρηση Β

5 Εάν το µαγνητικό πεδίο απουσιάζει (Β=0), τότε θα είναι α=0 και θα έχουµε: v = lim " 0 ' & g#µ ( ( 1 + t - e ) -t * ) και λόγω του κανόνα L Hospital θα είναι: v = gµ" lim [d(1 + #t - e -#t )/ d#] # 0 lim(d# / d#) # 0 = gµ" lim(t + te -#t ) # 0 =gtµ" 1 η οποία συνδυαζόµενη µε την (7) δίνει ω=0. Δηλαδή απουσία µαγνητικού πεδίου ο κύλινδρος δεν περιστρέφεται, αλλά µόνο µεταφέρεται µε επιτάχυση µέτρου gηµφ. P.M. fysikos Oµογενής ράβδος AΓ µάζας m και µήκους L, µπο ρεί να στρέφεται περί σταθερό οριζόντιο άξονα που διέρχεται από το άκρο της A και είναι κάθετος στην ράβδο. H ράβδος ισορροπεί σε ορι ζόντια θέση µε την βοήθεια ενός ιδανικού κατακόρυφου ελατηρίου, όπως φαίνεται στο σχήµα (11). Κάποια στιγµή εξασκείται στο κέντρο µάζας C της ράβδου δύναµη P, της οποίας ο φορέας ανήκει στο κατα κόρυφο επίπεδο που διέρχεται από την ράβδο, σχήµατιζει µε αυτήν γωνία φ και έχει φορά προς τα κάτω. Εάν το µέτρο της P είναι ίσο µε 3mg, όπου g η επιτάχυνση της βαρύτητας, να βρείτε: i) την επιτάχυνση του άκρου Γ της ράβδου, αµέσως µετά την εφαρ µογή της δύναµης P και ii) την οριζόντια και κατακόρυφη συνιστώσα της δύναµης που εξασκεί στην ράβδο ο άξονας περιστροφής της, αµέσως µετά την εφαρ µογή της δύναµης P. Δίνεται η ροπή αδράνειας I Α =ml /3 της ράβδου ως προς τον άξονα περιστροφής της. ΛΥΣΗ: i) Πριν εφαρµοσθεί η δύναµη P η ράβδος ισορροπεί σε οριζόντια θέση υπό την επίδραση του βάρους της w =m g, της δύναµης F 0 από το τεντωµένο ελατήριο και της δύναµης επαφής R 0 µε τον άξονα περιστροφής της (σχ. 11). Λόγω της ισορροπίας της ράβδου η συνισταµένη των ροπών των τριών αυτών δυνάµεων, περί το άκρο Α της ράβδου, είναι µηδενική, δηλαδή ισχύει η σχέση: -F 0 L + mgl/ + R 0 0 = 0 F 0 = mg/ (1) Με την δράση της δύναµης P η ράβδος αποκτά περιστροφική κίνηση περί το άκρο της Α και την χρονική στιγµή t=0, δηλαδή αµέσως µετά την δράση της P η γωνιακή της επιτάχυνση ', συµφωνα µε τον θεµελιώδη νόµο της στροφικής κίνησης, ικανοποιεί την σχέση:

6 " (A) = I A #' -F 0 L + mg L + P L y = ml (1) 3 ' - mg + mg + P ml 3mg ml µ" = #' µ" = 3 3 #' '= 9g"µ# L () Σχήµα 11 Σχήµα 1 Εξάλλου την χρονική στιγµή t=0 η γωνιακή ταχύτητα της ράβδου είναι µηδε νική, που σηµαίνει ότι η γραµµική ταχύτητα όλων των σηµείων της την στιγµή αυτή είναι µηδενική. Άρα η αντίστοιχη κεντροµόλος επιτάχυνση του άκρου Γ είναι µηδενική, δηλαδή το άκρο Γ έχει µόνο επιτρόχιο επιτάχυνση την στιγµή t=0, της οποίας το µέτρο δίνεται από την σχέση: () a = "'L a = 9g"µ# L L = 9g"µ# (3) ii) Eξετάζοντας την χρονική στιγµή t=0 την κίνηση του κέντρου µάζας C της ράβδου παρατηρούµε ότι η συνισταµένη των δυνάµεων R x και P x που ενερ γούν κατα την διεύθυνση της ράβδου ενεργεί ως κεντροµόλος δύναµη για το κέντρο µάζας και επειδή την στιγµή αυτή η ταχύτητα του C είναι µηδενική, ισχύει η σχέση: -P x + R x = 0 R x = P x = 3mg"# (4) όπου R x η οριζόντια συνιστώσα της δύναµης που δέχεται η ράβδος από τον άξονα περιστροφής την χρονική στιµή t=0. Eξάλλου την ίδια στιγµή η συνιστα µένη των δυνάµεων που ενεργούν κάθετα προς την ράβδο αποτελεί επιτρόχιο δύναµη για το κέντρο µάζας της, δηλαδή ισχύει η σχέση: (1) -R y - F 0 + P y + mg = ma C -R y - mg + 3mgµ" + mg = ml #' () -R y + 3mgµ" + mg = 9mgLµ" 4L R y = mg ( 4 3µ" + ) (5)

7 όπου a C η αντίστοιχη επιτρόχια επιτάχυνση του κέντρου µάζας και R y η αντί στοιχη κατακόρυφη συνιστώσα της δύναµης που δέχεται η ράβδος από τον άξο να περιστροφής της. P.M. fysikos Ένα µεταλλικό στεφάνι µάζας Μ, ισορροπεί µε το επίπεδό του κατακόρυφο εφαπτόµενο σε λείο οριζόντιο δάπεδο και σε δύο λείους κατακόρυφους τοίχους, οι οποίοι είναι αντικρυστοί, όπως φαίνεται στο σχήµα (13). Η επαφή του στεφανιού µε τον δεξιό τοίχο συµβαίνει στο πάνω άκρο του τοίχου, που απέχει από το δάπεδο από σταση ίση προς την ακτίνα R του στεφανιού. Ένας µικρός δακτύλιος µάζας m διαπερνά το στεφάνι και µπορεί να ολισθαίνει χωρίς τριβή κατά µήκος αυτού. Αρχικά ο δακτύλιος βρίσκεται στο ανώτατο ση µείο Α 0 του στεφανιού και το σύστηµα ισορροπεί. Δίνουµε µια ελαφρά οριζόντια ώθηση στον δακτύλιο, ώστε να τεθεί σε κίνηση. i) Να βρεθεί η µικρότερη δυνατή τιµή του λόγου m/m για την οποία επίκειται η ανύψωση του στεφανιού πάνω από το οριζόντιο δάπεδο. ii) Πόση είναι η διαφορά των δυνάµεων µε τις οποίες καταπονούνται οι δύο τοίχοι από το στεφάνι, την στιγµή που επίκειται η ανύψωσή του; ΛΥΣΗ: i) Eξετάζουµε το σύτηµα στεφάνι-δακτύλιος κατά µια τυχαία στιγµή, που η επιβατική ακτίνα του δακτυλίου ως προς το κέντρο Κ του στεφανιού σχήµατίζει µε την κατακόρυφη διεύθυνση γωνία φ και δεχόµαστε ότι την στιγ µή αυτή το στεφάνι ισορροπεί. Οι δυνάµεις που δέχεται το στεφάνι είναι το βάρος του M g, η δύναµη επαφής N 1 από τον αριστερό τοίχο, της οποίας ο φορέ Σχήµα 13 ας είναι οριζόντιος και διέρχεται από το κέντρο Κ, η κατακόρυφη δύναµη επα φής N από το λείο οριζόντιο δάπεδο της οποίας ο φορέας διέρχεται από το Κ, η

8 ορίζόντια δύναµη επαφής N από τον δεξιό τοίχο και η δύναµη επαφής F από τον δακτύλιο, των οποίων οι φορείς επίσης διέρχονται από το κέντρο Κ. διότι οι επαφές αυτές είναι χωρίς τριβή. Λόγω της ισορροπίας του στεφανιού η συνι σταµένη των κατακόρυφων δυνάµεων που δέχεται είναι µηδενική, δηλαδή ισχύει η σχέση: Mg - N - F y = 0 Mg - N - F"# = 0 (1) Εξάλλου ο δακτύλιος δέχεται το βάρος του w και την δύναµή επαφής F ' από το στεφάνι, η οποία είναι αντίθετη της F, σύµφωνα µε το αξίωµα δράσηςαντίδρασης και ως εκ τούτου έχει ακτινική διεύθυνση µε φορά προς το κέντρο Κ. Η συνισταµένη των ακτινικών δυνάµεων που δέχεται ο δακτύλιος την στιγ µή αυτή ενεργεί ως κεντροµόλος δύναµη και εποµένως ισχύει: F'+ w'= mv /R F'+ w"# = mv /R F'= mv /R - mg"# F= m(v /R - g"#) () όπου v η ταχύτητα του δακτυλίου την στιγµή που τον εξετάζουµε. Όµως η µηχανική ενέργεια του δακτυλίου διατηρείται στην διάρκεια της κίνησής του και το γεγονός αυτό µας επιτρέπει να γράψουµε την σχέση: = -mg(r - R"#) + mv / v = gr(1 - "#) (3) Συνδυάζοντας τις σχέσεις () και (3) παίρνουµε: F= m[g(1 - "#) - g"#] F= mg( - 3"#) (4) Η (1) λόγω της (4) γράφεται: Mg - N - mg( - 3"#)"# = 0 (5) Όταν επίκειται η ανύψωση του δάκτυλίου, αυτός ισορροπεί οριακά και ισχύει Ν=0, οπότε την στιγµή αυτή η (5) παίρνει την µορφή: Mg - mg( - 3"# * )"# * = 0 M - m"# * + 3m"# * = 0 3"# * - "# * + M/m = 0 (6) όπου φ * η αντίστοιχη τιµή της γωνίας φ. Η (3) αποτελεί µια εξίσωση δεύτερου βαθµού ως προς συνφ * και πρέπει να έχει ρίζες πραγµατικές για να είναι αποδεκτή η γωνία φ *, δηλαδή πρέπει η διακρίνουσα της να είναι µη αρνητική που σηµαίνει ότι πρέπει να ισχύει η σχέση: 4-1M/m 0 m/m 1/3 (m/m) min = 1/3 ii) Tην στιγµή που ανυψώνεται ο δακτύλιος η συνισταµένη των οριζόντιων δυνάµεων που δέχεται είναι µηδενική, δηλαδή ισχύει η σχέση:

9 (4) N 1 - N + F x = 0 N - N 1 = Fµ" * N - N 1 = mg( - 3"# * )µ * N - N 1 = mg( - 3"# * ) 1 - "# * Όµως το συνφ * αποτελεί την διπλή ρίζα της (6), δηλαδή ισχύει συνφ * =1/3 οπότε η προηγούµενη σχέση γράφεται: N - N 1 = mg( - 1) 1-1/9 N - N 1 = mg 8 / 3 P.M.Fysikos Δύο σφαίρες της ίδιας ακτίνας R και του ίδιου βά ρους w ισορροπούν εφαπτόµενες εξωτερικά µεταξύ τους, ενώ εφάπ τονται εσωτερικά µιας κοίλης σφαιρικής επιφάνειας κέντρου Ο και ακτίνας 4R, η οποία είναι ακλόνητη (σχ. 14). Οι δύο σφαίρες συγκρα τούνται ώστε η διάκεντρος της µιας και της σφαιρικής επιφάνειας να είναι κατακόρυφη, ενώ η διάκεντρος της άλλης µε την σφαιρική επι φάνεια να σχηµατίζει γωνία φ µε την πρώτη διάκεντρο. i) Εάν ο συντελεστής οριακής τριβής σε όλες τις επαφές είναι ίδιος, να βρεθούν οι τιµές του για τις οποίες το σύστηµα ισορροπεί όταν αφεθεί ελεύθερο. ii) Να βρεθούν οι αντιδράσεις στα σηµεία επαφής των σφαιρών µε την κοίλη επιφάνεια, όταν η γωνία φ επιβάλλει έναρξη ολίσθησης των σφαιρών. ΛΥΣΗ: i) Υποθέτουµε ότι η γωνία φ έχει τέτοια τιµή, ώστε το σύστηµα των δύο σφαιρών να ισορροπεί οριακά όταν η διάκεντρος ΟΚ 1 είναι κατακόρυφη. Τότε επίκειται η ολίσθηση των δύο σφαιρών επί της κοίλης σφαιρικής επιφά νειας και το γεγονός αυτό σηµαίνει ότι οι φορείς των δυνάµεων F 1 και F που δέχονται οι σφαίρες από την κοίλη επιφάνεια σχηµατίζουν µε τις αντίστοιχες διακέντρους ΟΚ 1 και ΟΚ γωνία ίση µε την γωνία τριβής θ των σφαιρών και της επιφάνειας αυτής. Εξάλλου το σύστηµα στη θέση αυτή δέχεται τα βάρη w των δύο σφαιρών, των οποίων η συνισταµένη w έχει κατακόρυφο φορέα που διέρχεται από το µέσο Μ της διακέντρου Κ 1 Κ των σφαιρών. Όµως πρέπει οι φορείς των δυνάµεων F 1, F και w να διέρχονται από το ίδιο σηµείο, το οποίο στην περίπτωσή µας είναι το Μ. Αυτό εξηγείται ως εξής. Επειδή οι φορείς των δυνάµεων F 1, F έχουν την ίδια κλίση ως προς τις ίσες πλευρές του ισοσκελούς τριγώνου ΟΑ 1 Α, τέµνονται επί της διχοτόµου της γωνίας Κ 1 ΟΚ. Αλλά από το σηµείο τοµής τους πρέπει να διέρχεται και ο φορέας της w και αυτό είναι δυνατόν µόνο όταν το σηµείο αυτό είναι το Μ, αφού ο φορέας της w διέρχεται από το σηµείο αυτό. Εξάλλου για την γωνία x που εµφανίζεται στο σχήµα (14) ισχύουν οι σχέσεις:

10 x = x = "/ - # & = "/ - # = " 4 - # Σχήµα 14 Σχήµα 15 & "# = " 4 - ) ( ' * + n = " # 4 - ( ' & * (1) ) όπου n ο συντελεστής οριακής τριβής µεταξύ των σφαιρών και της κοίλης επι φάνειας. Αν εποµένως ισχύει η σχέση: n > " # 4 - ( ' * & ) το σύστηµα θα ισορροπεί µε την διάκετρο ΟΚ 1 κατακόρυφη. Ακόµη από το ισοσκελές τρίγωνο Α 1 Κ 1 Μ προκύπτει η σχέση: A 1 M = Rσυνθ () ενώ από το ορθογώνιο τρίγωνο Κ 1 ΜΟ προκύπτει η σχέση: OM = (3R) - R = 8R = R (3) Διαιρώντας κατά µέλη τις σχέσεις () και (3) παίρνουµε: A 1 M OM = "# < 1 A 1M < OM δηλαδή > " "# > n > "" (4) Oι σχέσεις (1) και (4) δεσµέυουν τις τιµές του συντελεστή n, ώστε το σύστηµα να ισορροπεί υπό τις συνθήκες που θέτει το πρόβληµα. ii) Τα µέτρα των δυνάµεων F 1 και F, όταν το σύστηµα βρίσκεται σε οριακή ισορροπία, ικανοποιούν τις σχέσεις:

11 F 1 µ [" - (# + )] = F µ(" - ) = w µ(# + ) και F 1 = F = wµ [" - (# + )] µ(# + ) = wµ (# + ) µ (# + ) wµ (" - #) µ( + #) = wµ# µ( + #) µε εφθ = n P.M. fysikos Δύο ακριβώς όµοιες λεπτές ράβδοι είναι αρθρωµέ νες κατά το ένα ακρο τους, ενώ τα ελεύθερα άκρα τους εφάπτονται λείου οριζόντιου δαπέδου το δε επίπεδό τους κρατείται κατακόρυφο, ώστε η άρθρωση Ο των ράβδων να βρίσκεται σε ύψος h από το δάπε δο. Κάποια στιγµή το σύστηµα αφήνεται ελεύθερο και οι άκρες των ράβδων ολισθαίνουν πάνω στο δάπεδο, ενώ το επίπεδό τους παραµέ νει κατακόρυφο. Να βρεθεί η ταχύτητα του κοινού άκρου Ο των ράβδων την στιγµή που αυτές φθάνουν στο έδαφος. Δίνεται η επιτά χυνση g της βαρύτητας και ότι η ροπή αδράνειας µιας λεπτής ράβδου µήκους L και µάζας m, περί άξονα που διέρχεται από το κέντρο της C και είναι κάθετος στην ράβδο, δίνεται από την σχέση Ι C =ml /1. ΛΥΣΗ: Μπορούµε να ισχυριστούµε ότι οι ράβδοι έχουν συµµετρική κίνηση ως προς την κατακόρυφη διεύθυνση που διέρχεται από το κοινό τους άκρο Ο, δηλα δή οι ταχύτητες δύο σηµείων Μ 1 και Μ των ράβδων που είναι συµµετρικά ως προς την κατακόρυφη αυτήν, έχουν ταχύτητες των οποίων τα διανύσµατα είναι επίσης συµµετρικά ως προς την κατακόρυφη. Αυτό σηµαίναι ότι οι µεν οριζόν τιες συνιστώσες v 1x και v x των ταχυτήτων αυτών είναι αντίθετες, ενώ οι κα Σχήµα 16 τακόρυφες συνιστώσες τους v 1y και v y είναι ίσες (σχ. 16). Αν η ιδιότητα αυτή εφαρµοσθεί για το κοινό σηµείο Ο των δύο ράβδων, θα καταλήξουµε στο συµπέ

12 ρασµα ότι για το σηµείο αυτό ισχύει v 1x = v x = 0, που σηµαίνει ότι η ταχύτητα v του Ο είναι κάθε στιγµή κατακόρυφη µε φορά προς τα κάτω. Εστιάζοντας την προσοχή µας στην επίπεδη κίνηση της µιας ράβδου (λογουχάρη της ΟΑ) παρατηρούµε ότι η κίνηση αυτή µπορεί κάθε στιγµή t να θεωρηθεί ως καθαρώς στροφική κίνηση περί το αντίστοιχο στιγµιαίο κέντρο περίστροφής Κ 1, που προκύπτει ως τοµή των καθέτων ευθειών στις διευθύνσεις των ταχυτήτων των άκρων Ο και Α της ράβδου στα σηµεία αυτά (σχ. 17). Εάν είναι η γωνιακή τα χύτητα της ράβδου κατά την στιγµή t, τότε το µέτρο της αντίστοιχης ταχύτη τας v του σηµείου Ο θα δίνεται από την σχέση: v = (OK 1 ) = L - y (1) όπου y η αντίστοιχη απόσταση του Ο από το οριζόντιο δάπεδο. Tην ίδια στιγµή t η κινητική ένεργεια Κ (ΟΑ) της ράβδου είναι: K (OA) = I K1 / () Όµως, σύµφωνα µε το θεώρηµα Steiner η ροπή αδράνειας I K1 της ράβδου περί το στιγµιαίο κέντρο Κ 1 περιστροφής της είναι: I K1 = I C1 + m(c 1 K 1 ) = ml /1 + ml /4 = ml /3 οπότε η () γράφεται: K (OA) = ml / 6 (3) Σχήµα 17 Eφαρµόζοντας το θεώρηµα διατήρησης της µηχανικής ενέργειας για το σύστη µα των δύο ράβδων και για τον χρόνο t, παίρνουµε την σχέση: 0 + mg(h/) = K (OA) + U (OA) mgh = ml / 6+ mgy/ gh = L / 3+ gy L = 3g(h - y) = 3g(h - y/l (4) Συνδυάζοντας τις σχέσεις (1) και (4) παίρνουµε:

13 v = [ 3g(h - y)/l] L - y = 3g(h - y) L - y /L (5) Εφαρµόζοντας την (5) την στιγµή t * που το Ο φθάνει στο δάπεδο (y=0) παίρνου µε: v * = 3ghL /L = 3gh (6) όπου v * η ζητούµενη ταχύτητα. P.M. fysikos

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T! Επί της κεκλιµένης έδρας µιας ορθογώνιας και ισοσκελούς σφήνας µάζας m, η οποία ισορροπεί πάνω σε οριζόντιο έδαφος, αφήνεται µικρός κύβος µάζας m. Μεταξύ του κύβου και της σφήνας δεν υπάρχει τριβή, ενώ

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος. H τροχαλία του σχήµατος () µάζας m και ακτίνας R, ισορροπεί εξαρτηµένη από τα νήµατα ΑΒ και ΓΔ τα οποία είναι ισο κεκλιµένα ως προς την οριζόντια διεύθυνση κατα γωνία φ. Κάποια στιγµή κόβουµε το νήµα ΑΒ

Διαβάστε περισσότερα

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T!

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T! Tο ένα άκρο A οµογενούς ράβδου AB αρθρώνεται σε οριζόντιο επίπεδο, ενώ το άλλο της άκρο Β εφάπτεται κατακόρυ φου τοίχου, µε τον οποίο η ράβδος παρουσιάζει συντελεστή οριακής τριβής µ. H άρθρωση της ράβδου

Διαβάστε περισσότερα

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A! Η οµογενής ράβδος ΑΒ του σχήµατος έχει βά ρος w και στηρίζεται διά του άκρου της Α σε τραχύ κεκλιµένο επί πεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, ενώ το άλλο της άκρο Β ακουµπάει σε λείο κατακόρυφο

Διαβάστε περισσότερα

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας. Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει

Διαβάστε περισσότερα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής

Διαβάστε περισσότερα

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον Oµογενής λεπτός δίσκος ακτίνας R και µάζας m, ακινητεί επί οριζόντιου εδάφους µε το οποίο παρουσιάζει συντελεστή οριακής τριβής µ το δε επιπεδό του είναι κατακόρυφο,. Κάποια στιγµή εφαρµόζεται στο κέντρο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου.

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου. Oµογενής ράβδος Γ, βάρους w και µήκους L, είναι αρθρωµένη στο ένα άκρο της όπως φαίνεται στο σχήµα (), ενώ το άλλο άκρο της είναι δεµένο σε νήµα που διέρχεται από µικρή ακίνητη τροχαλία O, η οποία βρίσκεται

Διαβάστε περισσότερα

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού

Διαβάστε περισσότερα

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,!

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,! Θεωρούµε µια βαρειά σφαίρα, η οποία ισορροπεί επί σχετικά µαλακού εδάφους, ώστε να προκαλεί σ αυτό µια µικρή παραµόρφωση. Λόγω της συµµετρίας που παρουσιάζει η παραµόρφωση αυτή, ως προς την κατακόρυφη

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a!

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a! Ένας κυκλικός δίσκος ακτίνας R φέρει κυκλική οπή ακτίνας R/, της οποίας το κέντρο Κ βρίσκεται σε απόσταση R/ από το κέντρο Ο του δίσκου, µπορεί δε να κυλίεται σε µη λείο οριζόντιο έδαφος. i) Εκτρέπουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4. Οριζόντιος δίσκος µάζας Μ ισορροπεί στηριζόµε νος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο στηρίζεται στο έδαφος (σχήµα 1). Ένα µικρό σφαιρίδιο µάζας m, προσκρούει

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας. Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας. Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της

Διαβάστε περισσότερα

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v.

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v. Το καρούλι του σχήµατος κυλίεται χωρίς ολίσ θηση πάνω σε οριζόντιο δοκάρι, που ολισθαίνει επί οριζοντίου έδα φους µε ταχύτητα v η οποία έχει την κατεύθυνση του δοκαριού. Η κύλιση του καρουλιού επιτυγχάνεται

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων ΜΕΡΟΣ Γ η οµάδα λυµένων παραδειγµάτων Στις άκρες αβαρούς και λεπτής ράβδου µηκούς L, έχουν στερεωθεί δύο όµοιες σφαίρες, µάζας m και ακτίνας R, το δε σύστηµα στρέφεται µε σταθερή γωνιακή ταχύτητα περί

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη.

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη. Η ράβδος του σχήµατος έχει µήκος L, βάρος w και στηρίζεται διά του άκρου της Α επί λείου τοίχου, ενώ το άλλο άκρο της Β ακουµπά ει σε λεία κοίλη επιφάνεια. Η τοµή της επιφάνειας µε κατακόρυφο επίπεδο που

Διαβάστε περισσότερα

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη.

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη. Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R

Διαβάστε περισσότερα

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση: Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2 ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Μηχανική Στερεού Ασκήσεις Εμπέδωσης Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

mu R mu = = =. R Γενική περίπτωση ανακύκλωσης

mu R mu = = =. R Γενική περίπτωση ανακύκλωσης Γενική περίπτωση ανακύκλωσης Με τον όρο ανακύκλωση εννοούμε την κίνηση ενός σώματος σε κατακόρυφο επίπεδο σε κυκλική τροχιά. Χαρακτηριστικό παράδειγμα τέτοιας κίνησης είναι η κίνηση στο roller coaster,

Διαβάστε περισσότερα

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

ΤΕΣΤ 17. η ελάχιστη δυνατή συχνότητα ταλάντωσης των πηγών, ώστε τα κύµατα να συµβάλλουν ενισχυτικά στο σηµείο Σ και f

ΤΕΣΤ 17. η ελάχιστη δυνατή συχνότητα ταλάντωσης των πηγών, ώστε τα κύµατα να συµβάλλουν ενισχυτικά στο σηµείο Σ και f ΘΕΜΑ aaα 1. ΤΕΣΤ 17 Επάνω σε λείο οριζόντιο επίπεδο βρίσκονται δύο µικρά και όµοια σώµατα ίδιας µάζας, που φέρουν το ένα ποµπό (Π) και το άλλο δέκτη ( ) ηχητικών κυµάτων. Αρχικά το σώµα που φέρει τον ποµπό,

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΩΗ 1. Ευθύγραμμος αγωγός μήκους L = 1 m κινείται με σταθερή ταχύτητα υ = 2 m/s μέσα σε ομογενές μαγνητικό πεδίο έντασης Β = 0,8 Τ. Η κίνηση γίνεται έτσι ώστε η ταχύτητα του αγωγού να σχηματίζει γωνία

Διαβάστε περισσότερα

Ασκήσεις 6 ου Κεφαλαίου

Ασκήσεις 6 ου Κεφαλαίου Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη

Διαβάστε περισσότερα

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση α) Το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση λίγο πριν και αμέσως μετά το κόψιμο του νήματος, Η ομογενής και ισοπαχής ράβδος

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου του δακτυλιδιού. Σχήµα 1 Σχήµα 2 L C

i) Nα βρεθεί η επιτάχυνση του κέντρου του δακτυλιδιού. Σχήµα 1 Σχήµα 2 L C Ένα στερεό σώµα αποτελείται από λεπτό δακτυ λίδι µάζας m και ακτίνας R και από δύο όµοιες λεπτές ράβδους µαζάς m η κάθε µια, των οποίων τα κέντρα έχουν ηλεκτροκολυθεί µε το δακτυλίδι, σε αντιδιαµετρικά

Διαβάστε περισσότερα

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και Oµογενής κύλινδρος µάζας m και ακτίνας R εφάπ τεται στα τοιχώµατα ενός αυλακιού, τα οποία είναι επίπεδες σταθερές επιφάνειες που η τοµή τους είναι οριζόντια. Τα τοιχώµατα είναι ισο κεκλιµένα ως προς τον

Διαβάστε περισσότερα

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L! Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν Ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε, παραµένουν αµετάβλητες µε τον χρόνο. Για την µελέτη της επίπεδης κίνησης στερεού

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

που δέχεται από την παράπλευρη επιφάνεια του κώνου, της οποίας ο φορέας είναι κάθετος στην επιφάνεια αυτή, αφού θεωρείται λεία και των δυνάµεων T

που δέχεται από την παράπλευρη επιφάνεια του κώνου, της οποίας ο φορέας είναι κάθετος στην επιφάνεια αυτή, αφού θεωρείται λεία και των δυνάµεων T Mιά κυκλική σπείρα εύκαµπτης αλυσίδας βάρους w, είναι τοποθετηµένη πάνω σε λείο ορθό κώνο ύψους h, του οποίου η βάση έχει ακτίνα R (σχ. 9). O κατακόρυφος άξονας του κώνου διέρ χεται από το κέντρο της αλυσίδας

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Διερεύνηση της σχέσης L=ω Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. Η ροπή αδράνειας Ι

Διαβάστε περισσότερα

από τα σύρµατα λόγω της συµµετρίας τους ως προς την µεσοκάθετο θα δίνουν συνι σταµένη δύναµη F µε κατεύθυνση προς το Ο, που σηµαίνει ότι το σφαιρίδιο

από τα σύρµατα λόγω της συµµετρίας τους ως προς την µεσοκάθετο θα δίνουν συνι σταµένη δύναµη F µε κατεύθυνση προς το Ο, που σηµαίνει ότι το σφαιρίδιο Mικρό σφαιρίδιο µάζας m, είναι στερεωµένο στην µια άκρη δύο ακριβώς όµοιων λεπτών συρµάτων, των οποίων οι άλλες άκρες συνδέονται προς δύο σταθερά σηµεία Α και Β λείου ορι ζόντιου δαπέδου που βρίσκονται

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

, που είναι στατική τριβή µε κατεύθυνση αντίθετη της ταχύτητας του κέντρου µάζας C 1 της σφαίρας (σχήµα 1) και η δύναµη επαφής!

, που είναι στατική τριβή µε κατεύθυνση αντίθετη της ταχύτητας του κέντρου µάζας C 1 της σφαίρας (σχήµα 1) και η δύναµη επαφής! Δύο οµογενείς σφαίρες Α και Β, της ίδιας ακτίνας R µε αντίστοιχες µάζες m και m είναι ακίνητες επί οριζοντίου εδάφους και εφάπ τονται µεταξύ τους. Κάποια στιγµή που λαµβάνεται ως αρχή µέτρη σης του χρόνου

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Οδηγίες: ) Το δοκίμιο αποτελείται από έξι (6) θέματα. ) Να απαντήσετε σε όλα τα θέματα. ) Επιτρέπεται

Διαβάστε περισσότερα

i) Nα αποδείξετε ότι το σώµα τελικά θα ηρεµήσει ως προς το δοκάρι και να βρείτε την κοινή τους ταχύτητα στο σύστηµα αναφοράς του εδάφους.

i) Nα αποδείξετε ότι το σώµα τελικά θα ηρεµήσει ως προς το δοκάρι και να βρείτε την κοινή τους ταχύτητα στο σύστηµα αναφοράς του εδάφους. Ένα δοκάρι µεγάλου µήκους και µάζας M, είναι ακίνητο πάνω σε λείο οριζόντιο έδαφος. Στο ένα άκρο του δοκαριού βρίσκεται ξύλινο σώµα µάζας m, το οποίο παρουσιάζει µε την επιφά νεια του δοκαριού συντελεστή

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 3 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!! Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. i) Να βρεθεί η απόσταση x, ώστε την στιγµή που η ράβδος αφήνεται

Διαβάστε περισσότερα

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε: ΘΕΜΑ 6o Η κυκλική τροχαλία του σχήµατος (1) έχει µάζα Μ και ακτίνα R, είναι σε επαφή µε οριζόντιο δάπεδο (ε), ενώ στον άξονά της έχει πακτωθεί αβαρής ράβδος µήκους L, στο ελεύθερο ακρο της οποίας έχει

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T!

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T! Tο κέντρο µάζας ενός επιβατηγού αυτοκινήτου απέχει από το οριζόντιο έδαφος απόσταση h. Δίνεται η µάζα Μ του αυτοκινήτου η µάζα m και η ακτίνα R κάθε τροχού, η επιτάχυνση g της βαρύτητας και οι αποστάσεις

Διαβάστε περισσότερα

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V!

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V! Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V 0. O πιλότος του θέλει ν αλλάξει τη διεύθυνση κίνησης του διαστηµόπλοιου, ώστε η νέα διεύθυνση να γίνει κάθετη προς την αρχική. Για

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση. ΘΕΜΑ Β Ένα ομογενές σώμα με κανονικό γεωμετρικό σχήμα κυλίεται, χωρίς να

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α 6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό

Διαβάστε περισσότερα

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T! Ένα στερεό σώµα εκτελεί επίπεδη κίνηση και δύο σηµεία αυτού βρίσκονται κάποια στιγµή t στις θέσεις Α(,) και Β(,α) του επιπέδου κίνησής του (x,y) Εάν οι ταχύτητες των σηµείων αυτών έχουν το ίδιο µέτρο v

Διαβάστε περισσότερα

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση και έστω (S) η κύρια* τοµή του στερεού κατά µια τυχαία χρονική στιγµή t. Να δείξετε ότι το αντίστοιχο προς την κύρια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

i) Το επίπεδο της τροχαλίας είναι οριζόντιο και το έδαφος λείο.

i) Το επίπεδο της τροχαλίας είναι οριζόντιο και το έδαφος λείο. Πάνω σε οριζόντιο έδαφος ηρεµεί µια τροχαλία µάζας m και ακτίνας R. Στο αυλάκι της τροχαλίας έχει περιτυλιχ θεί αβαρές νήµα στο ελεύθερο άκρο Α του οποίου εξασκείται σταθε ρή οριζόνια δύναµη F. Eάν µέχρις

Διαβάστε περισσότερα