ON THE STRUCTURE OF PRINCIPAL SUBSPACES OF STANDARD MODULES FOR AFFINE LIE ALGEBRAS OF TYPE A

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ON THE STRUCTURE OF PRINCIPAL SUBSPACES OF STANDARD MODULES FOR AFFINE LIE ALGEBRAS OF TYPE A"

Transcript

1 ON THE STRUCTURE OF PRINCIPAL SUBSPACES OF STANDARD MODULES FOR AFFINE LIE ALGEBRAS OF TYPE A BY CHRISTOPHER MICHAEL SADOWSKI A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Mathematics Written under the direction of Yi-Zhi Huang and James Lepowsky And approved by New Brunswick, New Jersey May, 2014

2 ABSTRACT OF THE DISSERTATION On the structure of principal subspaces of standard modules for affine Lie algebras of type A by Christopher Michael Sadowski Dissertation Directors: Yi-Zhi Huang and James Lepowsky Using the theory of vertex operator algebras and intertwining operators, we obtain presentations for the principal subspaces of all the standard sl(3)-modules. Certain of these presentations had been conjectured and used in work of Calinescu to construct exact sequences leading to the graded dimensions of certain principal subspaces. We prove the conjecture in its full generality for all standard sl(3)-modules. We then provide a conjecture for the case of ŝl(n), n 4. In addition, we construct completions of certain universal enveloping algebras and provide a natural setting for families of defining relations for the principal subspaces of standard modules for untwisted affine Lie algebras. We also use the theory of vertex operator algebras and intertwining operators, along with conjecturally assumed presentations for certain principal subspaces, to construct exact sequences among principal subspaces of certain standard ŝl(n)-modules, n 3. As a consequence, we obtain the multigraded dimensions of the principal subspaces W (k 1 Λ 1 + k 2 Λ 2 ) and W (k n 2 Λ n 2 + k n 1 Λ n 1 ). This generalizes earlier work by Calinescu on principal subspaces of standard sl(3)-modules, where similar assumptions were made. ii

3 Acknowledgements I would like to give my deepest thanks to my advisors, Yi-Zhi Huang and James Lepowsky, for their support, guidance, and encouragement during my time at Rutgers University. I thank them for all their time and patience, and for the inspiration they provided me with throughout the years. I would also like to express my thanks to people who have contributed to this thesis. I would like to thank Corina Calinescu for conversations which led to ideas found in Chapter 4 of this thesis, and to Francesco Fiordalisi and Shashank Kanade, for letting me bounce so many ideas off of them as this work was in progress. I thank James Lepowsky, Antun Milas, and Mirko Primc for suggested improvements to various parts of the papers whose results are included in this work. During my time at Rutgers, I was exposed to a wide range of topics in representation theory through the excellent special topics courses offered by the department. I would like to thank Lisa Carbone, Roe Goodman, Yi-Zhi Huang, James Lepowsky, and Siddartha Sahi for these courses. I would also like to thank William Cook, who first introduced me to Lie algebra theory and vertex operator algebra theory as an undergraduate, and who, along with Yi-Zhi Huang, gave me my start in mathematics research. I would like to acknowledge support from Yi-Zhi Huang and NSF grant PHY during the Summer of 2011, and from the National Science Foundation s East Asia and Pacific Summer Institute program and the Beijing International Center for Mathematical Research during the Summer of I would also like to thank my dissertation defense committee, consisting of Yi-Zhi Huang, James Lepowsky, Haisheng Li, and Antun Milas, for serving as committee members and for taking the time to review this work and provide comments. iii

4 Lastly, I would like to thank my family: my parents Henryk and Zofia, and my brother Thomas, for all their love, support, and encouragement. iv

5 Dedication To my parents. v

6 Table of Contents Abstract ii Acknowledgements iii Dedication v 1. Introduction Preliminaries Constructions in the sl(n + 1) case The case of g = sl(3) Principal subspaces of standard modules General definitions Details for the sl(3) case Presentations of the principal subspaces of the standard sl(3)-modules A proof of the presentations Presentations of principal subspaces of standard modules and a completion of U( n) A reformulation of the presentation problem Exact sequences and multigraded dimensions Exact sequences Multigraded dimensions Appendix vi

7 7.1. A completion of the universal enveloping algebra of certain nilpotent Lie algebras References vii

8 1 Chapter 1 Introduction There is a long-standing connection between the theories of vertex operators and vertex operator algebras ([B], [FLM], [LL], etc.) and affine Lie algebras (cf. [K]) on the one hand, and Rogers-Ramanujan-type combinatorial identities (cf. [A]) on the other hand ([LM], [LW1] [LW4], [LP1] [LP2], and many other references). In this introduction, we briefly sketch the results found in this thesis about several closely related problems. The first of these problems concerns finding presentations for principal subspaces of standard modules. In particular, we give new results concerning presentations of the principal subspaces of the standard sl(3)-modules. This set of results is the subject of Chapter 4 and can also be found in [S1]. The second of these problems concerns providing a natural setting for families of operators from which such presentations arise. Using a completion of certain universal enveloping algebras, we provide such a setting, and reformulate all known and conjectured presentations in this context. This is carried out in Chapter 5 and the Appendix. The third and final of these problems concerns finding families of exact sequences and q-difference equations. In Chapter 6, we derive such exact sequences, and obtain the multigraded dimensions of certain principal subspaces, which are related to the sum sides of Rogers-Ramanujan-type combinatorial identities. The results concerning the latter two problems can also be found in [S2]. We begin this introduction by first sketching a brief history of some of the connections between affine Lie algebras, vertex operator algebras, and Rogers-Ramanujan-type combinatorial identities. Many difference-two type partition conditions have been interpreted and obtained by the study of certain natural substructures of standard (i.e., integrable highest weight) modules for affine Lie algebras. In particular, in [FS1] [FS2], Feigin and Stoyanovsky,

9 2 motivated by the earlier work by Lepowsky and Primc [LP2], introduced the notion of principal subspace of a standard module for an affine Lie algebra, and in the case of A (1) 1 (= sl(2)) and A (1) 2 (= sl(3)) obtained, under certain assumptions (presentations for these principal subspaces in terms of generators and relations) the multigraded dimensions ( characters ) of the principal subspaces of the vacuum standard modules. Interestingly enough, these multigraded dimensions were related to the Rogers- Ramanujan partition identities, and more generally, the Gordon-Andrews identities, but in a different setting than the original vertex-algebraic interpretation of these identities in [LW2] [LW4]. A more general case was considered by Georgiev in [G], where combinatorial bases were constructed for the principal subspaces associated to certain standard A (1) n -modules. Using these bases, Georgiev obtained the multigraded dimensions of these principal subspaces. More recently, combinatorial bases have been constructed for principal subspaces in more general lattice cases ([P], [MiP]), for the principal subspaces of the vacuum standard modules for the affine Lie algebras B (1) 2 [Bu], for principal subspaces in the quantum sl(n + 1)-case [Ko], and for certain natural substructures of principal subspaces ([Pr], [J1] [J3], [T1] [T4], [Ba], [JPr]). In [CLM1] [CLM2], the authors addressed the problem of vertex-algebraically interpreting the classical Rogers-Ramanujan recursion and, more generally, the Rogers- Selberg recursions (cf. [A]) by using intertwining operators among modules for vertex operator algebras to construct exact sequences leading to these recursions. In particular, the solutions of these recursions gave the graded dimensions of the principal subspaces of the standard A (1) 1 -modules. In [CLM1] [CLM2] (as in [FS1] [FS2]), the authors assumed certain presentations for the principal subspaces of the standard sl(2)-modules (presentations that can be derived from [LP2]; the nontrivial part is the completeness of the relations). In [CalLM1] [CalLM2], the authors gave an a priori proof, again using intertwining operators, of the completeness of the presentations assumed in [FS1]-[FS2] and [CLM1] [CLM2]. These results were extended to the level 1 standard sl(n + 1)- modules by Calinescu in [C4], and later to the level 1 standard modules for the untwisted affine Lie algebras of type ADE in [CalLM3]. The desired presentations were proved, and exact sequences were obtained leading to recursions and the graded dimensions of

10 3 the principal subspaces of the level 1 standard modules. In [CalLM4], the authors have initiated the study of principal subspaces for standard modules for twisted affine Lie algebras, extending the past work of [CLM1] [CLM2], [CalLM1] [CalLM3] to the case of the level 1 standard module for the twisted affine Lie algebra A (2) 2. In the work [C3], Calinescu considered the principal subspaces of certain higher level standard sl(3)-modules. In this work, she conjecturally assumed presentations for certain principal subspaces, and using the theory of vertex operator algebras and intertwining operators, she constructed exact sequences among these principal subspaces. Using these exact sequences, along with the multigraded dimensions in [G], Calinescu was able to find the multigraded dimensions of principal subspaces which had not previously been studied. A different variant of principal subspace was considered in [AKS] and [FFJMM]. In [AKS], the authors cite well-known presentations for standard modules, and use these to provide (without proof) a set of defining relations for each principal subspace. In [FFJMM], in which the authors consider A (1) 2, they do indeed prove that certain relations form a set of defining relations for their variant of principal subspace. the case of the vacuum modules, the principal subspaces in [FFJMM] are essentially identical to the principal subspaces considered in the present work, and their defining In relations indeed agree with those in Chapter 4 of the present work. For the nonvacuum modules, the principal subspaces considered in the present work can be viewed as proper substructures of those considered in [FFJMM], and correspondingly, the defining relations we obtain are different. Our method for proving the completeness of our defining relations is completely different from the method in [FFJMM]. We now give a brief overview of the structure of this thesis. In Chapter 2, we recall certain vertex-algebraic constructions of standard sl(n + 1)-modules and of intertwining operators among these modules. In Chapter 3, we recall the notion of principal subspace of a standard module and prove certain useful properties of principal subspaces. We now very briefly recall some of these notions. Given a complex semisimple Lie algebra g, a fixed Cartan subalgebra h, a fixed set of positive roots +, and a root vector x α for each α +, consider the subalgebra n = α + Cx α g spanned by the positive

11 4 root vectors. The affinization n = n C[t, t 1 ] of n is a subalgebra of the affine Lie algebra ĝ = g C[t, t 1 ] Cc. Let L(Λ) be the standard module of ĝ with highest weight Λ and level k, a positive integer, and let v Λ L(Λ) be a highest weight vector. The principal subspace of L(Λ) is defined by W (Λ) = U( n) v Λ, (1.1) where U( ) is the universal enveloping algebra. We also have natural surjective maps f Λ : U( n) W (Λ). (1.2) By presentation of W (Λ), we mean a complete description of kerf Λ in terms of its generators. Chapter 4 in this thesis is another step forward in the spirit of [CalLM1]-[CalLM3]. We exploit intertwining operators among vertex operator algebra modules to solve the problem of giving an a priori proof of presentations for the principal subspaces of all the standard modules for A (1) 2 (= sl(3)), including those assumed conjecturally and used in [C3]. The methods used in the proof of these presentations are similar to those in [CalLM1] [CalLM3], in that certain minimal counterexamples are postulated and shown not to exist. However, in the general case, we needed to introduce certain new ideas to prove our presentations. We then proceed to formulate the presentations for principal subspaces of all the standard modules for A (1) n as a conjecture. In particular, we take g = sl(3). We precisely determine Kerf Λ in terms of certain natural left ideals of U( n). Specifically, in terms of the fundamental weights of A (1) 2, which we label Λ 0, Λ 1, and Λ 2, we may express Λ as Λ = k 0 Λ 0 + k 1 Λ 1 + k 2 Λ 2, for some nonnegative integers k 0, k 1, and k 2. We define an ideal I kλ0 in terms of left ideals generated by the coefficients of certain vertex operators associated with singular vectors in a natural way. This left ideal is then used to define a larger left ideal I Λ = I kλ0 + U( n)x α1 ( 1) k 0+k U( n)x α2 ( 1) k 0+k U( n)x α1 +α 2 ( 1) k 0+1,

12 5 where we use x(n) to denote the action of x t n ĝ for x g and n Z. We then proceed to show that Kerf Λ = I Λ. The proof of this result is similar in structure to the proof of the presentations in [CalLM2]. Considering all dominant integral weights together, we choose minimal counterexamples (certain elements in Kerf Λ \ I Λ ) and show that a contradiction is reached for each Λ. Certain maps used in [CalLM3] are also generalized and used in the proof, but these ideas do not extend to the most general case. We develop a method for reaching the desired contradictions for each Λ which rebuilds the minimal counterexample to show that it is in fact an element of I Λ. This rebuilding technique can also be used to show all of the presentations proved in the works [CalLM1]-[CalLM3] in the type A case with suitable modifications (see remarks at the end of Section 4). In [C3], certain of these presentations were conjectured and used to construct exact sequences among principal subspaces. Using these exact sequences, Calinescu obtained the previously unknown graded dimensions for principal subspaces whose highest weights are of the form k 1 Λ 1 + k 2 Λ 2, where k 1, k 2 are positive integers. The problem of constructing exact sequences for more general highest weights is still unsolved. Chapter 5 of this thesis, along with the Appendix, focuses on providing a more natural setting for the annihilating ideals which give presentations of the principal subspaces of the standard modules. In [CLM1] [CLM2] and [CalLM1] [CalLM3], the annihilator of the highest weight vector of each principal subspace is written in terms of certain elements of U(ĝ) which, when viewed as operators, annihilate the highest weight vector. An important set of these operators arises from certain null vector identities given by powers of vertex operators and are written as infinite formal sums of elements of U(ĝ) also viewed as operators. The ideals which annihilate the highest weight vectors can be expressed using operators defined by certain truncations of these formal sums, in order to view these operators as elements of U(ĝ). We provide the details of the construction of a completion of the universal enveloping algebra U( n) to give more natural presentations (without such truncations) for the defining annihilating

13 6 ideals of principal subspaces. This completion was discussed in [C1] [C2] and [CalLM3], but the details of this construction were not supplied. We prove various properties of this completion and the defining ideals for principal subspaces, including their more natural definition inside this completion. These completions may be generalized to the twisted setting used in [CalLM4] (as in [LW3], where similar completions were originally constructed in a general twisted or untwisted setting). Our main result in Chapter 6 is a natural generalization of [C3] to the case of sl(n + 1), n 2. Although our methods recover the same information as in [CLM1] [CLM2] when n = 1, we take n 2 for notational convenience. In the case where n = 2, we recover the results in [C3] with a slight variant of the methods. As in [C3], we conjecturally assume presentations for certain principal subspaces, and use these to provide exact sequences among principal subspaces of certain standard sl(n + 1)- modules. Using these exact sequences, along with the multigraded dimensions found in [G], we give previously unknown multigraded dimensions of principal subspaces. To state the main result of this chapter, we let Λ 0,..., Λ n denote the fundamental weights of sl(n + 1). The dominant integral weights Λ of sl(n + 1) are k 0 Λ k n Λ n for k 0,..., k n N, and we use L(Λ) to denote the standard module with highest weight Λ, W (Λ) to denote its principal subspace, and χ W (Λ) (x 1,..., x n, q) to denote its multigraded dimension. Our result states: Theorem Let k 1. For any i with 1 i n 1 and k i, k i+1 N such that k i + k i+1 = k, the sequences W (k i Λ i + k i+1 Λ i+1 ) φ i (1.3) W (k i Λ 0 + k i+1 Λ i ) 1 k i 1 Y c(e λ i,x) 1 k i+1 W ((k i 1)Λ 0 + (k i+1 + 1)Λ i ) 0 when k i 1, and W (k i Λ i + k i+1 Λ i+1 ) ψ i (1.4) W (k i+1 Λ 0 + k i Λ i+1 ) 1 k i+1 1 Y c(e λ i+1,x) 1 k i W ((k i+1 1)Λ 0 + (k i + 1)Λ i+1 ) 0

14 7 when k i+1 1, are exact. The maps φ i, ψ i, and Y c (e λ i, x) are maps naturally arising from the lattice construction of the level 1 standard modules and intertwining operators among these modules. As a consequence of this theorem, we obtain results about multigraded dimensions when the first map φ i or ψ i is injective, and we have the following theorem and its corollary: Theorem Let k 1. Let k 1, k 2, k n 1, k n N with k 1 1 and k n 1, such that k 1 + k 2 = k and k n 1 + k n = k. Then χ W (k 1 Λ 1 +k 2 Λ 2 ) (x 1,..., x n, q) = = x k 1 1 χ W ((k 1 1)Λ 0 +(k 2 +1)Λ 1 ) (x 1q 1, x 2 q, x 3..., x n, q) (1.5) x k 1 1 χ W (k 1 Λ 0 +k 2 Λ 1 ) (x 1q 1, x 2 q, x 3,..., x n, q) and χ W (k n 1 Λ n 1 +k nλ n) (x 1,..., x n, q) = = x kn n χ W ((k n 1)Λ 0 +(k n 1 +1)Λ n) (x 1,..., x n 1 q, x n q 1, q) (1.6) xn kn χ W (k nλ 0 +k n 1 Λ (x n) 1,..., x n 1 q, x n q 1, q). Theorem immediately gives us: Corollary In the setting of Theorem 1.0.2, we have that χ W (k 1 Λ 1 +k 2 Λ 2 ) (x 1,..., x n, q) = and = ( q r ( q r (1) n (1) 1 2 (k) +...+r 1 ( q r (1) k t=k 1 +1 r(t) 1 + k t=1 r(t) 2 r(t) 1 (1 q r(k 1 ) (q) (1) r... (q) 1 r(2) (k 1) 1 r 2 (k) +...+r 2 2 r (1) 2 r(1) (q) (1) r... (q) 2 r(2) (k 1) 2 r 1 r (k) 1 (q) r (k) r(k) 2 r(k) 1 2 r (k) 2 2 (k) 2 (1) +...+r n r n r (1) n 1... r(k) n r (k) n 1 (q) (1) r n r n (2)... (q) r (k 1) n r n (k) (q) r (k) n ) (q) r (k) 2 ) x k 1+ k i=1 r(i) 1 1 ) 1 x ) n i=1 r(i) n n χ W (k n 1 Λ n 1 +k nλ n) (x 1,..., x n, q) =

15 8 = ( q r(1) 1 (q) (1) r 1 r(2) 1 2 (k) r 1... (q) r (k 1) ( q r (1) n q k t=1 r(t) 1 r (k) 1 (q) r (k) 1 )( q r (1) 2 2 (k) +...+r 2 2 r (1) 2 r(1) (q) (1) r... (q) 2 r(2) (k 1) 2 r 2 (k) 2 (1) +...+r n r n r (1) n 1... r(k) n r (k) n 1 + k t=kn+1 r(t) n n 1 r(t) n (q) (1) r n r n (2) (1 q r(kn)... (q) r (k 1) n k n i=1 )x r(i) 1 r n (k) (q) r (k) n 1 x kn+ n n 1... r(k) 2 r(k) 1 2 r (k) 2 i=1 r(i) n ) (q) r (k) 2 ) where the sums are taken over decreasing sequences r (1) j r (2) j each j = 1,..., n. r (k) j 0 for The expressions in Corollary can also be written as follows: As in [G], for s = 1,..., k 1 and i = 1,..., n, set p (s) i = r (s) i r (s+1) i, and set p (k) i = r (k) i. Also, let (A lm ) n l,m=1 be the Cartan matrix of sl(n + 1) and Bst := min{s, t}, 1 s, t k. Then, χ W (k 1 Λ 1 +k 2 Λ 2 ) (x 1,..., x n, q) = q 1 s,t=1,...,l 2 l,m=1,...,n A lmb st p (s) l p (t) m n k i=1 s=1 (q) p (s) i q p 1 q k t=1 p(t) 2 + +p(k) 2 p(t) 1 p(k) 1 p (1) 1,...,p(k) 1 0 p (1) n.,...,p n (k) 0 (1 q p(k 1 ) 1 + +p (k) 1 )x k 1 1 where p 1 = p (k 1+1) 1 + 2p (k 1+2) k 2 p (k) 1 and n i=1 k s=1 x sp(s) i i χ W (k n 1 Λ n 1 +k nλ n) (x 1,..., x n, q) = q 1 s,t=1,...,l 2 l,m=1,...,n A lmb st p (s) l p (t) m n k i=1 s=1 (q) p (s) i q pn q k t=1 p(t) n 1 + +p(k) n 1 p(t) n p (k) n p (1) 1,...,p(k) 1 0 p (1) n.,...,p n (k) 0 where p n = p (kn+1) n (1 q p(kn) n + 2p (kn+2) n + +p (k) n )x kn n + + k n 1 p (k) 1. n i=1 k s=1 x sp(s) i i

16 9 Similar multigraded dimensions for different variants of principal subspaces have been studied in [AKS] and [FFJMM]. Modularity properties of certain multigraded dimensions, in the context of principal subspaces of standard modules, have been studied in [St], [WZ], and more recently in [BCFK].

17 10 Chapter 2 Preliminaries 2.1 Constructions in the sl(n + 1) case We begin by recalling certain vertex-algebraic constructions for the untwisted affine Lie algebra [LL]. sl(n + 1), n a positive integer. We shall be working in the setting of [FLM] and Fix a Cartan subalgebra h of sl(n + 1). Also fix a set of roots, a set of simple roots {α 1,..., α n }, and a set of positive roots +. Let, denote the Killing form, rescaled so that α, α = 2 for each α. Using this form, we identify h with h. Let λ 1,..., λ n h h denote the fundamental weights of sl(n + 1). Recall that λ i, α j = δ ij for each i, j = 1,..., n. Denote by Q = n i=1 Zα i and P = n i=1 Zλ i the root lattice and weight lattice of sl(n + 1), respectively. For each root α, we have a root vector x α sl(n + 1) (recall that [h, x α ] = α, h x α for each h h). We define a nilpotent subalgebra of sl(n + 1). n = α + Cx α, We have the corresponding untwisted affine Lie algebra given by sl(n + 1) = sl(n + 1) C[t, t 1 ] Cc, where c is a non-zero central element and [x t m, y t p ] = [x, y] t m+p + m x, y δ m+p,0 c for any x, y sl(n + 1) and m, p Z. If we adjoin the degree operator d, where [d, x t m ] = mx t m

18 11 [d, c] = 0, we obtain the affine Kac-Moody Lie algebra define two important subalgebras of sl(n + 1): sl(n + 1) = sl(n + 1) Cd (cf. [K]). We ĥ = h C[t, t 1 ] Cc and the Heisenberg subalgebra ĥ Z = h t m Cc m Z\{0} (in the notation of [FLM], [LL]). We extend our form, to h Cc Cd by defining c, c = 0 d, d = 0 c, d = 1. Using this form, we may identify h Cc Cd with (h Cc Cd). The simple roots of sl(n + 1) are α 0, α 1,..., α n and the fundamental weights of sl(n + 1) are Λ0, Λ 1,..., Λ n, given by α 0 = c (α 1 + α α n ) and Λ 0 = d, Λ i = Λ 0 + λ i for each i = 1,..., n. An sl(n + 1)-module V is said to have level k C if the central element c acts as multiplication by k (i.e. c v = kv for all v V ). Any standard (i.e. irreducible integrable highest weight) module L(Λ) with Λ (h Cc Cd) has nonnegative integral level, given by Λ, c (cf. [K]). Let L(Λ 0 ), L(Λ 1 ),..., L(Λ n ) denote the standard sl(n + 1)-modules of level 1 with v Λ0, v Λ1,..., v Λn as highest weight vectors, respectively. Continuing to work in the setting of [FLM] and [LL], we now recall the lattice vertex operator construction of the level 1 standard modules for sl(n + 1). We use U( )

19 12 to denote the universal enveloping algebra. The induced module M(1) = U(ĥ) U(h C[t] Cc) C has a natural ĥ-module structure, where h C[t] acts trivially and c acts as identity on the one-dimensional module C. Let s = 2(n + 1) 2. We fix a primitive s th root of unity ν s, and a central extension P of the weight lattice P by the finite cyclic group κ = κ κ s = 1 of order s, 1 κ P P 1 with associated commutator map c 0 : P P Z/sZ, defined by aba 1 b 1 = κ c 0(ā, b) for a, b P. Let c : P P C denote the alternating Z-bilinear map defined by c(λ, µ) = ν c 0(λ,µ) s for λ, µ P. We require that c(α, β) = ( 1) α,β for α, β Q. Such a central extension P of P does indeed exist (see Remark in [LL]). We define the faithful character χ : κ C by χ(κ) = ν s. Let C χ be the one dimensional κ -module, where the action of κ is given by κ 1 = ν s, and form the induced P -module C{P } = C[ P ] C[ κ ] C χ. For any subset E P, we define Ê = {a P ā E}, and we form C{E} in the obvious way. Then, the space V Q = M(1) C{Q} carries a natural vertex operator algebra structure, with 1 as vacuum vector, and the space V P = M(1) C{P } is naturally a V Q -module. We now recall some important details of this construction (cf. [LL]).

20 13 Choose a section e : P P (2.1) α e α, (i.e. a map which satisfies e = 1) such that e 0 = 1. Let ɛ 0 : P P Z/sZ the corresponding 2-cocycle, defined by the condition e α e β = κ ɛ 0(α,β) e α+β for α, β P and define the map ɛ : P P C by ɛ(α, β) = ν ɛ 0(α,β) s For any α, β P we have ɛ(α, β)/ɛ(β, α) = c(α, β) (2.2) and ɛ(α, 0) = ɛ(0, α) = 1. (2.3) We use this choice of section (2.1) identify C{P } and the group algebra C[P ]. In particular, we have a vector space isomorphism given by C[P ] C{P } (2.4) e α ι(e α ) for α P, where, for a P, we set ι(a) = a 1 C{P }. By restriction, we also have the identification C[Q] C{Q}. There is a natural action P on C[P ] given by e α e β = ɛ(α, β)e α+β, κ e β = ν s e β for α, β P. As operators on C[P ] C{P } we have e α e β = ɛ(α, β)e α+β. (2.5) We make the identifications V P = M(1) C[P ], V Q = M(1) C[Q] and we set V Q e λ i = M(1) C[Q]e λ i, i = 1,..., n

21 14 Given a Lie algebra element a t m denote its action on an sl(n + 1), where a sl(n + 1), m Z, we will sl(n + 1)-module using the notation a(m). In particular, for h h and m Z, we have the operators h(m) on V P : h(0)(v ι(e α )) = h, α (v ι(e α )) h(m)(v ι(e α )) = (h(m)v ι(e α )). For a formal variable x and λ P, we define the operator x λ by x λ (v ι(e µ )) = x λ,µ (v ι(e µ )) for v M(1) and µ P. For each λ P, we define the vertex operators Y (ι(e λ ), x) = E ( λ, x)e + ( λ, x)e λ x λ, (2.6) where E ± ( λ, x) = exp ( ±n>0 ) λ(n) n x n (End V P )[[x, x 1 ]] Using the identification (2.4) we write Y (e λ, x) for Y (ι(e λ ), x). In particular, for any root α we have the operators x α (m) defined by Y (e α, x) = m Z x α (m)x m 1. (2.7) It is easy to see that and x λ e µ = x λ,µ e µ x λ (2.8) λ(m)e µ = e µ λ(m) (2.9) for all λ, µ P and m Z. Using (2.2), (2.5) and (2.6)-(2.9) we obtain, for α, µ P, x α (m)e µ = c(α, µ)e µ x α (m + α, µ ). (2.10) Along with the action of ĥ, the operators x α (m), m Z, give V P a structure. In particular, we have that sl(n + 1)-module V P = V Q V Q e λ 1 V Q e λn

22 15 and that V Q, V Q e λ 1,..., V Q e λn are the level 1 basic representations of sl(n + 1) with highest weights Λ 0, Λ 1,..., Λ n and highest weight vectors v Λ0 = 1 1, v Λ1 = 1 e λ 1,..., v Λn = 1 e λn, respectively. We make the identifications L(Λ 0 ) = V Q for each i = 1,..., n. Moreover, taking L(Λ i ) = V Q e λ i n ω = 1 2 i=1 u (i) ( 1) 2 v Λ0 to be the standard conformal vector, where {u (1),..., u (n) } is an orthonormal basis of h, the operators L(m) defined by Y (ω, x) = m Z L(m)x m 2 (2.11) provide a representation of the Virasoro algebra of central charge n. The vertex operators (2.6) and (2.22) give L(Λ 0 ) the structure of a vertex operator algebra whose irreducible modules are precisely L(Λ 0 ),L(Λ 1 ),..., L(Λ n ). We shall write v Λ0 = 1, v Λ1 = e λ 1,..., v Λn = e λn. (2.12) As in [G], [CLM1] [CLM2], [C3] [C4], and [CalLM1] [CalLM3], we need certain intertwining operators among standard modules. We recall some facts from [FHL] and [DL] about intertwining operators and, in particular, the intertwining operators between L(Λ 0 ), L(Λ 1 ),..., L(Λ n ). Given modules W 1, W 2 and W 3 for the vertex operator algebra V, an intertwining operator of type is a linear map W 3 W 1 W 2 Y(, x) : W 1 Hom(W 2, W 3 ){x} w Y(w, x) = n Q w n x n 1

23 16 such that all the axioms of vertex operator algebra which make sense hold (see [FHL]). The main axiom is the Jacobi identity: ( ) x 1 0 δ x1 x 2 x 0 Y (u, x 1 )Y(w (1), x 2 )w (2) x 1 0 δ ( x2 x 1 x 0 = x 1 2 δ ( x1 x 0 x 2 ) Y(w (1), x 2 )Y (u, x 1 )w (2) ) Y(Y (u, x 0 )w (1), x 2 )w (2) for u V, w (1) W 1 and w (2) W 2. Define the operators e iπλ and c(, λ) on V P by: e iπλ (v e β ) = e iπ λ,β v e β, for v M(1) and β, λ P. We have that c(, λ)(v e β ) = c(β, λ)v e β, Y(, x) : L(Λ r ) Hom(L(Λ s ), L(Λ p )){x} (2.13) w Y(w, x) = Y (w, x)e iπλr c(, λ r ) defines an intertwining operator of type L(Λ p ) L(Λ r ) L(Λ s ) (2.14) if and only if p r + s mod (n + 1) (cf. [DL]). If we take u = e α and w 1 = e λr apply Res x0 (for r = 1,..., n) in the Jacobi identity (2.13) and (the formal residue operator, giving us the coefficient of x 1 0 ), we have [Y (e α, x 1 ), Y(e λr, x 2 )] = 0, (2.15) whenever α +, which means that each coefficient of the series Y(e λr, x) commutes with the action of x α (m) for positive roots α. Given such an intertwining operator, we define a map Y c (e λr, x) : L(Λ s ) L(Λ p )

24 17 by Y c (e λr, x) = Res x x 1 λr,λs Y(e λr, x) and by (2.15) we have [Y (e α, x 1 ), Y c (e λr, x 2 )] = 0, (2.16) which implies [x α (m), Y c (e λr, x 2 )] = 0 (2.17) for each m Z. Consider the space V k P = V P V }{{ P. (2.18) } k times We extend the operators e λ, λ P, to operators on Vp k, k a positive integer, by defining: For any standard Λ is of the form e k λ = e λ e λ : V k P V k P. sl(n + 1)-module L(Λ) of positive integral level k, its highest weight Λ = k 0 Λ k n Λ n for some nonnegative integers k 0,..., k n satisfying k k n = k. Any standard sl(n + 1)-module L(Λ) of positive integral level k, may be realized as an submodule of V k P. Indeed, let sl(n + 1)- v i1,...,i k = v Λi1 v Λik V k P, (2.19) where exactly k i indices are equal to i for each i = 0,..., n. Then, we have that v i1,...,i k is a highest weight vector for (cf. [K]). Here, the action of sl(n + 1), and a Lie algebra on a tensor product of modules: L(Λ) U( sl(n + 1)) vi1,...,i k V k P (2.20) sl(n + 1) on V k P is given by the usual diagonal action of a v = (a)v = (a a)v (2.21)

25 18 for a sl(n + 1), v V k P and is extended to U( sl(n + 1)) in the usual way. also have a natural vertex operator algebra structure on L(kΛ 0 ) and L(kΛ 0 )-module structure on L(Λ) given by: We Theorem ([FZ], [DL], [Li1]; cf. [LL]) The standard module L(kΛ 0 ) has a natural vertex operator algebra structure. The level k standard a complete list of irreducible L(kΛ 0 )-modules. sl(n + 1)-modules provide Let ω denote the Virasoro vector in L(kΛ 0 ). We have a natural representation of the Virasoro algebra on each L(Λ) given by Y L(Λ) (ω, x) = m Z L(m)x m 2 (2.22) The operators L(0) defined in (2.22) provide each L(Λ) of level k with a grading, which we refer to as the weight grading: L(Λ) = s Z L(Λ) (s+hλ ) (2.23) where h Λ Q and depends on Λ. In particular, we have the grading L(kΛ 0 ) = s Z L(Λ) (s). (2.24) We denote the weight of an element a v Λ W (Λ) by wt(a v Λ ). We will also write wt(x α (m)) = m, where we view x α (m) both as an operator and as an element of U( n). We also have n distinct charge gradings on each L(Λ) of level k, given by the eigenvalues of the operators λ i (0) for i = 1,..., n: L(Λ) = L(Λ) [ri + λ i,λ ]. (2.25) r i Z We call these the λ i -charge gradings. An element of L(Λ) with λ i -charges n i for i = 1,..., n has total charge n i=1 n i. The gradings (2.23) and (2.25) are compatible, and we have that L(Λ) = r 1,...,r n,s Z L(Λ) r1 + λ 1,Λ,...,r n+ λ nλ ;s+h Λ. (2.26)

26 The case of g = sl(3) In chapter 4 we work in the case where n = 2, and we recall some important details. The finite-dimensional simple Lie algebra sl(3) has a standard basis {h α1, h α2, x ±α1, x ±α2, x ±(α1 +α 2 )}; we do not need to normalize the root vectors. We fix the Cartan subalgebra h = Ch α1 Ch α2 of sl(3). Under our identification of h with h, we have α 1 = h α1 and α 2 = h α2. We also have the fundamental weights λ 1, λ 2 h of sl(3), given by the condition λ i, α j = δ i,j for i, j = 1, 2. In particular, we have and λ 1 = 2 3 α α 2 and λ 2 = 1 3 α α 2 α 1 = 2λ 1 λ 2 and α 2 = λ 1 + 2λ 2. The level 1 standard modules of sl(3) are L(Λ0 ), L(Λ 1 ), and L(Λ 2 ). Given the intertwining operators (2.13), we have that Y c (e λ i, x)v Λ0 = r 1 v Λi (2.27) Y c (e λ i, x)v Λi = r 2 x αi ( 1) v Λj = r 2e λi v Λi (2.28) Y c (e λ i, x)v Λj = r 3 x α1 +α 2 ( 1) v Λ0 = r 3e λi v Λj (2.29) for i, j = 1, 2, i j and some constants r 1, r 2, r 3, r 2, r 3 C. For any level k standard sl(3)-module L(Λ), its highest weight Λ is of the form Λ = k 0 Λ 0 + k 1 Λ 1 + k 2 Λ 2 for some nonnegative integers k 0, k 1, k 2 satisfying k 0 + k 1 + k 2 = k. We now give a realization of these modules. Consider the space V k P = V P V }{{ P, (2.30) } k times

27 20 and let v i1,...,i k = v Λi1 v Λik V k P, (2.31) where exactly k 0 indices are equal to 0, k 1 indices are equal to 1 and k 2 indices are equal to 2. Then, we have that v i1,...,i k (cf. [K]). is a highest weight vector for sl(3), and L(Λ) U( sl(3)) v i1,...,i k V k P (2.32) The operators L(0) defined in (2.22) provide each L(Λ) of level k with a grading, which we refer to as the weight grading: L(Λ) = s Z L(Λ) (s+hλ ) (2.33) where In particular, we have the grading h Λ = Λ, Λ + α 1 + α 2. 2(k + 3) L(kΛ 0 ) = s Z L(Λ) (s). (2.34) We denote the weight of an element a v Λ W (Λ) by wt(a v Λ ). We will also write wt(x α (m)) = m, where we view x α (m) both as an operator and as an element of U( n). We also have two different charge gradings on each L(Λ) of level k, given by the eigenvalues of the operators λ 1 (0) and λ 2 (0): L(Λ) = L(Λ) [ri + λ i,λ ] (2.35) r i Z for each i = 1, 2. We call these the λ 1 -charge and λ 2 -charge gradings, respectively. An element of L(Λ) with λ 1 -charge n 1 and λ 2 -charge n 2 is said to have total charge n 1 +n 2. The gradings (2.23) and (2.25) are compatible, and we have that L(Λ) = L(Λ) r1 + λ 1,Λ,r 2 + λ 2 Λ ;s+h Λ. (2.36) r 1,r 2,s Z

28 21 Chapter 3 Principal subspaces of standard modules 3.1 General definitions We are now ready to define our main object of study. Consider the sl(n + 1)-subalgebra n = n C[t, t 1 ]. (3.1) The Lie algebra n has the following important subalgebras: n = n t 1 C[t 1 ] and n + = n C[t] Let U( n) be the universal enveloping algebra of n. We recall that U( n) has the decomposition: Given a U( n) = U( n ) U( n) n +. (3.2) sl(n + 1)-module L(Λ) of positive integral level k with highest weight vector v Λ, the principal subspace of L(Λ) is defined by: W (Λ) = U( n) v Λ. W (Λ) inherits the grading (2.36), and we have that W (Λ) = W (Λ) r1 + λ 1,Λ,...,r n+ λ nλ ;s+h Λ (3.3) r 1,...,r n,s Z For convenience, we will use the notation W (Λ) r 1,...,r n;s = W (Λ) r1 + λ 1,Λ,...,r n+ λ nλ ;s+h Λ

29 22 As in [CLM1]-[CLM2], [CalLM3], [C1]-[C2], define the multigraded dimension of W (Λ) by: and its modification χ W (Λ) (x 1,..., x n, q) = tr W (Λ) x λ 1 1 xλn n q L(0) χ W (Λ) (x 1,..., x n, q) = x λ 1,Λ... x λn,λ q h Λ χ W (Λ) (x 1,..., x n, q) C[[x 1,... x n, q]] In particular, we have that χ W (Λ) (x 1,..., x n, q) = dim(w (Λ) r 1,...,r n;s)x r1 x rn q s. r 1,...,r n,s N For each such Λ, we have a surjective map F Λ : U(ĝ) L(Λ) (3.4) a a v Λ and its surjective restriction f Λ : f Λ : U( n) W (Λ) (3.5) a a v Λ. A precise description of the kernels Kerf Λ for every each Λ = n i=0 k iλ i gives a presentation of the principal subspaces W (Λ) for sl(n + 1), as we will now discuss. For each λ P and character ν : Q C, we define a map τ λ,ν on n by τ λ,ν (x α (m)) = ν(α)x α (m λ, α ) for α + and m Z. It is easy to see that τ λ,ν is an automorphism of n. In the special case when ν is trivial (i.e., ν = 1), we set τ λ = τ λ,1. The map τ λ,ν extends canonically to an automorphism of U( n), also denoted by τ λ,ν, given by τ λ,ν (x β1 (m 1 ) x βr (m r )) = ν(β 1 + +β r )x β1 (m 1 λ, β 1 ) x βr (m r λ, β r ) (3.6)

30 23 for β 1,..., β r + and m 1,..., m r Z. Notice that if λ = λ i for i = 1,..., n, we have that wt(τ λ (a)) wt(a) for each a U( n). We will use this fact frequently without mention. Define the formal sums Rt i = x αi (m 1 )x αi (m 2 ) x αi (m k+1 ) (3.7) and their truncations m 1 + +m n= t R i M,t = m m k+1 = t, m 1,..., m k+1 M x αi (m 1 ) x αi (m k+1 ) (3.8) for t Z, M Z and i = 1,..., n. Note that each R i M,t U( n) and the infinite sum R i t / U( n), but R i t is still well-defined as an operator on W (Λ), since, when acting on any element of W (Λ), only finitely many of its terms are nonzero. Let J be the left ideal of U( n) generated by the elements R i 1,t for t k + 1 and i = 1, 2: J = n U( n)r 1,t. i (3.9) i=1 t k+1 Define a left ideal of U( n) by: I kλ0 = J + U( n) n + and for each Λ = n i=0 k iλ i, define I Λ = I kλ0 + α + U( n)x α ( 1) k+1 α,λ. Conjecture For each Λ = k 0 Λ k n Λ n with k 0,..., k n, k N, k 1, and k k n = k, we have that In particular, Kerf Λ = I Λ Kerf k0 Λ 0 +k i Λ i = I kλ0 + U( n)x αi ( 1) k 0+1 (3.10)

31 24 In the case that g is of type ADE and k = 1 or g = sl(2) or g = sl(3) and k 1, this conjecture has been proved. The presentations (3.10) are suggested by the bases found in [G], but an a priori proof is lacking. This proof will be the focus of future work. 3.2 Details for the sl(3) case We define certain operators that will be needed for the proof of Conjecture when n = 2. These operators have natural generalization for n 2 and generalize the τ λ,ν maps above. Define the injective maps τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,ν : U( n) U( n) (3.11) a τ λ1,ν(a)x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2. and τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 2,ν : U( n) U( n) (3.12) a τ λ2,ν(a)x α2 ( 1) k 2 x α1 +α 2 ( 1) k 1. Let ω i = α i λ i P for i = 1, 2. Generalizing the idea of [CalLM3], we define, for each character ν : Q C, injective linear maps σ k 1Λ 1 +k 2 Λ 2 ω 1,ν : U( n) U( n) (3.13) a τ ω1,ν(a)x α1 ( 1) k 1. and σ k 1Λ 1 +k 2 Λ 2 ω 2,ν : U( n) U( n) (3.14) a τ ω2,ν(a)x α2 ( 1) k 2. The following facts about U( n) will be useful: Lemma Given r, k N and root vectors x α, x β sl(3) with α, β, α + β +

32 25 and [x α, x β ] = C α,β x α+β for some constant C α,β C, we have x β (m 1 )... x β (m r )x α ( 1) k k r = x α ( 1) k p p=0 j 1,,j p=1 j 1 < <j p C j1,...,j p x β (m 1 ) (3.15) x α+β (m j1 1)... x α+β (m jp 1) x β (m r ) for some constants C j1,...j p C. The constants C j1,...j p are understood to be 0 when p > r. Proof: We induct on k N. For k = 1 we have: x β (m 1 ) x β (m r )x α ( 1) = x α ( 1)x β (m 1 ) x β (m r ) (3.16) r + C β,α x β (m 1 ) x α+β (m j 1) x β (m r ) (3.17) j=1 and so our claim is true for k = 1. Assume that our claim is true for some k 1. Then

33 26 we have: x β (m 1 ) x β (m r )x α ( 1) k+1 k r = x α ( 1) k p = + p=0 k x α ( 1) k p+1 p=0 k x α ( 1) k p p=0 j 1,...,j p=1 j 1 < <j p r j 1,...,j p=1 j 1 < <j p ( C j1,...,j p x β (m 1 ) x α+β (m j1 1) ) x α+β (m jp 1) x β (m r )x α ( 1) ( C j1,...,j p x β (m 1 ) )... x α+β (m j1 1) x α+β (m jp 1) x β (m r ) r s j q,s=1 q=1,...,p r j 1,...,j p=1 j 1 < <j p ( C j1,...,j p C β,α x β (m 1 ) x α+β (m j1 1)... x α+β (m s 1) )... x α+β (m jp 1) x β (m r ) = k+1 x α ( 1) k+1 p p=0 r j 1,...,j p=1 j 1 < <j p C j 1,...,j p x β (m 1 ) x α+β (m j1 1) x α+β (m jp 1) x β (m r ) for some constants C j 1,...,j p C, concluding our proof. Corollary For 0 m k and simple roots α i, α j + such that α i +α j +, we have R 1,tx i αj ( 1) m = x αj ( 1) m R 1,t i + r 1 x αj ( 1) m 1 [R 1,t+1, i x αj (0)] r m [... [R 1,t+m, i x αj (0)],..., x αj (0)] + bx αi +α j ( 1) + c for some r 1... r m C, b U( n), and c U( n) n +. In particular, we have that R 1,tx i αj ( 1) m I kλ0 + U( n)x αi +α j ( 1). Moreover, if a I kλ0 then ax αj ( 1) m I kλ0 + U( n)x αi +α j ( 1).

34 27 The next two lemmas show that the maps τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ i,ν and σ k 1Λ 1 +k 2 Λ 2 ω i,ν, i = 1, 2, allow us to move between the left ideals we have defined. Lemma For every character ν, we have that and τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,ν (I k0 Λ 0 +k 1 Λ 1 +k 2 Λ 2 ) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2 τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 2,ν (I k0 Λ 0 +k 1 Λ 1 +k 2 Λ 2 ) I k1 Λ 0 +k 2 Λ 1 +k 0 Λ 2. Proof: We prove the claim for τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,ν. The claim for τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 2,ν similarly. Since I k0 Λ 0 +k 1 Λ 1 +k 2 Λ 2 for ν = 1. We have that follows is a homogeneous ideal, it suffices to prove our claim τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (R 1,t) 1 ( = τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 = = m 1 + +m k+1 = t, m i 1 m 1 + +m k+1 = t, m i 1 m m k+1 = t, m i 1 ) x α1 (m 1 ) x α1 (m k+1 ) ) τ λ1 (x α1 (m 1 ) x α1 (m k+1 ) x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 x α1 (m 1 1) x α1 (m k+1 1)x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 R 1 1,t+(k+1) + ax α 1 ( 1) k 1+1 x α1 +α 2 ( 1) k 2 = x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 R 1 1,t+(k+1) + b[x α 2 (0),... [x α2 (0), x α1 ( 1) k 1+k 2 +1 ]... ] for some a, b U( n). Clearly x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 ( 1)R 1 1,t+(k+1) +s[x α2 (0),... [x α2 (0), x α1 ( 1) k 1+k 2 +1 ]... ] I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2 and so τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (R 1 1,t) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2.

35 28 We also have τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (R 1,t) 2 ( = τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 = = m 1 + +m k+1 = t, m i 1 m 1 + +m k+1 = t, m i 1 = R 2 1,tx α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = a + bx α1 +α 2 ( 1) k 2+1 m m k+1 = t, m i 1 ) x α2 (m 1 )...x α2 (m k+1 ) ) τ λ1 (x α2 (m 1 ) x α2 (m k+1 ) x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 x α2 (m 1 ) x α2 (m k+1 )x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 for some a I kλ0 and b U( n), with the last equality following from Corollary So we have that τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,ν (R 2 1,t) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. Since J is the left ideal of U( n) generated by R 1,t 1 and R2 1,t, we have that τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (J) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. We now show that τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (U( n) n + ) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. If m N, we have have that τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α1 (m)) = x α1 (m 1)x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 x α1 (m 1) U( n) n + if m > 0 and τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α1 (m)) = x α1 ( 1) k 1+1 x α1 +α 2 ( 1) k 2 = r[x α2 (0),..., [x α2 (0), x α1 ( 1) k 1+k 2 +1 ]... ] I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2 for some r C if m = 0. We also have τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α2 (m)) = x α2 (m)x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 x α2 (m) +rx α1 ( 1) k 1 1 x α1 +α 2 ( 1) k 2 x α1 +α 2 (m 1)

36 29 for some r C and so Finally, we have that, for m 0, τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α2 (m)) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α1 +α 2 (m)) = x α1 +α 2 (m 1)x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 x α1 +α 2 (m 1) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. Since U( n) n + is a left ideal of U( n), we have that and so we have τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,ν (U( n) n + ) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2 τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,ν (I kλ0 ) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. We now check the remaining terms. We have τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α1 ( 1) k 0+k 2 +1 ) = x α1 ( 2) k 0+k 2 +1 x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = cx α1 +α 2 ( 1) k 2 R 1 1,2(k 0 +k 2 +1)+k 1 + a 1 x α1 ( 1) k 1+1 x α1 +α 2 ( 1) k 2 = cx α1 +α 2 ( 1) k 2 R 1 1,2(k 0 +k 2 +1)+k 1 + a 2 [x α2 (0),... [x α2 (0), x α1 ( 1) k 1+k 2 +1 ] I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2 for some c, a 1, a 2 U( n). So, since U( n)x α1 ( 1) k 0+k 2 +1 is the left ideal of U( n) generated by x α1 ( 1) k 0+k 2 +1, we have that τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,ν (U( n)x α ( 1) k 0+k 2 +1 ) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2.

37 30 By Lemma we have τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α2 ( 1) k 0+k 1 +1 ) = x α2 ( 1) k 0+k 1 +1 x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = x α1 ( 1) k 1 x α2 ( 1) k 0+k 1 +1 x α1 +α 2 ( 1) k 2 +r 1 x α1 ( 1) k 1 1 x α1 +α 2 ( 2)x α2 ( 1) k 0+k 1 x α1 +α 2 ( 1) k r k1 x α1 +α 2 ( 2) k 1 x α2 ( 1) k 0+1 x α1 +α 2 ( 1) k 2 = r 0x α1 ( 1) k 1 [x α1 (0),... [x α1 (0), R 2 1,k+1 ]... ] +r 1x α1 ( 1) k 1 1 [x α1 (0),... [x α1 (0), R 2 1,k+2 ]... ] +... r k 1 [x α1 (0),... [x α1 (0), R 1,2k1 +k 0 +k 2 +1]... ] + ax α1 +α 2 ( 1) k 2+1 I k2 Λ 0 +k 0 Λ 1 k 1 Λ 2 for some a U( n) and r 0, r 1, r 1,..., r k 1, r k 1 C. So, since U( n)x α2 ( 1) k 0+k 1 +1 is the left ideal of U( n) generated by x α2 ( 1) k 0+k 1 +1, we have that Finally, we have that τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (U( n)x α2 ( 1) k 0+k 1 +1 ) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (x α1 +α 2 ( 1) k 0+1 ) = x α1 +α 2 ( 2) k 0+1 x α1 ( 1) k 1 x α1 +α 2 ( 1) k 2 = r[x α2 (0),... [x α2 (0), R 1 1,2k 0 +2+k 1 +k 2 ],... ] + ax α1 +α 2 ( 1) k 2+1 for some a U( n) and some constant r C. So, since U( n)x α1 +α 2 ( 1) k 0+1 is the left ideal of U( n) generated by x α1 +α 2 ( 1) k 0+1, we have that This concludes our proof. τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1 (U( n)x α1 +α 2 ( 1) k 01 ) I k2 Λ 0 +k 0 Λ 1 +k 1 Λ 2. Lemma For every character ν, we have that and σ k 1Λ 1 +k 2 Λ 2 ω 1,ν (I k1 Λ 1 +k 2 Λ 2 ) I k1 Λ 0 +k 2 Λ 1 σ k 1Λ 1 +k 2 Λ 2 ω 2,ν (I k1 Λ 1 +k 2 Λ 2 ) I k2 Λ 0 +k 1 Λ 2.

38 31 Proof: We prove the claim for σ k 1Λ 1 +k 2 Λ 2 ω 1,ν. The claim for σ k 1Λ 1 +k 2 Λ 2 ω 2,ν Since I k1 Λ 1 +k 2 Λ 2 have that follows similarly. is a homogeneous ideal, it suffices to prove our claim for ν = 1. We σ k 1Λ 1 +k 2 Λ 2 ω 1 (R 1,t) 1 ( = σ k 1Λ 1 +k 2 Λ 2 ω 1 = = m 1 + +m k+1 = t, m i 1 m 1 + +m k+1 = t,m i 1 m 1 + +m k+1 = t, m i 1 = R 1 1,t+(k+1) + ax α 1 ( 1) k 1+1 ) x α1 (m 1 ) x α1 (m k+1 ) ) σ ω1 (x α1 (m 1 ) x α1 (m k+1 ) x α1 ( 1) k 1 x α1 (m 1 1) x α1 (m k+1 1)x α1 ( 1) k 1 for some a U( n) and so σ k 1Λ 1 +k 2 Λ 2 ω 1 (R 1,t 1 ) I k 1 Λ 0 +k 2 Λ 1. We also have, by Lemma 3.2.1, that σ k 1Λ 1 +k 2 Λ 2 ω 1 (R 1,t) 2 ( = σ k 1Λ 1 +k 2 Λ 2 ω 1 = = = m 1 + +m k+1 = t, m i 1 m 1 + +m k+1 = t, m i 1 m 1 + +m k+1 = t, m i 1 m 1 + +m k+1 = t, m i 1 p=0 ) x α2 (m 1 ) x α2 (m k+1 ) ) σ ω1 (x α2 (m 1 ) x α2 (m k+1 ) x α1 ( 1) k 1 x α2 (m 1 + 1) x α2 (m k+1 + 1)x α1 ( 1) k 1 k 1 x α1 ( 1) k 1 p k+1 j 1,...,j p=1 j 1 < <j p ( C j1,...,j p x α2 (m 1 + 1) ) x α1 +α 2 (m j1 ) x α1 +α 2 (m jp ) x α2 (m k+1 + 1) = k 1 p=0 x α1 ( 1) k 1 p [... [R 2 1,t (k+1 p), x α 1 (0)],..., x α1 (0)] + bx α2 (0) for some b U( n) and constants C j1,...,j p C. Since J is the left ideal of U( n) generated by R 1,t 1 and R2 1,t, we have that σ k 1Λ 1 +k 2 Λ 2 ω 1,ν (J) I k1 Λ 0 +k 2 Λ 1. We now show that σ k 1Λ 1 +k 2 Λ 2 ω 1 (U( n) n + ) I k1 Λ 0 +k 2 Λ 1. We have σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α1 (m)) = x α1 (m 1)x α1 ( 1) k 1 U( n) n + + U( n)x α1 ( 1) k 1+1

39 32 σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α2 (m)) = x α2 (m + 1)x α1 ( 1) k 1 = cx α1 ( 1) k 1 1 x α1 +α 2 (m) + x α1 ( 1) k 1 x α2 (m + 1) U( n) n + and σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α1 +α 2 (m)) = x α1 +α 2 (m)x α1 ( 1) k 1 = x α1 ( 1) k 1 x α1 +α 2 (m) U( n) n + for m 0. Since U( n) n + is the left ideal of U( n) generated by n +, we have that σ k 1Λ 1 +k 2 Λ 2 ω 1 (U( n) n + ) I k1 Λ 0 +k 2 Λ 1 and so we have σ k 1Λ 1 +k 2 Λ 2 ω 1,ν (I kλ0 ) I k1 Λ 0 +k 2 Λ 1. We now check the remaining terms. We have σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α1 ( 1) k 2+1 ) = x α1 ( 2) k 2+1 x α1 ( 1) k 1 = rr 1 1,2k 2 +2+k 1 + ax α1 ( 1) k 1+1 for some a U( n) and r C, and so σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α1 ( 1) k 2+1 ) I k1 Λ 0 +k 2 Λ 1. We also have, by Lemma 3.2.1, σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α2 ( 1) k 1+1 ) = x α2 (0) k 1+1 x α1 ( 1) k 1 = x α1 ( 1) k 1 x α2 (0) k 1+1 +r 1 x α1 ( 1) k 1 1 x α1 +α 2 ( 1)x α2 (0) k r k1 x α1 +α 2 ( 1) k 1 x α2 (0) for some constants r 1,..., r k1 C, and so σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α2 ( 1) k 1+1 ) U( n) n + I k1 Λ 0 +k 2 Λ 1.

40 33 Finally, σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α1 +α 2 ( 1)) = x α1 +α 2 ( 1)x α1 ( 1) k 1 = r[x α2 (0), x α1 ( 1) k 1+1 ] for some constant r C. So we have that σ k 1Λ 1 +k 2 Λ 2 ω 1 (x α1 +α 2 ( 1) k 1+1 ) U( n)x α1 ( 1) k 1+1 I k1 Λ 0 +k 2 Λ 1. This concludes our proof. Remark Lemmas and here directly generalize Lemma 3.1 and Lemma 3.2 in [CalLM3], respectively. Lemma in this paper does not have an analogue for I k0 Λ 0 +k 1 Λ 1 +k 2 Λ 2, and will be the main reason our proof of the presentations needs ideas other than those found in [CalLM1]-[CalLM3]. Remark Note that τ kλ 0 λ i,ν = τ λ i,ν, so that, as in [CalLM1]-[CalLM3], we have τ λi,ν(i kλ0 ) I kλi. For any λ P we have the linear isomorphism e λ : V P V P. In particular, for i, j = 1, 2 with i + j = 3 we have e λi v λ0 = v λi e λi v λi = ɛ(λ i, λ i )x αi ( 1) v λj e λi v λj = ɛ(λ i, λ j )x α1 +α 2 ( 1) v λ0 Since e λi x α (m) = c(α, λ i )x α (m α, λ i )e λi for α + and m Z

41 34 we have that e λi (a v λ0 ) = τ λi,c λi (a) v λi, a U( n). (3.18) For any λ P, we define linear isomorphisms on V k P by e k λ = e λ 1 e }{{ λ1 : V k } P V k P. k times In particular, we have e k λ 1 (v Λ0 v }{{ Λ0 v } Λ1 v Λ1 v Λ2 v Λ2 ) k 0 times k 1 times = ɛ(λ 1, λ 1 ) k 1 ɛ(λ 1, λ 2 ) k k 1! k 2! x α 1 ( 1) k 1 x α1 +α 2 ( 1) k 2 (v Λ1 v }{{ Λ1 v } Λ2 v Λ2 v Λ0 v Λ0 ). k 0 times k 1 times and e k λ 2 (v Λ0 v }{{ Λ0 v } Λ1 v Λ1 v Λ2 v Λ2 ) k 0 times k 1 times = ɛ(λ 2, λ 1 ) k 1 ɛ(λ 2, λ 2 ) k k 1! k 2! x α 2 ( 1) k 2 x α1 +α 2 ( 1) k 1 (v Λ2 v }{{ Λ2 v } Λ0 v Λ0 v Λ1 v Λ1 ). k 0 times k 1 times This, along with the fact that e k λ i x α (m) = c(α, λ i )x α (m α, λ i )e k λ i for α +, i = 1, 2, and m Z gives us e k λ 1 (a (v Λ0 v }{{ Λ0 v } Λ1 v Λ1 v Λ2 v Λ2 )) k 0 times k 1 times = ɛ(λ 1, λ 1 ) k 1 ɛ(λ 1, λ 2 ) k k 1! k 2! τ k 0Λ 0 +k 1 Λ 1 +k 2 Λ 2 λ 1,c λ1 (a) (v Λ1 v }{{ Λ1 v } Λ2 v Λ2 v Λ0 v Λ0 ). k 0 times k 1 times

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Two generalisations of the binomial theorem

Two generalisations of the binomial theorem 39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introduction to Cluster Algebra Ivan C.H. Ip Update: May 29, 2017 7.2 Properties of Exchangeable roots The notion of exchangeable is explained as follows Proposition 7.20. If C and C = C

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

arxiv: v1 [math.ra] 19 Dec 2017

arxiv: v1 [math.ra] 19 Dec 2017 TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα