ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ"

Transcript

1 ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Φυσικής Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Διατριβή για την απόκτηση του Διδακτορικού Διπλώματος Φυσικών Επιστημών Aθήνα, Ιούνιος 2010

2

3

4 "The happiest moments of my life have been those few which I have passed at home, in the bosom of my family." Thomas Jefferson Ολόψυχα αφιερωμένο στην οικογένεια μου.

5 Χωρίς την υπομονή και την τελειομανία της Αθηνάς, η διατριβή αυτή δε θα είχε πάρει ποτέ αυτή της τη μορφή. Για την απίστευτη βοήθειά της και για τις πάμπολλες κρίσεις εκνευρισμού από τις οποίες με έσωσε, η διατριβή αυτή είναι δική της (όσο και αν αμφιβάλλω για την καταλληλότητά της ως δείγμα ευγνωμοσύνης). vi

6 ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Η διατριβή αυτή εγκρίνεται στην παρούσα μορφή της από την Τριμελή Συμβουλευτική Επιτροπή του Παναγιώτη Μερτικόπουλου ως πληρούσα τις προϋποθέσεις για την απόκτηση του Διδακτορικού Διπλώματος Φυσικών Επιστημών. ΤΑ ΜΕΛΗ ΤΗΣ ΤΡΙΜΕΛΟΥΣ ΕΠΙΤΡΟΠΗΣ. (Επιβλέπων) Ημ/νία Ημ/νία Ημ/νία vii

7

8 ΠΕΡΙΛΗΨΗ Το Internet είναι ένα χαρακτηριστικό παράδειγμα μίας εξαιρετικά περίπλοκης οντότητας: αποτελείται από δισεκατομμύρια (τεχνητά) μέλη που λειτουργούν σχετικά απλά σε απομόνωση, αλλά αλληλεπιδρούν μεταξύ τους με πολυπλοκότητα που είναι πολύ δύσκολο να κατανοηθεί από τους ανθρώπινους δημιουργούς τους. Έτσι, ένα πολλά υποσχόμενο πλαίσιο ανάλυσης αυτών των αλληλεπιδράσεων στηρίζεται στη θεωρία παιγνίων, μία επιστήμη στην οποία έχει ανατεθεί η (συχνά ουτοπική) αποστολή της κατανόησης ενός ακόμα πιο δυσνόητου και πολύπλοκου μηχανισμού, της ανθρώπινης νόησης. Ωστόσο, είναι ακριβώς αυτός ο θεμελιώδης στόχος της θεωρίας παιγνίων που φαίνεται να αντιφάσκει με την εφαρμογή της σε αυτό το πλαίσιο: είναι πράγματι δυνατό να εφαρμόσουμε τις γνώσεις μας για τις ανθρώπινες αλληλεπιδράσεις και συμπεριφορές σε δίκτυα μηχανών που στερούνται συναισθημάτων και παρορμήσεων; Η αντίφαση αυτή ωστόσο λύνεται αν θυμηθούμε πως η θεωρία παιγνίων περιλαμβάνει τη μελέτη της "λογικότητας" στην πιο αφηρημένη της μορφή και άρα μπορεί να εφαρμοστεί και σε οντότητες που έχουν περιορισμένη ή και μηδενική ικανότητα λογικής σκέψης (π.χ. ζώα, βακτήρια, ή, στην περίπτωσή μας, υπολογιστές). Αυτή η συλλογιστική έχει οδηγήσει στην εξελικτική θεωρία παιγνίων (ΕΘΠ), ένα παρακλάδι της θεωρίας παιγνίων που ασχολείται με μεγάλους πληθυσμούς μετά βίας νοημόνων οργανισμών οι οποίοι αλληλεπιδρούν σε ανταγωνιστικά περιβάλλοντα που προάγουν τη φυσική επιλογή. Έτσι, αυτές οι εξελικτικές μέθοδοι αυτές είναι ιδιαίτερα ελκυστικές για τη μελέτη των εσωτερικών διεργασιών των δικτύων επικοινωνίας, αφού οι χρήστες του Internet σχεδόν πάντα ανταγωνίζονται για τους πόρους του δικτύου τους. Ίσως το πιο πολυμελετημένο τέτοιο μοντέλο εξέλιξης πληθυσμών είναι η δυναμική των αντιγραφέων, ένα δυναμικό σύστημα που εισήχθη από τους Taylor και Jonker [1] για τη μελέτη των αλληλεπιδράσεων διαφορετικών φαινοτύπων ενός βιολογικού είδους. Αυτή η μελέτη σύντομα προκάλεσε το ενδιαφέρον των ανθρώπων που δούλευαν στη θεωρία παιγνίων και μετά από μια δεκαετία περίπου κατέληξε στο "παραδοσιακό θεώρημα" της ΕΘΠ, ένα θεώρημα που συνδέει την εξέλιξη και τη λογικότητα, δείχνοντας έτσι πως αυτό που εμφανίζεται ως αποτέλεσμα λογικής σκέψης είναι στην πραγματικότητα το αποτέλεσμα της φυσικής επιλογής που ευνοεί την επιβίωση του "ισχυρότερου". Αν, όμως, η λογικότητα μπορεί να ερμηνευθεί ως το αποτέλεσμα μιας εξελικτικής διαδικασίας, τότε, με την εισαγωγή κατάλληλων κριτηρίων επιλογής, η εξέλιξη μπορεί αν καθοδηγηθεί σε οποιαδήποτε κατάσταση είναι αποδοτική με αυτά τα κριτήρια. Με αυτόν τον τρόπο η δυναμική των αντιγραφέων αποκτά μια διαφορετική λειτουργία, αυτή ενός μηχανισμού μάθησης που οι χρήστες ενός δικτύου μπορούν να χρησιμοποιήσουν ώστε να φτάσουν σε μια "κοινωνικά αποδοτική" σταθερή κατάσταση. Με άλλα λόγια, εκμεταλλευόμενοι τα κίνητρα των «παικτών», οι σχεδιαστές του "παιγνίου" μπορούν να τους οδηγήσουν σε οποιαδήποτε κατάσταση τους συμφέρει. Το κεντρικό ζήτημα που θα μας απασχολήσει σε αυτή τη διατριβή είναι το τί συμβαίνει αν, εκτός από την πολυπλοκότητα των αλληλεπιδράσεων ix

9 των παικτών (π.χ. των χρηστών ενός δικτύου), το πρόβλημα περιπλέκεται περαιτέρω από την παρουσία εξωγενών και απρόβλεπτων διαταραχών, που συχνά ονομάζονται συλλογικά «φύση». Βρίσκουμε ότι αυτές οι τυχαίες διακυμάνσεις διαφοροποιούν τελικά εξέλιξη και μάθηση και οδηγούν σε διαφορετικές (στοχαστικές) εκφράσεις της δυναμικής των αντιγραφέων. Εντυπωσιακό είναι πως στην περίπτωση της μάθησης πολλές ιδιότητες της λογικότητας παραμένουν αδιατάρακτα από την εισαγωγή του θορύβου: ανεξαρτήτως του μεγέθους των στοχαστικών διακυμάνσεων, οι παίκτες εξακολουθούν να αναγνωρίζουν τακτικές που είναι υποδεέστερες των βέλτιστων, κάτι που δεν είναι πάντα δυνατό στην περίπτωση της εξέλιξης. Επιπλέον, τα «αυστηρά σημεία ισορροπίας» (κατά Nash) του παιγνίου (μια σημαντική κλάση σταθερών καταστάσεων), προκύπτουν στοχαστικά ευσταθή και ελκτικά, πάλι ανεξαρτήτως του επιπέδου του θορύβου. Από την άποψη της θεωρίας δικτύων (όπου οι στοχαστικές διαταραχές είναι πανταχού παρούσε), η σημασία αυτών των αποτελεσμάτων είναι ότι εγγυώνται την ευρωστία (robustness) της δυναμικής των αντιγραφέων παρουσία θορύβου. Έτσι, αν οι χρήστες ενός δικτύου με στοχαστικές διακυμάνσεις ακολουθήσουν ένα σχέδιο μάθησης αντιγραφέων και αν είναι αρκετά υπομονετικοί, δείχνουμε ότι η ροή κυκλοφορίας στο δίκτυο συγκλίνει σε μια αναλλοίωτη (σταθερή) κατανομή που είναι συγκεντρωμένη σε μια μικρή περιοχή του σημείου ισορροπίας του δικτύου. ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ ΤΗΣ ΔΙΑΤΡΙΒΗΣ. Κεφάλαιο. 1 Εισαγωγή. Κεφάλαιο 2 Στοιχεία θεωρίας παιγνίων. Κεφάλαιο 3 Στοιχεία λογισμού Itô. Κεφάλαιο 4 Διαταραχές σε παίγνια Nash. Κεφάλαιο 5 Διαταραγμένα παίγνια δυναμικού. Κεφάλαιο 6 Προβλήματα δρομολόγησης. Κεφάλαιο 7 Παίγνια σε ασύρματα δίκτυα. προαπαιτούμενο βοηθητικό x

10 ΔΗΜΟΣΙΕΥΣΕΙΣ Μέρος της παρούσας διδακτορικής διατριβής έχει ήδη δημοσιευθεί στα παρακάτω άρθρα: 1. Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Balancing traffic in networks: redundancy, learning and the effect of stochastic fluctuations", υπό κρίση. URL: 2. Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "The emergence of rational behavior in the presence of stochastic perturbations", The Annals of Applied Probability, τ. 20, αρ. 4, Ιούλιος URL: org/abs/ Π. Καζακόπουλος, Π. Μερτικόπουλος, Α. Λ. Μουστάκας και G. Caire: "Living at the edge: a large deviations approach to the outage MIMO capacity", IEEE Transactions on Information Theory (υπό δημοσίευση). URL: 4. Π. Καζακόπουλος, Π. Μερτικόπουλος, Α. Λ. Μουστάκας και G. Caire: "Distribution of MIMO mutual information: a large deviations approach", ITW '09: Proceedings of the 2009 IEEE Workshop on Networking and Information Theory. 5. Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Learning in the presence of noise", GameNets '09: Proceedings of the 1st International Conference on Game Theory for Networks, Μάιος Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Correlated anarchy in overlapping wireless networks", IEEE Journal on Selected Areas in Communications, τ. 26, αρ. 7, ειδικό τεύχος για τις εφαρμογές της θεωρίας παιγνίων στα δίκτυα τηλεπικοινωνιών, Σεπτέμβριος URL: http: //arxiv.org/abs/ Π. Μερτικόπουλος, Ν. Δημητρίου και Α. Λ. Μουστάκας: "Vertical handover between service providers", WiOpt '08: Proceedings of the 6th International Symposium on Modelling and Optimization of Wireless Networks, Απρίλιος Ν. Δημητρίου, Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Vertical handover between wireless standards", ICC'08: Proceedings of the 2008 IEEE International Conference on Communications, Μάιος Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "The Simplex Game: can selfish users learn to operate efficiently in wireless networks?", Game- Comm '07: Proceedings of the 1st International Workshop on Game Theory for Communication Networks, Οκτώβριος xi

11

12 ΠΕΡΙΕΧΟΜΕΝΑ 1 Εισαγωγή Το φυσικό περιβάλλον της θεωρίας παιγνίων Εξέλιξη, Μάθηση, και η Δυναμική των Αντιγραφέων Η Επίδραση των Στοχαστικών Διακυμάνσεων Δομή της Διατριβής και Επισκόπηση Αποτελεσμάτων 9 Συμβολισμοί και Συμβάσεις 11 2 Στοιχεία Θεωρίας Παιγνίων Παίγνια σε Κανονική Μορφή Παίγνια N παικτών Πληθυσμοί και Εξελικτικά Παίγνια Πάιγνια Δυναμικού Παίγνια Συμφόρησης Έννοιες Λύσης στη Θεωρία Παιγνίων Κυριαρχημένες Στρατηγικές Ισορροπία κατά Nash Αιτιολογώντας την Ισορροπία: Συσχέτιση και Εξέλιξη Εξέλιξη, Μάθηση, και η Δυναμική των Αντιγραφέων Η Δυναμική των Αντιγραφέων Εντροπία και Λογικότητα 32 3 Στοιχεία Στοχαστικής Ανάλυσης Κίνηση Brown Στοχαστική Ολοκλήρωση Λογισμός Itô και Στοχαστικές Διαφορικές Εξισώσεις Διαχύσεις και οι Γεννήτορές τους 38 4 Στοχαστικές Διακυμάνσεις σε Παίγνια Nash Εκθετική Μάθηση Μάθηση και Θόρυβος Εξαφάνιση των Κυριαρχημένων Στρατηγικών Στοχαστική Ευστάθεια της Ισορροπίας Nash 50 5 Στοχαστικές Διαταραχές σε Παίγνια Πληθυσμών Αιτιοκρατική Εξέλιξη σε Παίγνια Πληθυσμών Εκθετική Μάθηση και Λογικότητα Εξέλιξη στα Παίγνια Δυναμικού Στοχαστικές Διακυμάνσεις 64 6 Προβλήματα Δρομολόγησης Δίκτυα και Μοντέλα Συμφόρησης Δίκτυα και Ροές Μοντέλα Συμφόρησης και Ισορροπία Μάθηση, Εξέλιξη, και Λογικότητα Μάθηση και η Δυναμική των Αντιγραφέων Εντροπία και Λογικότητα 78 xiii

13 xiv Περιεχόμενα 6.3 Μοντέλα Συμφόρησης με Στοχαστικές Διακυμάνσεις Η Στοχαστική Δυναμική των Αντιγραφέων Στοχαστικές Διακυμάνσεις και Λογικότητα Ορισμένα Παραλειπόμενα 86 7 Εφαρμογές σε Ασύρματα Δίκτυα Το Παίγνιο των Πλεγμάτων Εγωισμός και Απόδοση Έννοιες Ισορροπίας Αναρχία και Αποτελεσματικότητα Εξέλιξη και Στάσιμες Καταστάσεις Υπολογίζοντας το Κόστος της Αναρχίας 96 8 Συμπεράσματα Μερικά Ανοικτά Ζητήματα 105 Βιβλιογραφία 109

14 ΕΥΡΕΤΗΡΙΟ ΣΧΗΜΑΤΩΝ Εσώφυλλο "Melencolia I", Albrecht Dürer (χαλκογραφία, 1514) iii Σχήμα 2.1 Το "πέτρα-ψαλίδι-χαρτί" σε στρατηγική μορφή 16 Σχήμα 5.1 Ένας ελκυστής που δεν είναι εξελικτικά ευσταθής 60 Σχήμα 5.2 Το τετραγωνικό φράγμα του Λήμματος Σχήμα 6.1 Αναγωγίσιμα και μη αναγωγίσιμα δίκτυα 74 Σχήμα 6.2 Το παράδοξο του Braess 77 Σχήμα 6.3 Μάθηση σε αναγωγίσιμα και μη αναγωγίσιμα δίκτυα 85 Σχήμα 7.1 Σύγκλιση ενός πλεγματικού παιγνίου σε ισορροπία 96 Σχήμα 7.2 Ανεξαρτησία από την απόδοση των κόμβων 97 Σχήμα 7.3 Επιλογές, στρατηγικές, και το κόστος της αναρχίας 100 Σχήμα 7.4 Ασυμπτωτικές προσεγγίσεις και μικρά N 101 ΕΥΡΕΤΗΡΙΟ ΠΙΝΑΚΩΝ Πίνακας 2.1 Ευρετήριο παιγνιοθεωρητικών χαρακτηρισμών 19 ΑΚΡΩΝΥΜΑ BNN ΣΣΙ ΕΘΠ ΕΕΣ IEEE ΑΕΚ FP MIMO NEQ ΡΣΑ ΣΔΕ TCP δυναμική Brown-von Neumann-Nash σημείο συσχετισμένης ισορροπίας εξελικτική θεωρία παιγνίων εξελικτικά ευσταθής στρατηγική Institute of Electrical and Electronics Engineers ανασκοπική εξίσωση Kolmogorov εξίσωση Fokker-Planck multiple-input, multiple-output ισορροπία κατά Nash ρήξη συμμετρίας αντιγράφων στοχαστική διαφορική εξίσωση Transmission Control Protocol xv

15 xvi UDP WEQ WLAN User Datagram Protocol ισορροπία κατά Wardrop Wireless Local Area Network

16 1 ΕΙΣΑΓΩΓΗ Χωρίς αμφιβολία, το Internet είναι ένα κτήνος, και μάλιστα, εξαιτίας της ιστοειδούς πολυπλοκότητάς του, φέρει πολλές ομοιότητες στα αραχνοειδή. Σύμφωνα με την τελευταία απογραφή του Δεκεμβρίου του 2009, ο τρέχων αριθμός των ανθρωπίνων χρηστών του Internet έχει φτάσει τον εντυπωσιακό αριθμό των 1.8 δισεκατομμυρίων, λίγο πάνω από το ένα τέταρτο του πληθυσμού της Γης. Ενώ αυτοί οι ανθρώπινοι χρήστες σερφάρουν ταυτόχρονα το δίκτυο, ελέγχουν το ηλεκτρονικό τους ταχυδρομείο και μοιράζονται τα αρχεία τους στο RapidShare, δημιουργούνται ταυτόχρονα ορδές εικονικών "χρηστών εφαρμογών", ο αριθμός των οποίων είναι αδύνατο να υπολογιστεί. Για να καταστεί δυνατή η ανταπόκριση στα αιτήματα όλων αυτών των χρηστών, το Internet έχει διαμοιραστεί σε περίπου αυτόνομα συστήματα (πρακτικά ανεξάρτητα τοπικά υποδίκτυα), τα οποία διαχειρίζονται περισσότεροι από διακομιστές οι οποίοι λειτουργούν στην τεράστια ταχύτητα των 100 Gbps.¹ Και παρ όλα αυτά, υπάρχουν στιγμές που αυτή η γιγαντιαία υποδομή ακινητοποιείται, αδυνατώντας να επεξεργαστεί τα δισεκατομμύρια αιτημάτων που ανταγωνίζονται μεταξύ τους στην αχανή αυτή κλίμακα. Υπάρχει λοιπόν ελπίδα να δαμάσουμε αυτόν τον πεπλεγμένο ιστό χρηστών και των τυπικά αντικρουόμενων αιτημάτων τους; Δεδομένου του ότι τα προγράμματα και οι browsers μας όντως λειτουργούν χωρίς προβλήματα (συνήθως, τουλάχιστον), θα μπορούσε κανείς να πει ότι ήδη τα έχουμε καταφέρει. Από την άλλη μεριά, όπως ο Κωστής Δασκαλάκης επισημαίνει στη διατριβή του [2], αυτό δε σημαίνει ότι κατανοούμε πραγματικά τις εσωτερικές διεργασίες του Internet: αν μια ιστοσελίδα δε φορτώσει, έχουμε όντως τα μέσα να ακολουθήσουμε την αντίστροφη πορεία που θα μας οδηγήσει από το πρόβλημα στην πραγματική του πηγή (που θα μπορούσε να είναι ένα σφάλμα πρωτοκόλλου που συνέβη στην άλλη άκρη της υφηλίου); Και, κάτι που έχει μεγαλύτερη σημασία, έχουμε κάποιου είδους ικανότητα πρόγνωσης τέτοιων σφαλμάτων; Η σύντομη απάντηση και στα δύο αυτά ερωτήματα είναι "όχι", κάτι που κατά κύριο λόγο οφείλεται στην πολυπλοκότητα του Internet: θα χρειαζόταν ένας υπολογιστής του μεγέθους του Internet για την απλή παρακολούθηση αυτής της διαδικασίας, πόσο μάλλον για την κατανόησή της. Αντιστρέφοντας, όμως, αυτό το επιχείρημα βλέπουμε ότι το ίδιο το Internet θα μπορούσε να χρησιμοποιηθεί για να κατανοηθεί η λειτουργία του: όπως συμβαίνει με τα μόρια ενός αερίου, η δυναμική κάθε χρήστη είναι σχετικά απλή, οπότε, αν και δεν μπορεί κανείς να προβλέψει τις πράξεις ενός συγκεκρι- 1 Αυτά τα στατιστικά στοιχεία για τη χρήση του Internet είναι απλώς εκτιμήσεις των πραγματικών μεγεθών. Οι πιο ακριβείς πηγές για τέτοιου είδους πληροφορίες είναι η Αμερικανική Υπηρεσία Απογραφών (http://www.census.gov) και η Κοινοπραξία Παγκόσμιων Στατιστικών του Διαδικτύου (http://internetworldstats.com/stats.htm). 1

17 2 μένου χρήστη, οι νόμοι της στατιστικής μπορούν να χρησιμοποιηθούν ώστε να συναχθούν συμπεράσματα για τη γενική ροή μελλοντικών γεγονότων. Αυτή ακριβώς είναι η ιδέα που έχει φέρει τη θεωρία παιγνίων στο προσκήνιο των θεωρητικών ερευνών σχετικά με τη φύση του Internet και κατ αυτόν τον τρόπο έδωσε νέα ώθηση σε έναν, κατά τα άλλα μη συγγενή, τομέα των εφαρμοσμένων μαθηματικών. Βοηθώντας μας να κατανοήσουμε τις αλληλεπιδράσεις μεταξύ χρηστών σε τοπική κλίμακα (ή, αντίστροφα, να τις ελέγξουμε), η θεωρία παιγνίων ίσως μας παράσχει τα εφόδια που χρειαζόμαστε για να μελετήσουμε και να κατευθύνουμε την εξέλιξη του Διαδικτύου. 1.1 ΤΟ ΦΥΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΗΣ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ Ο στόχος της Θεωρίας Παιγνίων, Η θεωρία παιγνίων, όπως και η αντίστοιχή της φανταστική επιστήμη, η ψυχοϊστορία, έχει έναν πολύ φιλόδοξο στόχο: να εξηγήσει και να προβλέψει τη συμπεριφορά εγωιστικών ατόμων που αλληλεπιδρούν μεταξύ τους και με το περιβάλλον τους. Αλλά αν και η πένα του Asimov δάνεισε την ιδιοφυΐα του δημιουργού στους ψυχοϊστορικούς της Γαλαξιακής Αυτοκρατορίας, η ψυχολογία, η επιστήμη της νόησης ή ακόμα και η φιλοσοφία είναι μάλλον πιο κατάλληλες να καταπιαστούν με το δύσκολο εγχείρημα της κατανόησης της ανθρώπινης λογικότητας (rationality). Η προσπάθεια να προσδιοριστούν ποσοτικά τα χαρακτηριστικά της ανθρώπινης συμπεριφοράς με τα μαθηματικά εργαλεία που είναι αυτή τη στιγμή στη διάθεση της θεωρίας παιγνίων είναι ένα χιμαιρικό κυνήγι που απειλεί την ίδια την αξιοπιστία του κλάδου. Ας θεωρήσουμε, για παράδειγμα, το πολυ-διαφημισμένο αλλά τελικά μάλλον παρεξηγημένο Δίλημμα του Φυλακισμένου, που προτάθηκε από τον Μerrill Flood ενώ δούλευε στο RAND [3]: δύο φυγάδες συλλαμβάνονται από τις Αρχές και, ελλείψει επαρ- κών στοιχείων για καταδίκη, τους προσφέρεται η ίδια μυστική συμφωνία. Ο φυλακισμένος που θα δώσει ενοχοποιητικά στοιχεία για το συνεργό του θα αφεθεί ελεύθερος, ενώ ο εν λόγω συνεργός θα καταδικαστεί σε δεκαετή κάθειρξη. Αν προδώσουν ο ένας τον άλλον θα εκτίσουν ποινή φυλάκισης 5 ετών ο καθένας, και αν κανείς δε μιλήσει θα καταδικαστούν και οι δύο σε εξάμηνη κάθειρξη για κάποιο ασήμαντο πλημμέλημα. Πώς θα βγουν οι φυλακισμένοι από αυτή τη δύσκολη θέση; Αντίθετα με αυτό που μάλλον θα περίμενε κανείς, η Θεωρία Παιγνίων προβλέπει ότι η "ισορροπία" (κατά Nash) αυτού του διλήμματος είναι η αμοιβαία προδοσία των φυλακισμένων και οι δύο θα "προδώσουν" κατά την παιγνιοθεωρητική ορολογία. Μία δικαιολόγηση αυτής της έννοιας λύσης είναι πως τα κέρδη της προδοσίας υπερισχύουν των κερδών της σιωπής: με άλλα λόγια, δεδομένης της επιλογής που θα κάνει ο αντίπαλος (στην πραγματικότητα ανεξάρτητα από αυτήν), είναι προτιμότερη η προδοσία: η ελευθερία είναι καλύτερη από 6 μήνες φυλάκισης και 5 χρόνια στη φυλακή είναι προτιμότερα από 10. Δεν αποτελεί έκπληξη ότι η λύση αυτή είναι αμφιλεγόμενη: δεν είναι άλλωστε καλύτερο να στοχεύσει κανείς στο κοινό καλό και να μπεί στη φυλακή για έξι μόνο μήνες από το να ρισκάρει πενταετή φυλάκιση?² Είναι, όμως, πράγματι έτσι? Υπάρχουν αυτοί που θα έπαιρναν ανιδιοτελώς το ρίσκο να εμπιστευθούν το συνεργό τους επιδιώκοντας μια επωφελή και για τους δύο κατάληξη και υπάρχουν και εκείνοι που εγωιστικά θα άρπαζαν την ευκαιρία να παραμείνουν ελεύθεροι, χωρίς δεύτερη σκέψη. Αλλά τί θα οι εφαρμογές της, και οι εγγενείς δυσκολίες 2 Είναι ενδιαφέρον ότι σε ένα ψυχολογικό πείραμα που μιμούταν τις συνθήκες του Διλήμματος του φυλακισμένου, πάνω από 40% των συμμετεχόντων επέλεξε να μη μιλήσει [4].

18 1.1 3 συνέβαινε αν η ποινή της αμοιβαίας σιωπής ήταν όχι έξι μήνες αλλά έξι μόνο μέρες? Ή, αντίθετα, τί θα συνέβαινε η καταδίκη επέσειε τη θανατική ποινή? Aν και εύλογα, τέτοια ερωτήματα αναγκαστικά μας απομακρύνουν από την επιστήμη και μας βυθίζουν βαθιά στη σφαίρα της εικασίας, που είναι καλύτερο να αφεθεί στους μεγάλους λογοτέχνες των καιρών μας. Όσο τεράστιες περιοχές του ανθρώπινου μηχανισμού λήψης αποφάσεων παραμένουν αχαρτογράφητες, δεν υπάρχει μαθηματικός τρόπος να προσδιοριστούν ποσοτικά οι "λογικές" αντιδράσεις των ανθρώπων σε κάποιο ερέθισμα, ακόμα και όταν το ερέθισμα αυτό καθαυτό μπορεί να προσδιορισθεί ποσοτικά (που στο Δίλημμα του Φυλακισμένου, αυτό δεν είναι δυνατό). Συνεπώς, η εξήγηση (ή, καλύτερα, η πρόβλεψη) της ανθρώπινης συμπεριφοράς βάσει της Θεωρίας Παιγνίων δε φαίνεται ρεαλιστική προοπτική προς το παρόν. Υπάρχουν δύο τρόποι να ξεπεραστεί αυτό το αδιέξοδο. Ο ένας έγκειται στη μείωση της πολυπλοκότητας των υπό θεώρηση στρατηγικών σεναρίων, ώστε να μπορεί τουλάχιστον κανείς να κάνει επαληθεύσιμες προβλέψεις όσον αφορά ανθρώπινους παίκτες σε απλά προβλήματα αποφάσεων. Για παράδειγμα, μία ιδέα που διερευνήθηκε με ενθουσιασμό τη δεκαετία του 60 ήταν η ενσωμάτωση της επίδρασης που τα (υποκειμενικά) πιστεύω ενός ατόμου είχαν στο μηχανισμό λήψης αποφάσεών του. Αλλά, ακόμα και σε στοιχειώδες επίπεδο, αυτό οδήγησε σε μία ατέρμονη σειρά υποκειμενικών πεποιθήσεων για τις υποκειμενικές πεποιθήσεις ενός άλλου ανθρώπου, τις δικές τους πεποιθήσεις για αυτές τις πεποιθήσεις κ.ο.κ. ad nauseam. Aπό αυτή τη συζήτηση γεννήθηκαν μεγαλόπρεπες δομές της θεωρίας συνόλων όπως ο "πύργος πεποιθήσεων" του Ηarasanyi (γνωστού και ως "ιεραρχία πεποιθήσεων" [5]), αλλά, όπως και στην περίπτωση του βιβλικού του προκατόχου στη Βαβυλώνα, ο αρχικός στόχος του πύργου δεν επετεύχθει. Οι ιεραρχίες πεποιθήσεων αποτέλεσαν ένα τεράστιο βήμα στην κατανόηση της λογικότητας κατά Bayes το πρωτοποριακό έργο του Aumann [6] πάνω στην υποκειμενικότητα και τη συσχέτιση ήταν ένα άλλο πολύ σημαντικό βήμα αλλά το σημαντικότερο μέρος της πολυπλοκότητας της ανθρώπινης λογικότητας μας διαφεύγει ακόμα (και κατά πάσα πιθανότητα θα συνεχίσει να μας διαφεύγει για αρκετό καιρό). Άλλες προσπάθειες να δικαιολογηθούν οι προβλέψεις της θεωρίας παιγνίων εξειδικεύοντας την έννοια της ισορροπίας δεν ήταν τόσο επιτυχείς. Όπως μεμφόμενος παρατήρησε ο Ken Binmore "διάφορα μπιχλιμπίδια προσαρτήθηκαν στην ιδέα της λογικότητας", το καθένα μία αντικειμενική αντανάκλαση της υποκειμενικής ερμηνείας του δημιουργού του, για το τί συνιστά λογική συμπεριφορά. Έτσι, όπως θα περίμενε κανείς, αυτή η άτακτη προσέγγιση σύντομα οδήγησε στην ενοχλητική κατάσταση όπου "σχεδόν κάθε ισορροπία κατά Nash μπορούσε να δικαιολογηθεί βάσει του ενός ή του άλλου ορισμού".³ Η άλλη προσπάθεια παράκαμψης της αδυναμίας των μαθηματικών να αντιμετωπίσουν τα ανθρώπινα είναι πιο ριζοσπαστική. Όπως προαναφέρθηκε, ο στόχος που τέθηκε στη θεωρία παιγνίων ήταν η κατανόηση της συμπεριφοράς εγωιστικών ατόμων που αλληλεπιδρούν μεταξύ τους. Αλλά είναι η έννοια του "εγωιστικού ατόμου" πραγματικά συνώνυμη με αυτή του "εγωιστή ανθρώπου"; Ο "εγωισμός" δεν είναι μία αποκλειστικά ανθρώπινη μάστιγα: εμφανίζεται και στις μεγαλοπρεπείς σεκόϊες που αγωνίζονται να Υποκειμενικότητα και εξειδικεύσεις 3 Από τον πρόλογο του Binmore στο βιβλίο του Weibull [7, σελ. ix]. Δεν μπορώ παρά να αναρωτηθώ αν μοιράζονται αυτό το συναίσθημα οι φυσικοί και οι μαθηματικοί που δουλεύουν στη θεωρία χορδών, όπου σχεδόν κάθε κατάσταση κενού είναι αρκετά ασαφής ώστε να εξηγεί οποιοδήποτε παρατηρήσιμο φαινόμενο σε χαμηλότερες ενέργειες.

19 4 Εξελικτική Θεωρία Παιγνίων και οι δικτυακές εφαρμογές της διαπεράσουν τη σκιά των ίδιων των συστάδων τους προκειμένου να φτάσουν στο φως του Ήλιου σε μια πιο βίαιη εκδήλωση, το νέο αρσενικό λιοντάρι μιας αγέλης επιτίθεται στα μικρά του προηγούμενου αρσενικού για να διασφαλίσει τη θέση του και ακόμα και στον αυστηρά ρυθμιζόμενο χώρο της τεχνολογίας, υπάρχουν αχόρταγες οντότητες όπως οι υπολογιστές, που συνεχώς ανταγωνίζονται για περισσότερους πόρους προκειμένου να ολοκληρώσουν τα εντεταλμένα τους καθήκοντα. Έτσι, αντί να εξετάζουμε τη συμπεριφορά των ανθρώπων (ίσως των πιο περίπλοκων υπάρξεων στο γνωστό σύμπαν), μπορούμε να αρχίσουμε να μελετάμε τη λογικότητα πιο ταπεινά, εξετάζοντας τη συμπεριφορά ατόμων των οποίων τα κίνητρα και οι αντιδράσεις μπορούν να προσδιοριστούν ποσοτικά με αντικειμενικό τρόπο. Αυτή η ιδέα προτάθηκε για πρώτη φορά από τους Maynard Smith και Price [8], τους εμπνευστές της εξελικτικής θεωρίας παιγνίων. Όπως ήδη είπαμε, η βασική τους ιδέα ήταν αφοπλιστικά απλή: εστίασαν σε είδη των οποίων τα χαρακτηριστικά ερεθίσματος-απόκρισης προσδιορίζονται πλήρως από τον γενετικό τους προγραμματισμό (π.χ. τα χαρακτηριστικά ανάπτυξης και αναπαραγωγής των βακτηρίων). Κατ αυτόν τον τρόπο, χωρίς πια να παρεμποδίζονται από την πολυπλοκότητα των υψηλού επιπέδου νοητικών διεργασιών του ανθρώπου, οι Maynard Smith και Price άνοιξαν το δρόμο για μία πληθώρα χειροπιαστών εφαρμογών της θεωρίας παιγνίων στη βιολογία πληθυσμών. Έχει ενδιαφέρον το πώς, ενώ η υποχώρηση του πιο αδύναμου ζώου από διαγωνισμούς δύναμης πριν υπάρξουν θανατηφόρα τραύματα είχε προηγουμένως αποδοθεί σε αλτρουιστική συμπεριφορά που εξυπηρετούσε το "καλό του είδους", δείχτηκε ότι αυτό στην πραγματικότητα είναι μία (εγγενώς εγωιστική) εξελικτικά ευσταθής στρατηγική (ΕΕΣ). Είναι ειρωνικό το πως, προχωρώντας αυτό το συλλογισμό στα άκρα, βλέπουμε ότι το πιο πρόσφορο έδαφος για τέτοια εξελικτικά παίγνια είναι εκεί όπου οι βιολογικοί οργανισμοί απουσιάζουν παντελώς: ο κόσμος των δικτύων υπολογιστών. Πράγματι, εξαιρώντας δυσλειτουργίες και παρόμοια (σχετικά σπάνια) προβλήματα, ένας υπολογιστής θα αντιδράσει σε ένα δεδομένο ερέθισμα ακριβώς όπως προγραμματίστηκε να αντιδράσει. Έτσι, οι αλληλεπιδράσεις υπολογιστών θα διέπονται από ένα σύνολο πολύ συγκεκριμένων κανόνων και πρωτοκόλλων, που δεν αφήνουν περιθώρια αμφιβολίας ή αβεβαιότητας. Επομένως, δεδομένου του ότι ο άνους (αλλά και εγωιστικός) στόχος πίσω από τον προγραμματισμό κάθε υπολογιστή είναι η διεκπεραίωση των εντεταλμένων του καθηκόντων ανεξάρτητα από το περιβάλλον του (οτιδήποτε δεν εισάγεται ως δεδομένο), βλέπουμε ότι τέτοια δίκτυα είναι τα καλύτερα υποκείμενα παιγνιοθεωρητικών θεωρήσεων.⁴ 1.2 ΕΞΕΛΙΞΗ, ΜΑΘΗΣΗ, ΚΑΙ Η ΔΥΝΑΜΙΚΗ ΤΩΝ ΑΝΤΙΓΡΑΦΕΩΝ Εξέλιξη και μάθηση Οι εφαρμογές της εξελικτικής θεωρίας παιγνίων στα δίκτυα είναι διττές. Κατ αρχήν, όπως και στη βιολογία πληθυσμών, ένα ζητούμενο είναι η κατανόηση της εξέλιξης του δικτύου, εξετάζοντας τις εγωιστικές αλληλεπιδράσεις των μερών του και καθορίζοντας τις καταστάσεις που είναι "ευσταθείς" ως προς τις αλληλεπιδράσεις αυτές. Αυτή η κατεύθυνση περιγράφεται συνήθως από τον όρο "εξέλιξη" και βρίσκεται στο προσκήνιο των παιγνιοθεωρητικών ερευνών μετά την πρωτοποριακή δουλειά των Maynard 4 Για μια διεξοδική μελέτη δείτε το άρθρο των Altman et al. και τις εκεί αναφορές.

20 1.2,, 5 Smith και Price [8] ανατρέξτε και στις επισκοπήσεις των Weibull [7] και Ηofbauer και Sigmund [9, 10] για περισσότερες πληροφορίες. Απ την άλλη μεριά, τίθεται το ακόλουθο ερώτημα: αν θέλουμε ένα σύστημα αλληλεπιδρώντων οντοτήτων (π.χ. ένα δίκτυο) να λειτουργεί σε κάποια "βέλτιστη" κατάσταση, μπορούμε με κάποιον τρόπο να εκπαιδεύσουμε τις ανταγωνιζόμενες οντότητες ώστε τα εγωιστικά τους κίνητρα να τις οδηγήσουν τελικά σε αυτή την κατάσταση? Αυτή η όψη της εξελικτικής θεωρίας παιγνίων εύστοχα αποκαλείται "μάθηση" και έχει μελετηθεί εξίσου διεξοδικά το βιβλίο των Fudenberg και Levine [11] είναι μια εξαιρετική αρχή, ενώ το άρθρο του Hart [12] κάνει έναν πιο πρόσφατο απολογισμό. Και τα δύο ερωτήματα περιστρέφονται γύρω από δύο βασικούς άξονες. Ο πρώτος είναι ο καθορισμός του "στρατηγικού παιγνίου" στο οποίο συμμετέχουν οι παίκτες, του συγκεκριμένου, δηλαδή, πλαισίου που θα χρησιμοποιηθεί για την προσομοίωση και τον ποσοτικό προσδιορισμό των αλληλεπιδράσεων που συμβαίνουν, ήτοι ο ορισμός των επιλογών των παικτών (π.χ. να εκπέμψουν ή να σιγήσουν) και των κερδών που αντιστοιχούν σε αυτές. Ο δεύτερος άξονας αφορά στο μηχανισμό επιλογής που οι παίκτες χρησιμοποιούν για να αποτιμήσουν τις αποφάσεις και τις αντιδράσεις τους μιμούμενοι, για παράδειγμα, τους πιο επιτυχείς παίκτες ή μαθαίνοντας να αποφεύγουν τα λάθη που έκαναν στο παρελθόν. ⁵ Προφανώς το πρώτο ζητούμενο (η επιλογή του παιγνίου) εξαρτάται από τις ιδιαιτερότητες της συγκεκριμένης εφαρμογής, άρα είναι καλύτερο να αντιμετωπιστεί κατά περίπτωση. Αντίθετα, η διαδικασία της φυσικής επιλογής που αποτελεί τον πυρήνα του δεύτερου ζητούμενου μπορεί να μελετηθεί ανεξάρτητα από το πρώτο, εξετάζοντας τις ιδιότητες σύγκλισης και ευστάθειας του εξελικτικού μηχανισμού (ή μηχανισμού μάθησης) γύρω από τα σημεία ισορροπίας (ή όποια άλλη έννοια λύσης) του υποκείμενου παιγνίου. Ένα από τα πιο ευρέως χρησιμοποιούμενα μοντέλα εξέλιξης και μάθησης σε αυτό το πλαίσιο είναι η δυναμική των αντιγραφέων, ένα δυναμικό σύστημα που εισήγαγαν πρώτοι οι Taylor και Jonker [1] για να προσομοιώσουν μεγάλους πληθυσμούς που αλληλεπιδρούν μεταξύ τους μέσω τυχαίων σχηματισμών ζευγών σε διαγωνισμούς αναπαραγωγικής ισχύος (όπως μονομαχίες μεταξύ ελαφιών). Με λίγα λόγια, αυτή η δυναμική εμφανίζεται ως παραπροϊόν ενός μηχανισμού "μίμησης του ισχυρότερου" που αντικατοπτρίζει το αποτέλεσμα τέτοιων αγώνων. Πιο συγκεκριμένα, ο κατα κεφαλήν ρυθμός αύξησης ενός φαινοτύπου, δηλαδή ο αριθμός απογόνων στη μονάδα του χρόνου, θεωρείται ανάλογος των απολαβών που κερδίζουν στον ίδιο χρόνο τα άτομα του συγκεκριμένου φαινοτύπου.⁶ Έτσι, αν z iα ο πληθυσμός του φαινοτύπου α του είδους i και u i η αναπαραγωγική του ισχύς (όπως καθορίζεται από την κατανομή των διαφόρων Η δυναμική των αντιγραφέων 5 Εδώ βλέπουμε πως η αρχή των "απλών οργανισμών" της εξελικτικής θεωρίας παιγνίων έχει καθοριστική σημασία: η προσομοίωση ανθρώπινων αλληλεπιδράσεων είναι ένα σισύφειο εγχείρημα η προσπάθεια περαιτέρω εμβάθυνσης στην ανθρώπινη νόηση προτείνοντας ένα μαθηματικό μοντέλο για την ανθρώπινη μάθηση έχει σίγουρα πολύ μικρή σχέση με την πραγματικότητα. 6 Θα πρέπει επίσης να αναφέρουμε εδώ τη σημαντική διάκριση μεταξύ του "γονότυπου" ενός οργανισμού (δηλ. το σύνολο των κληρονομικών πληροφοριών που είναι κωδικοποιημένες στο γενετικό του υλικό) και το "φαινότυπό" του, δηλαδή τις παρατηρήσιμες ιδιότητές του, όπως τη μορφολογία του και τα πρότυπα συμπεριφοράς του [13, 14]. Στη θεωρία της εξελικτικής σύνθεσης, η φυσική επιλογή βασίζεται στο φαινότυπο ενός οργανισμού (που καθορίζει την αλληλεπίδραση του με άλλους οργανισμούς), ενώ η κληρονομικότητα καθορίζεται από το γονότυπό του. Δυστυχώς, η επιγενετική διαδικασία που απεικονίζει γονοτύπους σε φαινοτύπους δεν είναι ακόμα γνωστή, έτσι θα ακολουθήσουμε τη βιομετρική προσέγγιση της γενετικής πληθυσμών και θα περιοριστούμε στο χώρο των φαινοτύπων.

21 6 ειδών και το εν λόγω εξελικτικό παίγνιο), το εξελικτικό αξίωμα που μόλις περιγράψαμε γράφεται: dz iα dt = z iα u iα. (1.1) Έτσι, αν z i = β z iβ ο συνολικός πληθυσμός του i-στού είδους και x iα = z iα /z i το σχετικό μερίδιο του φαινοτύπου α στον πληθυσμό, με απλή εφαρμογή του κανόνα της αλυσίδας προκύπτει η εξίσωση των αντιγραφέων: dx iα dt = x iα (u iα u i ), (1.2) όπου u i o πληθυσμιακός μέσος του i-στού είδους: u i = β x iβ u iβ. Δεδομένου του ότι αυτή η εξελικτική προσέγγιση αφορά ραγδαία εξελισσόμενα είδη και πληθυσμούς που σπάνια απαντώνται εκτός της βιολογίας πληθυσμών, το περιεχόμενο "μάθησης" της (1.2) δεν είναι άμεσα προφανές. Όμως, αν θεωρηθεί πως ο δείκτης α αναφέρεται σε μία από τις πιθανές επιλογές ενός ατόμου i (για παράδειγμα την επιλογή μιας διαδρομής σε ένα δίκτυο) και το u iα αντιπροσωπεύει τα κέρδη που σχετίζονται με αυτή την επιλογή, τότε η (1.2) μπορεί να ιδωθεί ως μια διαδικασία μάθησης, αρκεί να επανερμηνεύσουμε το x iα ως την πιθανότητα ο i-στός παίκτης να επιλέξει α.⁷ Κατ αυτόν τον τρόπο η δυναμική των αντιγραφέων αναπαριστά ένα αναπροσαρμοζόμενο σχήμα μάθησης, με τις διαφορές των κερδών u iα u i να μετρούν την προδιάθεση του παίκτη i να επιλέξει την αντίδραση α. Υπάρχει και μία εναλλακτική ερμηνεία "μάθησης" της δυναμικής των αντιγραφέων, που, αν και όχι τόσο προφανής, θα μας είναι εξίσου σημαντική. Θεωρείστε ότι ο κάθε παίκτης κρατά ένα αθροιστικό σκορ των επιλογών του μέσω της διαφορικής εξίσωσης: du iα = u iα dt. (1.3) Προφανώς, όσο υψηλότερο το σκορ U iα της επιλογής α, τόσο πιο επικερδής θα έχει αποβεί αυτή η επιλογή με την πάροδο του χρόνου για τον παίκτη i. Δεδομένου αυτού, οι παίκτες ενημερώνουν τις πιθανότητες x iα με τις οποίες επιλέγουν τις αντιδράσεις τους σύμφωνα με την κατανομή του Boltzmann: x iα = e U iα/ β e U iβ (1.4) που μετά από μία απλή παραγώγιση δίνει τη δυναμική των αντιγραφέων (1.2). Αυτό το σχήμα μάθησης λέγεται "εκθετική μάθηση",⁸ και, μαζί με την πιο άμεση μαθησιακή ερμηνεία της (1.2), δείχνει ότι η δυναμική των αντιγραφέων προκύπτει ως κοινός παρονομαστής εξέλιξης και μάθησης. Βέβαια θα πρέπει εδώ να σημειωθεί ότι η δυναμική των αντιγραφέων δεν είναι η μόνη εξελικτική δυναμική που χρησιμοποιείται στη θεωρία παιγνίων. Έχει, όμως, μοναδικά χαρακτηριστικά που έχουν μαγνητίσει τους μαθηματικούς: οι εξισώσεις της αʹ) είναι απλές και ξεκάθαρες; βʹ) προκύπτουν με φυσικό τρόπο από πρώτες αρχές; και γʹ) έχουν αυτό το ακαθόριστο προσόν που οι μαθηματικοί αποκαλούν "κομψότητα" και το οποίο γίνεται γρήγορα 7 Φυσικά, αυτό προϋποθέτει ότι οι επιλογές των παικτών ανήκουν σε ένα πεπερασμένο σύνολο και ότι οι "απολαβές" τους εξαρτώνται από την πιθανότητα με την οποία οι παίκτες κάνουν μια επιλογή. Για περισσότερες πληροφορίες δείτε το Κεφάλαιο 4. 8 Ή μάθηση "logit", αν και "λογιστική" θα ταίριαζε καλύτερα- δείτε το Κεφάλαιο 4 για περισσότερες πληροφορίες.

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των

Διαβάστε περισσότερα

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη Θεωρία παιγνίων: Μεικτές στρατηγικές και Ισορροπία Nash Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 18 Μαρτίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Μεικτές στρατηγικές 18 Μαρτίου 2012 1 / 9 Κυριαρχία και μεικτές

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα αποτελούνται από πολλές

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια; HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1

ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1 ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1 ΣΥΝΑΡΤΗΣΕΙΣ Η έννοια της συνάρτησης είναι θεμελιώδης στο λογισμό και διαπερνά όλους τους μαθηματικούς κλάδους. Για το φοιτητή είναι σημαντικό να κατανοήσει πλήρως αυτή

Διαβάστε περισσότερα

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Το παράδοξο του St. Petersburg Η θεωρία του καταναλωτή σε περιβάλλον αβεβαιότητας που εξετάσαμε μπόρεσε να δώσει απάντηση σε κάποια ερωτήματα που πριν

Το παράδοξο του St. Petersburg Η θεωρία του καταναλωτή σε περιβάλλον αβεβαιότητας που εξετάσαμε μπόρεσε να δώσει απάντηση σε κάποια ερωτήματα που πριν Θεωρία Καταναλωτή: Μια κριτική ματιά Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 24 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή: Μια κριτική ματιά 24 Δεκεμβρίου 2012 1 / 14 Το παράδοξο

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι... ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xv 1 Εισαγωγή 1 1.1 Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο........ 1 1.2 Μερικά Ιστορικά Στοιχεία..................... 3 1.3 Ενα Παράδοξο Παιχνίδι...................... 4 Μέρος

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Θεωρία Καταναλωτή: Αβεβαιότητα Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 0 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή: Αβεβαιότητα 9 Οκτωβρίου 0 / 5 Ανάγκη θεωρίας επιλογής υπό αβεβαιότητα

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν 3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα

Διαβάστε περισσότερα

Η ΝΟΗΤΙΚΗ ΔΙΕΡΓΑΣΙΑ: Η Σχετικότητα και ο Χρονισμός της Πληροφορίας Σελ. 1

Η ΝΟΗΤΙΚΗ ΔΙΕΡΓΑΣΙΑ: Η Σχετικότητα και ο Χρονισμός της Πληροφορίας Σελ. 1 Η ΝΟΗΤΙΚΗ ΔΙΕΡΓΑΣΙΑ: Η Σχετικότητα και ο Χρονισμός της Πληροφορίας Σελ. 1 Μια σύνοψη του Βιβλίου (ΟΠΙΣΘΟΦΥΛΛΟ): Η πλειοψηφία θεωρεί πως η Νόηση είναι μια διεργασία που συμβαίνει στον ανθρώπινο εγκέφαλο.

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Περί της Ταξινόμησης των Ειδών

Περί της Ταξινόμησης των Ειδών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Περί της Ταξινόμησης

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Ενότητα: ΠΟΣΟΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ. Διδάσκων : Επίκουρος Καθηγητής Στάθης Παπασταθόπουλος

Ενότητα: ΠΟΣΟΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ. Διδάσκων : Επίκουρος Καθηγητής Στάθης Παπασταθόπουλος Τίτλος Μαθήματος: ΑΝΑΠΤΥΞΙΑΚΗ ΨΥΧΟΛΟΓΙΑ Ι Ενότητα: ΠΟΣΟΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ Διδάσκων : Επίκουρος Καθηγητής Στάθης Παπασταθόπουλος Τμήμα: Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας ΑΝΑΠΤΥΞΙΑΚΗ

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων:

n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων: ΜΑΘΗΜΑ 1: ΑΠΟ ΤΟ ΠΕΙΡΑΜΑ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΠΡΟΤΥΠΟ Ας θεωρήσουμε ως παράδειγμα ένα σύστημα χημικών ουσιών που υπεισέρχονται σε μια χημική αντίδραση. Η στιγμιαία κατάσταση κάθε ουσίας χαρακτηρίζεται

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1 Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

Πρωτόκολλα Διαδικτύου Μέρος 2ο. Επικοινωνίες Δεδομένων Μάθημα 3 ο

Πρωτόκολλα Διαδικτύου Μέρος 2ο. Επικοινωνίες Δεδομένων Μάθημα 3 ο Πρωτόκολλα Διαδικτύου Μέρος 2ο Επικοινωνίες Δεδομένων Μάθημα 3 ο Internet Protocol (IP) Στο επίπεδο δικτύου της τεχνολογίας TCP/IP, συναντάμε το πρωτόκολλο IP. Η λειτουργία του IP βασίζεται αποκλειστικά

Διαβάστε περισσότερα

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους: ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή

Διαβάστε περισσότερα

ẋ = f(x), x = x 0 όταν t = t 0,

ẋ = f(x), x = x 0 όταν t = t 0, Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή Εισαγωγή Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Εισαγωγή στο σχεδιασμό των Μεταφορών Βασικές έννοιες και αρχές των Μεταφορών Διαδικασία Ορθολογικού

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί όπου δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η

Διαβάστε περισσότερα

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συστήματα με Ιδιοτελείς (και Ανταγωνιστικούς) Χρήστες

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Εργαστήριο Δημογραφικών & Κοινωνικών Αναλύσεων

Εργαστήριο Δημογραφικών & Κοινωνικών Αναλύσεων ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΑΣΙΜΟΥ ΚΑΙ ΣΤΑΘΕΡΟΥ ΠΛΗΘΥΣΜΟΥ (ΕΛΕΥΘΕΡΙΑ ΑΝΔΡΟΥΛΑΚΗ) Η εξέταση των πολύπλοκων δεσμών που συνδέουν τα δημογραφικά φαινόμενα με τους πληθυσμούς από τους οποίους προέρχονται και τους οποίους

Διαβάστε περισσότερα

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΜΑΘΗΜΑ : ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Θεωρούμε ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές εκφρασμένο στις καρτεσιανές συντεταγμένες

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

Ημερολόγιο αναστοχασμού (Reflective Journal)

Ημερολόγιο αναστοχασμού (Reflective Journal) Ημερολόγιο αναστοχασμού (Reflective Journal) Ορισμός Ημερολόγιο αναστοχασμού (Reflective Journal) είναι ένα σταδιακά αναπτυσσόμενο κείμενο στον οποίο καταγράφονται παρατηρήσεις και αντιδράσεις σε σχέση

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

Εκπαιδευτική Μονάδα 1.1: Τεχνικές δεξιότητες και προσόντα

Εκπαιδευτική Μονάδα 1.1: Τεχνικές δεξιότητες και προσόντα Εκπαιδευτική Μονάδα 1.1: Τεχνικές δεξιότητες και προσόντα Πέρα από την τυπολογία της χρηματοδότησης, των εμπλεκόμενων ομάδων-στόχων και την διάρκεια, κάθε project διακρατικής κινητικότητας αποτελεί μια

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο».

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Το κυματοπακέτο (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Ένα ελεύθερο σωμάτιο δεν έχει κατ ανάγκη απολύτως καθορισμένη ορμή. Αν, για παράδειγμα,

Διαβάστε περισσότερα

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ 2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τα παίγνια αποτελούν τη δεύτερη μορφή επιχειρησιακής έρευνας που θα εξετάζουμε. Πρόκειται για μία μέθοδο ανάλυσης προβλημάτων που έχουν σχέση με τον τρόπο λήψης αποφάσεων σε καταστάσεις

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία

1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία 1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία Ο διδακτικός σχεδιασμός (instructional design) εμφανίσθηκε στην εκπαιδευτική διαδικασία και στην κατάρτιση την περίοδο

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας)

3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας) ΚΕΦ. 3 Γενικές αρχές της κυματικής 3.1-1 3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας) 3.1.1 Γενική διατύπωση 3.1. Εύρος ισχύος της αρχής της υπέρθεσης 3.1.3 Μαθηματικές συνέπειες της αρχής της υπέρθεσης

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ Βασίλης Καραγιάννης Η παρέμβαση πραγματοποιήθηκε στα τμήματα Β2 και Γ2 του 41 ου Γυμνασίου Αθήνας και διήρκησε τρεις διδακτικές ώρες για κάθε τμήμα. Αρχικά οι μαθητές συνέλλεξαν

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣΟΡ Κεφάλαιο 1 : Εισαγωγή στη Θεωρία ωία Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Έννοια της πληροφορίας Άλλες βασικές έννοιες Στόχος

Διαβάστε περισσότερα

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Κεϋνσιανή Προσέγγιση Η πιο διαδεδομένη

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Δίκτυα ΙΙ. Κεφάλαιο 7

Δίκτυα ΙΙ. Κεφάλαιο 7 Δίκτυα ΙΙ Κεφάλαιο 7 Στο κεφάλαιο αυτό παρουσιάζεται ο τρόπος επικοινωνίας σε ένα δίκτυο υπολογιστών. Το κεφάλαιο εστιάζεται στο Επίπεδο Δικτύου του OSI (το οποίο είδατε στο μάθημα της Β Τάξης). Οι βασικές

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι

Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι Ευάγγελος Ράπτης Τμήμα Πληροφορικής 5 Μάθημα 5 Τετάρτη 10 Οκτωβρίου 2012 Με το σημερινό 9 μάθημα αρχίζουμε τη μελέτη των Διανυσματικών χώρων, μία πολύ βασική

Διαβάστε περισσότερα

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test 1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ Εισαγωγή ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ Όπως για όλες τις επιστήμες, έτσι και για την επιστήμη της Πληροφορικής, ο τελικός στόχος της είναι η επίλυση προβλημάτων. Λύνονται όμως όλα τα προβλήματα;

Διαβάστε περισσότερα