ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ"

Transcript

1 ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Φυσικής Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Διατριβή για την απόκτηση του Διδακτορικού Διπλώματος Φυσικών Επιστημών Aθήνα, Ιούνιος 2010

2

3

4 "The happiest moments of my life have been those few which I have passed at home, in the bosom of my family." Thomas Jefferson Ολόψυχα αφιερωμένο στην οικογένεια μου.

5 Χωρίς την υπομονή και την τελειομανία της Αθηνάς, η διατριβή αυτή δε θα είχε πάρει ποτέ αυτή της τη μορφή. Για την απίστευτη βοήθειά της και για τις πάμπολλες κρίσεις εκνευρισμού από τις οποίες με έσωσε, η διατριβή αυτή είναι δική της (όσο και αν αμφιβάλλω για την καταλληλότητά της ως δείγμα ευγνωμοσύνης). vi

6 ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΤΑ ΔΙΚΤΥΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Η διατριβή αυτή εγκρίνεται στην παρούσα μορφή της από την Τριμελή Συμβουλευτική Επιτροπή του Παναγιώτη Μερτικόπουλου ως πληρούσα τις προϋποθέσεις για την απόκτηση του Διδακτορικού Διπλώματος Φυσικών Επιστημών. ΤΑ ΜΕΛΗ ΤΗΣ ΤΡΙΜΕΛΟΥΣ ΕΠΙΤΡΟΠΗΣ. (Επιβλέπων) Ημ/νία Ημ/νία Ημ/νία vii

7

8 ΠΕΡΙΛΗΨΗ Το Internet είναι ένα χαρακτηριστικό παράδειγμα μίας εξαιρετικά περίπλοκης οντότητας: αποτελείται από δισεκατομμύρια (τεχνητά) μέλη που λειτουργούν σχετικά απλά σε απομόνωση, αλλά αλληλεπιδρούν μεταξύ τους με πολυπλοκότητα που είναι πολύ δύσκολο να κατανοηθεί από τους ανθρώπινους δημιουργούς τους. Έτσι, ένα πολλά υποσχόμενο πλαίσιο ανάλυσης αυτών των αλληλεπιδράσεων στηρίζεται στη θεωρία παιγνίων, μία επιστήμη στην οποία έχει ανατεθεί η (συχνά ουτοπική) αποστολή της κατανόησης ενός ακόμα πιο δυσνόητου και πολύπλοκου μηχανισμού, της ανθρώπινης νόησης. Ωστόσο, είναι ακριβώς αυτός ο θεμελιώδης στόχος της θεωρίας παιγνίων που φαίνεται να αντιφάσκει με την εφαρμογή της σε αυτό το πλαίσιο: είναι πράγματι δυνατό να εφαρμόσουμε τις γνώσεις μας για τις ανθρώπινες αλληλεπιδράσεις και συμπεριφορές σε δίκτυα μηχανών που στερούνται συναισθημάτων και παρορμήσεων; Η αντίφαση αυτή ωστόσο λύνεται αν θυμηθούμε πως η θεωρία παιγνίων περιλαμβάνει τη μελέτη της "λογικότητας" στην πιο αφηρημένη της μορφή και άρα μπορεί να εφαρμοστεί και σε οντότητες που έχουν περιορισμένη ή και μηδενική ικανότητα λογικής σκέψης (π.χ. ζώα, βακτήρια, ή, στην περίπτωσή μας, υπολογιστές). Αυτή η συλλογιστική έχει οδηγήσει στην εξελικτική θεωρία παιγνίων (ΕΘΠ), ένα παρακλάδι της θεωρίας παιγνίων που ασχολείται με μεγάλους πληθυσμούς μετά βίας νοημόνων οργανισμών οι οποίοι αλληλεπιδρούν σε ανταγωνιστικά περιβάλλοντα που προάγουν τη φυσική επιλογή. Έτσι, αυτές οι εξελικτικές μέθοδοι αυτές είναι ιδιαίτερα ελκυστικές για τη μελέτη των εσωτερικών διεργασιών των δικτύων επικοινωνίας, αφού οι χρήστες του Internet σχεδόν πάντα ανταγωνίζονται για τους πόρους του δικτύου τους. Ίσως το πιο πολυμελετημένο τέτοιο μοντέλο εξέλιξης πληθυσμών είναι η δυναμική των αντιγραφέων, ένα δυναμικό σύστημα που εισήχθη από τους Taylor και Jonker [1] για τη μελέτη των αλληλεπιδράσεων διαφορετικών φαινοτύπων ενός βιολογικού είδους. Αυτή η μελέτη σύντομα προκάλεσε το ενδιαφέρον των ανθρώπων που δούλευαν στη θεωρία παιγνίων και μετά από μια δεκαετία περίπου κατέληξε στο "παραδοσιακό θεώρημα" της ΕΘΠ, ένα θεώρημα που συνδέει την εξέλιξη και τη λογικότητα, δείχνοντας έτσι πως αυτό που εμφανίζεται ως αποτέλεσμα λογικής σκέψης είναι στην πραγματικότητα το αποτέλεσμα της φυσικής επιλογής που ευνοεί την επιβίωση του "ισχυρότερου". Αν, όμως, η λογικότητα μπορεί να ερμηνευθεί ως το αποτέλεσμα μιας εξελικτικής διαδικασίας, τότε, με την εισαγωγή κατάλληλων κριτηρίων επιλογής, η εξέλιξη μπορεί αν καθοδηγηθεί σε οποιαδήποτε κατάσταση είναι αποδοτική με αυτά τα κριτήρια. Με αυτόν τον τρόπο η δυναμική των αντιγραφέων αποκτά μια διαφορετική λειτουργία, αυτή ενός μηχανισμού μάθησης που οι χρήστες ενός δικτύου μπορούν να χρησιμοποιήσουν ώστε να φτάσουν σε μια "κοινωνικά αποδοτική" σταθερή κατάσταση. Με άλλα λόγια, εκμεταλλευόμενοι τα κίνητρα των «παικτών», οι σχεδιαστές του "παιγνίου" μπορούν να τους οδηγήσουν σε οποιαδήποτε κατάσταση τους συμφέρει. Το κεντρικό ζήτημα που θα μας απασχολήσει σε αυτή τη διατριβή είναι το τί συμβαίνει αν, εκτός από την πολυπλοκότητα των αλληλεπιδράσεων ix

9 των παικτών (π.χ. των χρηστών ενός δικτύου), το πρόβλημα περιπλέκεται περαιτέρω από την παρουσία εξωγενών και απρόβλεπτων διαταραχών, που συχνά ονομάζονται συλλογικά «φύση». Βρίσκουμε ότι αυτές οι τυχαίες διακυμάνσεις διαφοροποιούν τελικά εξέλιξη και μάθηση και οδηγούν σε διαφορετικές (στοχαστικές) εκφράσεις της δυναμικής των αντιγραφέων. Εντυπωσιακό είναι πως στην περίπτωση της μάθησης πολλές ιδιότητες της λογικότητας παραμένουν αδιατάρακτα από την εισαγωγή του θορύβου: ανεξαρτήτως του μεγέθους των στοχαστικών διακυμάνσεων, οι παίκτες εξακολουθούν να αναγνωρίζουν τακτικές που είναι υποδεέστερες των βέλτιστων, κάτι που δεν είναι πάντα δυνατό στην περίπτωση της εξέλιξης. Επιπλέον, τα «αυστηρά σημεία ισορροπίας» (κατά Nash) του παιγνίου (μια σημαντική κλάση σταθερών καταστάσεων), προκύπτουν στοχαστικά ευσταθή και ελκτικά, πάλι ανεξαρτήτως του επιπέδου του θορύβου. Από την άποψη της θεωρίας δικτύων (όπου οι στοχαστικές διαταραχές είναι πανταχού παρούσε), η σημασία αυτών των αποτελεσμάτων είναι ότι εγγυώνται την ευρωστία (robustness) της δυναμικής των αντιγραφέων παρουσία θορύβου. Έτσι, αν οι χρήστες ενός δικτύου με στοχαστικές διακυμάνσεις ακολουθήσουν ένα σχέδιο μάθησης αντιγραφέων και αν είναι αρκετά υπομονετικοί, δείχνουμε ότι η ροή κυκλοφορίας στο δίκτυο συγκλίνει σε μια αναλλοίωτη (σταθερή) κατανομή που είναι συγκεντρωμένη σε μια μικρή περιοχή του σημείου ισορροπίας του δικτύου. ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ ΤΗΣ ΔΙΑΤΡΙΒΗΣ. Κεφάλαιο. 1 Εισαγωγή. Κεφάλαιο 2 Στοιχεία θεωρίας παιγνίων. Κεφάλαιο 3 Στοιχεία λογισμού Itô. Κεφάλαιο 4 Διαταραχές σε παίγνια Nash. Κεφάλαιο 5 Διαταραγμένα παίγνια δυναμικού. Κεφάλαιο 6 Προβλήματα δρομολόγησης. Κεφάλαιο 7 Παίγνια σε ασύρματα δίκτυα. προαπαιτούμενο βοηθητικό x

10 ΔΗΜΟΣΙΕΥΣΕΙΣ Μέρος της παρούσας διδακτορικής διατριβής έχει ήδη δημοσιευθεί στα παρακάτω άρθρα: 1. Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Balancing traffic in networks: redundancy, learning and the effect of stochastic fluctuations", υπό κρίση. URL: 2. Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "The emergence of rational behavior in the presence of stochastic perturbations", The Annals of Applied Probability, τ. 20, αρ. 4, Ιούλιος URL: org/abs/ Π. Καζακόπουλος, Π. Μερτικόπουλος, Α. Λ. Μουστάκας και G. Caire: "Living at the edge: a large deviations approach to the outage MIMO capacity", IEEE Transactions on Information Theory (υπό δημοσίευση). URL: 4. Π. Καζακόπουλος, Π. Μερτικόπουλος, Α. Λ. Μουστάκας και G. Caire: "Distribution of MIMO mutual information: a large deviations approach", ITW '09: Proceedings of the 2009 IEEE Workshop on Networking and Information Theory. 5. Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Learning in the presence of noise", GameNets '09: Proceedings of the 1st International Conference on Game Theory for Networks, Μάιος Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Correlated anarchy in overlapping wireless networks", IEEE Journal on Selected Areas in Communications, τ. 26, αρ. 7, ειδικό τεύχος για τις εφαρμογές της θεωρίας παιγνίων στα δίκτυα τηλεπικοινωνιών, Σεπτέμβριος URL: http: //arxiv.org/abs/ Π. Μερτικόπουλος, Ν. Δημητρίου και Α. Λ. Μουστάκας: "Vertical handover between service providers", WiOpt '08: Proceedings of the 6th International Symposium on Modelling and Optimization of Wireless Networks, Απρίλιος Ν. Δημητρίου, Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "Vertical handover between wireless standards", ICC'08: Proceedings of the 2008 IEEE International Conference on Communications, Μάιος Π. Μερτικόπουλος και Α. Λ. Μουστάκας: "The Simplex Game: can selfish users learn to operate efficiently in wireless networks?", Game- Comm '07: Proceedings of the 1st International Workshop on Game Theory for Communication Networks, Οκτώβριος xi

11

12 ΠΕΡΙΕΧΟΜΕΝΑ 1 Εισαγωγή Το φυσικό περιβάλλον της θεωρίας παιγνίων Εξέλιξη, Μάθηση, και η Δυναμική των Αντιγραφέων Η Επίδραση των Στοχαστικών Διακυμάνσεων Δομή της Διατριβής και Επισκόπηση Αποτελεσμάτων 9 Συμβολισμοί και Συμβάσεις 11 2 Στοιχεία Θεωρίας Παιγνίων Παίγνια σε Κανονική Μορφή Παίγνια N παικτών Πληθυσμοί και Εξελικτικά Παίγνια Πάιγνια Δυναμικού Παίγνια Συμφόρησης Έννοιες Λύσης στη Θεωρία Παιγνίων Κυριαρχημένες Στρατηγικές Ισορροπία κατά Nash Αιτιολογώντας την Ισορροπία: Συσχέτιση και Εξέλιξη Εξέλιξη, Μάθηση, και η Δυναμική των Αντιγραφέων Η Δυναμική των Αντιγραφέων Εντροπία και Λογικότητα 32 3 Στοιχεία Στοχαστικής Ανάλυσης Κίνηση Brown Στοχαστική Ολοκλήρωση Λογισμός Itô και Στοχαστικές Διαφορικές Εξισώσεις Διαχύσεις και οι Γεννήτορές τους 38 4 Στοχαστικές Διακυμάνσεις σε Παίγνια Nash Εκθετική Μάθηση Μάθηση και Θόρυβος Εξαφάνιση των Κυριαρχημένων Στρατηγικών Στοχαστική Ευστάθεια της Ισορροπίας Nash 50 5 Στοχαστικές Διαταραχές σε Παίγνια Πληθυσμών Αιτιοκρατική Εξέλιξη σε Παίγνια Πληθυσμών Εκθετική Μάθηση και Λογικότητα Εξέλιξη στα Παίγνια Δυναμικού Στοχαστικές Διακυμάνσεις 64 6 Προβλήματα Δρομολόγησης Δίκτυα και Μοντέλα Συμφόρησης Δίκτυα και Ροές Μοντέλα Συμφόρησης και Ισορροπία Μάθηση, Εξέλιξη, και Λογικότητα Μάθηση και η Δυναμική των Αντιγραφέων Εντροπία και Λογικότητα 78 xiii

13 xiv Περιεχόμενα 6.3 Μοντέλα Συμφόρησης με Στοχαστικές Διακυμάνσεις Η Στοχαστική Δυναμική των Αντιγραφέων Στοχαστικές Διακυμάνσεις και Λογικότητα Ορισμένα Παραλειπόμενα 86 7 Εφαρμογές σε Ασύρματα Δίκτυα Το Παίγνιο των Πλεγμάτων Εγωισμός και Απόδοση Έννοιες Ισορροπίας Αναρχία και Αποτελεσματικότητα Εξέλιξη και Στάσιμες Καταστάσεις Υπολογίζοντας το Κόστος της Αναρχίας 96 8 Συμπεράσματα Μερικά Ανοικτά Ζητήματα 105 Βιβλιογραφία 109

14 ΕΥΡΕΤΗΡΙΟ ΣΧΗΜΑΤΩΝ Εσώφυλλο "Melencolia I", Albrecht Dürer (χαλκογραφία, 1514) iii Σχήμα 2.1 Το "πέτρα-ψαλίδι-χαρτί" σε στρατηγική μορφή 16 Σχήμα 5.1 Ένας ελκυστής που δεν είναι εξελικτικά ευσταθής 60 Σχήμα 5.2 Το τετραγωνικό φράγμα του Λήμματος Σχήμα 6.1 Αναγωγίσιμα και μη αναγωγίσιμα δίκτυα 74 Σχήμα 6.2 Το παράδοξο του Braess 77 Σχήμα 6.3 Μάθηση σε αναγωγίσιμα και μη αναγωγίσιμα δίκτυα 85 Σχήμα 7.1 Σύγκλιση ενός πλεγματικού παιγνίου σε ισορροπία 96 Σχήμα 7.2 Ανεξαρτησία από την απόδοση των κόμβων 97 Σχήμα 7.3 Επιλογές, στρατηγικές, και το κόστος της αναρχίας 100 Σχήμα 7.4 Ασυμπτωτικές προσεγγίσεις και μικρά N 101 ΕΥΡΕΤΗΡΙΟ ΠΙΝΑΚΩΝ Πίνακας 2.1 Ευρετήριο παιγνιοθεωρητικών χαρακτηρισμών 19 ΑΚΡΩΝΥΜΑ BNN ΣΣΙ ΕΘΠ ΕΕΣ IEEE ΑΕΚ FP MIMO NEQ ΡΣΑ ΣΔΕ TCP δυναμική Brown-von Neumann-Nash σημείο συσχετισμένης ισορροπίας εξελικτική θεωρία παιγνίων εξελικτικά ευσταθής στρατηγική Institute of Electrical and Electronics Engineers ανασκοπική εξίσωση Kolmogorov εξίσωση Fokker-Planck multiple-input, multiple-output ισορροπία κατά Nash ρήξη συμμετρίας αντιγράφων στοχαστική διαφορική εξίσωση Transmission Control Protocol xv

15 xvi UDP WEQ WLAN User Datagram Protocol ισορροπία κατά Wardrop Wireless Local Area Network

16 1 ΕΙΣΑΓΩΓΗ Χωρίς αμφιβολία, το Internet είναι ένα κτήνος, και μάλιστα, εξαιτίας της ιστοειδούς πολυπλοκότητάς του, φέρει πολλές ομοιότητες στα αραχνοειδή. Σύμφωνα με την τελευταία απογραφή του Δεκεμβρίου του 2009, ο τρέχων αριθμός των ανθρωπίνων χρηστών του Internet έχει φτάσει τον εντυπωσιακό αριθμό των 1.8 δισεκατομμυρίων, λίγο πάνω από το ένα τέταρτο του πληθυσμού της Γης. Ενώ αυτοί οι ανθρώπινοι χρήστες σερφάρουν ταυτόχρονα το δίκτυο, ελέγχουν το ηλεκτρονικό τους ταχυδρομείο και μοιράζονται τα αρχεία τους στο RapidShare, δημιουργούνται ταυτόχρονα ορδές εικονικών "χρηστών εφαρμογών", ο αριθμός των οποίων είναι αδύνατο να υπολογιστεί. Για να καταστεί δυνατή η ανταπόκριση στα αιτήματα όλων αυτών των χρηστών, το Internet έχει διαμοιραστεί σε περίπου αυτόνομα συστήματα (πρακτικά ανεξάρτητα τοπικά υποδίκτυα), τα οποία διαχειρίζονται περισσότεροι από διακομιστές οι οποίοι λειτουργούν στην τεράστια ταχύτητα των 100 Gbps.¹ Και παρ όλα αυτά, υπάρχουν στιγμές που αυτή η γιγαντιαία υποδομή ακινητοποιείται, αδυνατώντας να επεξεργαστεί τα δισεκατομμύρια αιτημάτων που ανταγωνίζονται μεταξύ τους στην αχανή αυτή κλίμακα. Υπάρχει λοιπόν ελπίδα να δαμάσουμε αυτόν τον πεπλεγμένο ιστό χρηστών και των τυπικά αντικρουόμενων αιτημάτων τους; Δεδομένου του ότι τα προγράμματα και οι browsers μας όντως λειτουργούν χωρίς προβλήματα (συνήθως, τουλάχιστον), θα μπορούσε κανείς να πει ότι ήδη τα έχουμε καταφέρει. Από την άλλη μεριά, όπως ο Κωστής Δασκαλάκης επισημαίνει στη διατριβή του [2], αυτό δε σημαίνει ότι κατανοούμε πραγματικά τις εσωτερικές διεργασίες του Internet: αν μια ιστοσελίδα δε φορτώσει, έχουμε όντως τα μέσα να ακολουθήσουμε την αντίστροφη πορεία που θα μας οδηγήσει από το πρόβλημα στην πραγματική του πηγή (που θα μπορούσε να είναι ένα σφάλμα πρωτοκόλλου που συνέβη στην άλλη άκρη της υφηλίου); Και, κάτι που έχει μεγαλύτερη σημασία, έχουμε κάποιου είδους ικανότητα πρόγνωσης τέτοιων σφαλμάτων; Η σύντομη απάντηση και στα δύο αυτά ερωτήματα είναι "όχι", κάτι που κατά κύριο λόγο οφείλεται στην πολυπλοκότητα του Internet: θα χρειαζόταν ένας υπολογιστής του μεγέθους του Internet για την απλή παρακολούθηση αυτής της διαδικασίας, πόσο μάλλον για την κατανόησή της. Αντιστρέφοντας, όμως, αυτό το επιχείρημα βλέπουμε ότι το ίδιο το Internet θα μπορούσε να χρησιμοποιηθεί για να κατανοηθεί η λειτουργία του: όπως συμβαίνει με τα μόρια ενός αερίου, η δυναμική κάθε χρήστη είναι σχετικά απλή, οπότε, αν και δεν μπορεί κανείς να προβλέψει τις πράξεις ενός συγκεκρι- 1 Αυτά τα στατιστικά στοιχεία για τη χρήση του Internet είναι απλώς εκτιμήσεις των πραγματικών μεγεθών. Οι πιο ακριβείς πηγές για τέτοιου είδους πληροφορίες είναι η Αμερικανική Υπηρεσία Απογραφών (http://www.census.gov) και η Κοινοπραξία Παγκόσμιων Στατιστικών του Διαδικτύου (http://internetworldstats.com/stats.htm). 1

17 2 μένου χρήστη, οι νόμοι της στατιστικής μπορούν να χρησιμοποιηθούν ώστε να συναχθούν συμπεράσματα για τη γενική ροή μελλοντικών γεγονότων. Αυτή ακριβώς είναι η ιδέα που έχει φέρει τη θεωρία παιγνίων στο προσκήνιο των θεωρητικών ερευνών σχετικά με τη φύση του Internet και κατ αυτόν τον τρόπο έδωσε νέα ώθηση σε έναν, κατά τα άλλα μη συγγενή, τομέα των εφαρμοσμένων μαθηματικών. Βοηθώντας μας να κατανοήσουμε τις αλληλεπιδράσεις μεταξύ χρηστών σε τοπική κλίμακα (ή, αντίστροφα, να τις ελέγξουμε), η θεωρία παιγνίων ίσως μας παράσχει τα εφόδια που χρειαζόμαστε για να μελετήσουμε και να κατευθύνουμε την εξέλιξη του Διαδικτύου. 1.1 ΤΟ ΦΥΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΗΣ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ Ο στόχος της Θεωρίας Παιγνίων, Η θεωρία παιγνίων, όπως και η αντίστοιχή της φανταστική επιστήμη, η ψυχοϊστορία, έχει έναν πολύ φιλόδοξο στόχο: να εξηγήσει και να προβλέψει τη συμπεριφορά εγωιστικών ατόμων που αλληλεπιδρούν μεταξύ τους και με το περιβάλλον τους. Αλλά αν και η πένα του Asimov δάνεισε την ιδιοφυΐα του δημιουργού στους ψυχοϊστορικούς της Γαλαξιακής Αυτοκρατορίας, η ψυχολογία, η επιστήμη της νόησης ή ακόμα και η φιλοσοφία είναι μάλλον πιο κατάλληλες να καταπιαστούν με το δύσκολο εγχείρημα της κατανόησης της ανθρώπινης λογικότητας (rationality). Η προσπάθεια να προσδιοριστούν ποσοτικά τα χαρακτηριστικά της ανθρώπινης συμπεριφοράς με τα μαθηματικά εργαλεία που είναι αυτή τη στιγμή στη διάθεση της θεωρίας παιγνίων είναι ένα χιμαιρικό κυνήγι που απειλεί την ίδια την αξιοπιστία του κλάδου. Ας θεωρήσουμε, για παράδειγμα, το πολυ-διαφημισμένο αλλά τελικά μάλλον παρεξηγημένο Δίλημμα του Φυλακισμένου, που προτάθηκε από τον Μerrill Flood ενώ δούλευε στο RAND [3]: δύο φυγάδες συλλαμβάνονται από τις Αρχές και, ελλείψει επαρ- κών στοιχείων για καταδίκη, τους προσφέρεται η ίδια μυστική συμφωνία. Ο φυλακισμένος που θα δώσει ενοχοποιητικά στοιχεία για το συνεργό του θα αφεθεί ελεύθερος, ενώ ο εν λόγω συνεργός θα καταδικαστεί σε δεκαετή κάθειρξη. Αν προδώσουν ο ένας τον άλλον θα εκτίσουν ποινή φυλάκισης 5 ετών ο καθένας, και αν κανείς δε μιλήσει θα καταδικαστούν και οι δύο σε εξάμηνη κάθειρξη για κάποιο ασήμαντο πλημμέλημα. Πώς θα βγουν οι φυλακισμένοι από αυτή τη δύσκολη θέση; Αντίθετα με αυτό που μάλλον θα περίμενε κανείς, η Θεωρία Παιγνίων προβλέπει ότι η "ισορροπία" (κατά Nash) αυτού του διλήμματος είναι η αμοιβαία προδοσία των φυλακισμένων και οι δύο θα "προδώσουν" κατά την παιγνιοθεωρητική ορολογία. Μία δικαιολόγηση αυτής της έννοιας λύσης είναι πως τα κέρδη της προδοσίας υπερισχύουν των κερδών της σιωπής: με άλλα λόγια, δεδομένης της επιλογής που θα κάνει ο αντίπαλος (στην πραγματικότητα ανεξάρτητα από αυτήν), είναι προτιμότερη η προδοσία: η ελευθερία είναι καλύτερη από 6 μήνες φυλάκισης και 5 χρόνια στη φυλακή είναι προτιμότερα από 10. Δεν αποτελεί έκπληξη ότι η λύση αυτή είναι αμφιλεγόμενη: δεν είναι άλλωστε καλύτερο να στοχεύσει κανείς στο κοινό καλό και να μπεί στη φυλακή για έξι μόνο μήνες από το να ρισκάρει πενταετή φυλάκιση?² Είναι, όμως, πράγματι έτσι? Υπάρχουν αυτοί που θα έπαιρναν ανιδιοτελώς το ρίσκο να εμπιστευθούν το συνεργό τους επιδιώκοντας μια επωφελή και για τους δύο κατάληξη και υπάρχουν και εκείνοι που εγωιστικά θα άρπαζαν την ευκαιρία να παραμείνουν ελεύθεροι, χωρίς δεύτερη σκέψη. Αλλά τί θα οι εφαρμογές της, και οι εγγενείς δυσκολίες 2 Είναι ενδιαφέρον ότι σε ένα ψυχολογικό πείραμα που μιμούταν τις συνθήκες του Διλήμματος του φυλακισμένου, πάνω από 40% των συμμετεχόντων επέλεξε να μη μιλήσει [4].

18 1.1 3 συνέβαινε αν η ποινή της αμοιβαίας σιωπής ήταν όχι έξι μήνες αλλά έξι μόνο μέρες? Ή, αντίθετα, τί θα συνέβαινε η καταδίκη επέσειε τη θανατική ποινή? Aν και εύλογα, τέτοια ερωτήματα αναγκαστικά μας απομακρύνουν από την επιστήμη και μας βυθίζουν βαθιά στη σφαίρα της εικασίας, που είναι καλύτερο να αφεθεί στους μεγάλους λογοτέχνες των καιρών μας. Όσο τεράστιες περιοχές του ανθρώπινου μηχανισμού λήψης αποφάσεων παραμένουν αχαρτογράφητες, δεν υπάρχει μαθηματικός τρόπος να προσδιοριστούν ποσοτικά οι "λογικές" αντιδράσεις των ανθρώπων σε κάποιο ερέθισμα, ακόμα και όταν το ερέθισμα αυτό καθαυτό μπορεί να προσδιορισθεί ποσοτικά (που στο Δίλημμα του Φυλακισμένου, αυτό δεν είναι δυνατό). Συνεπώς, η εξήγηση (ή, καλύτερα, η πρόβλεψη) της ανθρώπινης συμπεριφοράς βάσει της Θεωρίας Παιγνίων δε φαίνεται ρεαλιστική προοπτική προς το παρόν. Υπάρχουν δύο τρόποι να ξεπεραστεί αυτό το αδιέξοδο. Ο ένας έγκειται στη μείωση της πολυπλοκότητας των υπό θεώρηση στρατηγικών σεναρίων, ώστε να μπορεί τουλάχιστον κανείς να κάνει επαληθεύσιμες προβλέψεις όσον αφορά ανθρώπινους παίκτες σε απλά προβλήματα αποφάσεων. Για παράδειγμα, μία ιδέα που διερευνήθηκε με ενθουσιασμό τη δεκαετία του 60 ήταν η ενσωμάτωση της επίδρασης που τα (υποκειμενικά) πιστεύω ενός ατόμου είχαν στο μηχανισμό λήψης αποφάσεών του. Αλλά, ακόμα και σε στοιχειώδες επίπεδο, αυτό οδήγησε σε μία ατέρμονη σειρά υποκειμενικών πεποιθήσεων για τις υποκειμενικές πεποιθήσεις ενός άλλου ανθρώπου, τις δικές τους πεποιθήσεις για αυτές τις πεποιθήσεις κ.ο.κ. ad nauseam. Aπό αυτή τη συζήτηση γεννήθηκαν μεγαλόπρεπες δομές της θεωρίας συνόλων όπως ο "πύργος πεποιθήσεων" του Ηarasanyi (γνωστού και ως "ιεραρχία πεποιθήσεων" [5]), αλλά, όπως και στην περίπτωση του βιβλικού του προκατόχου στη Βαβυλώνα, ο αρχικός στόχος του πύργου δεν επετεύχθει. Οι ιεραρχίες πεποιθήσεων αποτέλεσαν ένα τεράστιο βήμα στην κατανόηση της λογικότητας κατά Bayes το πρωτοποριακό έργο του Aumann [6] πάνω στην υποκειμενικότητα και τη συσχέτιση ήταν ένα άλλο πολύ σημαντικό βήμα αλλά το σημαντικότερο μέρος της πολυπλοκότητας της ανθρώπινης λογικότητας μας διαφεύγει ακόμα (και κατά πάσα πιθανότητα θα συνεχίσει να μας διαφεύγει για αρκετό καιρό). Άλλες προσπάθειες να δικαιολογηθούν οι προβλέψεις της θεωρίας παιγνίων εξειδικεύοντας την έννοια της ισορροπίας δεν ήταν τόσο επιτυχείς. Όπως μεμφόμενος παρατήρησε ο Ken Binmore "διάφορα μπιχλιμπίδια προσαρτήθηκαν στην ιδέα της λογικότητας", το καθένα μία αντικειμενική αντανάκλαση της υποκειμενικής ερμηνείας του δημιουργού του, για το τί συνιστά λογική συμπεριφορά. Έτσι, όπως θα περίμενε κανείς, αυτή η άτακτη προσέγγιση σύντομα οδήγησε στην ενοχλητική κατάσταση όπου "σχεδόν κάθε ισορροπία κατά Nash μπορούσε να δικαιολογηθεί βάσει του ενός ή του άλλου ορισμού".³ Η άλλη προσπάθεια παράκαμψης της αδυναμίας των μαθηματικών να αντιμετωπίσουν τα ανθρώπινα είναι πιο ριζοσπαστική. Όπως προαναφέρθηκε, ο στόχος που τέθηκε στη θεωρία παιγνίων ήταν η κατανόηση της συμπεριφοράς εγωιστικών ατόμων που αλληλεπιδρούν μεταξύ τους. Αλλά είναι η έννοια του "εγωιστικού ατόμου" πραγματικά συνώνυμη με αυτή του "εγωιστή ανθρώπου"; Ο "εγωισμός" δεν είναι μία αποκλειστικά ανθρώπινη μάστιγα: εμφανίζεται και στις μεγαλοπρεπείς σεκόϊες που αγωνίζονται να Υποκειμενικότητα και εξειδικεύσεις 3 Από τον πρόλογο του Binmore στο βιβλίο του Weibull [7, σελ. ix]. Δεν μπορώ παρά να αναρωτηθώ αν μοιράζονται αυτό το συναίσθημα οι φυσικοί και οι μαθηματικοί που δουλεύουν στη θεωρία χορδών, όπου σχεδόν κάθε κατάσταση κενού είναι αρκετά ασαφής ώστε να εξηγεί οποιοδήποτε παρατηρήσιμο φαινόμενο σε χαμηλότερες ενέργειες.

19 4 Εξελικτική Θεωρία Παιγνίων και οι δικτυακές εφαρμογές της διαπεράσουν τη σκιά των ίδιων των συστάδων τους προκειμένου να φτάσουν στο φως του Ήλιου σε μια πιο βίαιη εκδήλωση, το νέο αρσενικό λιοντάρι μιας αγέλης επιτίθεται στα μικρά του προηγούμενου αρσενικού για να διασφαλίσει τη θέση του και ακόμα και στον αυστηρά ρυθμιζόμενο χώρο της τεχνολογίας, υπάρχουν αχόρταγες οντότητες όπως οι υπολογιστές, που συνεχώς ανταγωνίζονται για περισσότερους πόρους προκειμένου να ολοκληρώσουν τα εντεταλμένα τους καθήκοντα. Έτσι, αντί να εξετάζουμε τη συμπεριφορά των ανθρώπων (ίσως των πιο περίπλοκων υπάρξεων στο γνωστό σύμπαν), μπορούμε να αρχίσουμε να μελετάμε τη λογικότητα πιο ταπεινά, εξετάζοντας τη συμπεριφορά ατόμων των οποίων τα κίνητρα και οι αντιδράσεις μπορούν να προσδιοριστούν ποσοτικά με αντικειμενικό τρόπο. Αυτή η ιδέα προτάθηκε για πρώτη φορά από τους Maynard Smith και Price [8], τους εμπνευστές της εξελικτικής θεωρίας παιγνίων. Όπως ήδη είπαμε, η βασική τους ιδέα ήταν αφοπλιστικά απλή: εστίασαν σε είδη των οποίων τα χαρακτηριστικά ερεθίσματος-απόκρισης προσδιορίζονται πλήρως από τον γενετικό τους προγραμματισμό (π.χ. τα χαρακτηριστικά ανάπτυξης και αναπαραγωγής των βακτηρίων). Κατ αυτόν τον τρόπο, χωρίς πια να παρεμποδίζονται από την πολυπλοκότητα των υψηλού επιπέδου νοητικών διεργασιών του ανθρώπου, οι Maynard Smith και Price άνοιξαν το δρόμο για μία πληθώρα χειροπιαστών εφαρμογών της θεωρίας παιγνίων στη βιολογία πληθυσμών. Έχει ενδιαφέρον το πώς, ενώ η υποχώρηση του πιο αδύναμου ζώου από διαγωνισμούς δύναμης πριν υπάρξουν θανατηφόρα τραύματα είχε προηγουμένως αποδοθεί σε αλτρουιστική συμπεριφορά που εξυπηρετούσε το "καλό του είδους", δείχτηκε ότι αυτό στην πραγματικότητα είναι μία (εγγενώς εγωιστική) εξελικτικά ευσταθής στρατηγική (ΕΕΣ). Είναι ειρωνικό το πως, προχωρώντας αυτό το συλλογισμό στα άκρα, βλέπουμε ότι το πιο πρόσφορο έδαφος για τέτοια εξελικτικά παίγνια είναι εκεί όπου οι βιολογικοί οργανισμοί απουσιάζουν παντελώς: ο κόσμος των δικτύων υπολογιστών. Πράγματι, εξαιρώντας δυσλειτουργίες και παρόμοια (σχετικά σπάνια) προβλήματα, ένας υπολογιστής θα αντιδράσει σε ένα δεδομένο ερέθισμα ακριβώς όπως προγραμματίστηκε να αντιδράσει. Έτσι, οι αλληλεπιδράσεις υπολογιστών θα διέπονται από ένα σύνολο πολύ συγκεκριμένων κανόνων και πρωτοκόλλων, που δεν αφήνουν περιθώρια αμφιβολίας ή αβεβαιότητας. Επομένως, δεδομένου του ότι ο άνους (αλλά και εγωιστικός) στόχος πίσω από τον προγραμματισμό κάθε υπολογιστή είναι η διεκπεραίωση των εντεταλμένων του καθηκόντων ανεξάρτητα από το περιβάλλον του (οτιδήποτε δεν εισάγεται ως δεδομένο), βλέπουμε ότι τέτοια δίκτυα είναι τα καλύτερα υποκείμενα παιγνιοθεωρητικών θεωρήσεων.⁴ 1.2 ΕΞΕΛΙΞΗ, ΜΑΘΗΣΗ, ΚΑΙ Η ΔΥΝΑΜΙΚΗ ΤΩΝ ΑΝΤΙΓΡΑΦΕΩΝ Εξέλιξη και μάθηση Οι εφαρμογές της εξελικτικής θεωρίας παιγνίων στα δίκτυα είναι διττές. Κατ αρχήν, όπως και στη βιολογία πληθυσμών, ένα ζητούμενο είναι η κατανόηση της εξέλιξης του δικτύου, εξετάζοντας τις εγωιστικές αλληλεπιδράσεις των μερών του και καθορίζοντας τις καταστάσεις που είναι "ευσταθείς" ως προς τις αλληλεπιδράσεις αυτές. Αυτή η κατεύθυνση περιγράφεται συνήθως από τον όρο "εξέλιξη" και βρίσκεται στο προσκήνιο των παιγνιοθεωρητικών ερευνών μετά την πρωτοποριακή δουλειά των Maynard 4 Για μια διεξοδική μελέτη δείτε το άρθρο των Altman et al. και τις εκεί αναφορές.

20 1.2,, 5 Smith και Price [8] ανατρέξτε και στις επισκοπήσεις των Weibull [7] και Ηofbauer και Sigmund [9, 10] για περισσότερες πληροφορίες. Απ την άλλη μεριά, τίθεται το ακόλουθο ερώτημα: αν θέλουμε ένα σύστημα αλληλεπιδρώντων οντοτήτων (π.χ. ένα δίκτυο) να λειτουργεί σε κάποια "βέλτιστη" κατάσταση, μπορούμε με κάποιον τρόπο να εκπαιδεύσουμε τις ανταγωνιζόμενες οντότητες ώστε τα εγωιστικά τους κίνητρα να τις οδηγήσουν τελικά σε αυτή την κατάσταση? Αυτή η όψη της εξελικτικής θεωρίας παιγνίων εύστοχα αποκαλείται "μάθηση" και έχει μελετηθεί εξίσου διεξοδικά το βιβλίο των Fudenberg και Levine [11] είναι μια εξαιρετική αρχή, ενώ το άρθρο του Hart [12] κάνει έναν πιο πρόσφατο απολογισμό. Και τα δύο ερωτήματα περιστρέφονται γύρω από δύο βασικούς άξονες. Ο πρώτος είναι ο καθορισμός του "στρατηγικού παιγνίου" στο οποίο συμμετέχουν οι παίκτες, του συγκεκριμένου, δηλαδή, πλαισίου που θα χρησιμοποιηθεί για την προσομοίωση και τον ποσοτικό προσδιορισμό των αλληλεπιδράσεων που συμβαίνουν, ήτοι ο ορισμός των επιλογών των παικτών (π.χ. να εκπέμψουν ή να σιγήσουν) και των κερδών που αντιστοιχούν σε αυτές. Ο δεύτερος άξονας αφορά στο μηχανισμό επιλογής που οι παίκτες χρησιμοποιούν για να αποτιμήσουν τις αποφάσεις και τις αντιδράσεις τους μιμούμενοι, για παράδειγμα, τους πιο επιτυχείς παίκτες ή μαθαίνοντας να αποφεύγουν τα λάθη που έκαναν στο παρελθόν. ⁵ Προφανώς το πρώτο ζητούμενο (η επιλογή του παιγνίου) εξαρτάται από τις ιδιαιτερότητες της συγκεκριμένης εφαρμογής, άρα είναι καλύτερο να αντιμετωπιστεί κατά περίπτωση. Αντίθετα, η διαδικασία της φυσικής επιλογής που αποτελεί τον πυρήνα του δεύτερου ζητούμενου μπορεί να μελετηθεί ανεξάρτητα από το πρώτο, εξετάζοντας τις ιδιότητες σύγκλισης και ευστάθειας του εξελικτικού μηχανισμού (ή μηχανισμού μάθησης) γύρω από τα σημεία ισορροπίας (ή όποια άλλη έννοια λύσης) του υποκείμενου παιγνίου. Ένα από τα πιο ευρέως χρησιμοποιούμενα μοντέλα εξέλιξης και μάθησης σε αυτό το πλαίσιο είναι η δυναμική των αντιγραφέων, ένα δυναμικό σύστημα που εισήγαγαν πρώτοι οι Taylor και Jonker [1] για να προσομοιώσουν μεγάλους πληθυσμούς που αλληλεπιδρούν μεταξύ τους μέσω τυχαίων σχηματισμών ζευγών σε διαγωνισμούς αναπαραγωγικής ισχύος (όπως μονομαχίες μεταξύ ελαφιών). Με λίγα λόγια, αυτή η δυναμική εμφανίζεται ως παραπροϊόν ενός μηχανισμού "μίμησης του ισχυρότερου" που αντικατοπτρίζει το αποτέλεσμα τέτοιων αγώνων. Πιο συγκεκριμένα, ο κατα κεφαλήν ρυθμός αύξησης ενός φαινοτύπου, δηλαδή ο αριθμός απογόνων στη μονάδα του χρόνου, θεωρείται ανάλογος των απολαβών που κερδίζουν στον ίδιο χρόνο τα άτομα του συγκεκριμένου φαινοτύπου.⁶ Έτσι, αν z iα ο πληθυσμός του φαινοτύπου α του είδους i και u i η αναπαραγωγική του ισχύς (όπως καθορίζεται από την κατανομή των διαφόρων Η δυναμική των αντιγραφέων 5 Εδώ βλέπουμε πως η αρχή των "απλών οργανισμών" της εξελικτικής θεωρίας παιγνίων έχει καθοριστική σημασία: η προσομοίωση ανθρώπινων αλληλεπιδράσεων είναι ένα σισύφειο εγχείρημα η προσπάθεια περαιτέρω εμβάθυνσης στην ανθρώπινη νόηση προτείνοντας ένα μαθηματικό μοντέλο για την ανθρώπινη μάθηση έχει σίγουρα πολύ μικρή σχέση με την πραγματικότητα. 6 Θα πρέπει επίσης να αναφέρουμε εδώ τη σημαντική διάκριση μεταξύ του "γονότυπου" ενός οργανισμού (δηλ. το σύνολο των κληρονομικών πληροφοριών που είναι κωδικοποιημένες στο γενετικό του υλικό) και το "φαινότυπό" του, δηλαδή τις παρατηρήσιμες ιδιότητές του, όπως τη μορφολογία του και τα πρότυπα συμπεριφοράς του [13, 14]. Στη θεωρία της εξελικτικής σύνθεσης, η φυσική επιλογή βασίζεται στο φαινότυπο ενός οργανισμού (που καθορίζει την αλληλεπίδραση του με άλλους οργανισμούς), ενώ η κληρονομικότητα καθορίζεται από το γονότυπό του. Δυστυχώς, η επιγενετική διαδικασία που απεικονίζει γονοτύπους σε φαινοτύπους δεν είναι ακόμα γνωστή, έτσι θα ακολουθήσουμε τη βιομετρική προσέγγιση της γενετικής πληθυσμών και θα περιοριστούμε στο χώρο των φαινοτύπων.

21 6 ειδών και το εν λόγω εξελικτικό παίγνιο), το εξελικτικό αξίωμα που μόλις περιγράψαμε γράφεται: dz iα dt = z iα u iα. (1.1) Έτσι, αν z i = β z iβ ο συνολικός πληθυσμός του i-στού είδους και x iα = z iα /z i το σχετικό μερίδιο του φαινοτύπου α στον πληθυσμό, με απλή εφαρμογή του κανόνα της αλυσίδας προκύπτει η εξίσωση των αντιγραφέων: dx iα dt = x iα (u iα u i ), (1.2) όπου u i o πληθυσμιακός μέσος του i-στού είδους: u i = β x iβ u iβ. Δεδομένου του ότι αυτή η εξελικτική προσέγγιση αφορά ραγδαία εξελισσόμενα είδη και πληθυσμούς που σπάνια απαντώνται εκτός της βιολογίας πληθυσμών, το περιεχόμενο "μάθησης" της (1.2) δεν είναι άμεσα προφανές. Όμως, αν θεωρηθεί πως ο δείκτης α αναφέρεται σε μία από τις πιθανές επιλογές ενός ατόμου i (για παράδειγμα την επιλογή μιας διαδρομής σε ένα δίκτυο) και το u iα αντιπροσωπεύει τα κέρδη που σχετίζονται με αυτή την επιλογή, τότε η (1.2) μπορεί να ιδωθεί ως μια διαδικασία μάθησης, αρκεί να επανερμηνεύσουμε το x iα ως την πιθανότητα ο i-στός παίκτης να επιλέξει α.⁷ Κατ αυτόν τον τρόπο η δυναμική των αντιγραφέων αναπαριστά ένα αναπροσαρμοζόμενο σχήμα μάθησης, με τις διαφορές των κερδών u iα u i να μετρούν την προδιάθεση του παίκτη i να επιλέξει την αντίδραση α. Υπάρχει και μία εναλλακτική ερμηνεία "μάθησης" της δυναμικής των αντιγραφέων, που, αν και όχι τόσο προφανής, θα μας είναι εξίσου σημαντική. Θεωρείστε ότι ο κάθε παίκτης κρατά ένα αθροιστικό σκορ των επιλογών του μέσω της διαφορικής εξίσωσης: du iα = u iα dt. (1.3) Προφανώς, όσο υψηλότερο το σκορ U iα της επιλογής α, τόσο πιο επικερδής θα έχει αποβεί αυτή η επιλογή με την πάροδο του χρόνου για τον παίκτη i. Δεδομένου αυτού, οι παίκτες ενημερώνουν τις πιθανότητες x iα με τις οποίες επιλέγουν τις αντιδράσεις τους σύμφωνα με την κατανομή του Boltzmann: x iα = e U iα/ β e U iβ (1.4) που μετά από μία απλή παραγώγιση δίνει τη δυναμική των αντιγραφέων (1.2). Αυτό το σχήμα μάθησης λέγεται "εκθετική μάθηση",⁸ και, μαζί με την πιο άμεση μαθησιακή ερμηνεία της (1.2), δείχνει ότι η δυναμική των αντιγραφέων προκύπτει ως κοινός παρονομαστής εξέλιξης και μάθησης. Βέβαια θα πρέπει εδώ να σημειωθεί ότι η δυναμική των αντιγραφέων δεν είναι η μόνη εξελικτική δυναμική που χρησιμοποιείται στη θεωρία παιγνίων. Έχει, όμως, μοναδικά χαρακτηριστικά που έχουν μαγνητίσει τους μαθηματικούς: οι εξισώσεις της αʹ) είναι απλές και ξεκάθαρες; βʹ) προκύπτουν με φυσικό τρόπο από πρώτες αρχές; και γʹ) έχουν αυτό το ακαθόριστο προσόν που οι μαθηματικοί αποκαλούν "κομψότητα" και το οποίο γίνεται γρήγορα 7 Φυσικά, αυτό προϋποθέτει ότι οι επιλογές των παικτών ανήκουν σε ένα πεπερασμένο σύνολο και ότι οι "απολαβές" τους εξαρτώνται από την πιθανότητα με την οποία οι παίκτες κάνουν μια επιλογή. Για περισσότερες πληροφορίες δείτε το Κεφάλαιο 4. 8 Ή μάθηση "logit", αν και "λογιστική" θα ταίριαζε καλύτερα- δείτε το Κεφάλαιο 4 για περισσότερες πληροφορίες.

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι... ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xv 1 Εισαγωγή 1 1.1 Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο........ 1 1.2 Μερικά Ιστορικά Στοιχεία..................... 3 1.3 Ενα Παράδοξο Παιχνίδι...................... 4 Μέρος

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

Ενότητα: ΠΟΣΟΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ. Διδάσκων : Επίκουρος Καθηγητής Στάθης Παπασταθόπουλος

Ενότητα: ΠΟΣΟΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ. Διδάσκων : Επίκουρος Καθηγητής Στάθης Παπασταθόπουλος Τίτλος Μαθήματος: ΑΝΑΠΤΥΞΙΑΚΗ ΨΥΧΟΛΟΓΙΑ Ι Ενότητα: ΠΟΣΟΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ Διδάσκων : Επίκουρος Καθηγητής Στάθης Παπασταθόπουλος Τμήμα: Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας ΑΝΑΠΤΥΞΙΑΚΗ

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Περί της Ταξινόμησης των Ειδών

Περί της Ταξινόμησης των Ειδών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Περί της Ταξινόμησης

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1 Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

ẋ = f(x), x = x 0 όταν t = t 0,

ẋ = f(x), x = x 0 όταν t = t 0, Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους: ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Εκπαιδευτική Μονάδα 1.1: Τεχνικές δεξιότητες και προσόντα

Εκπαιδευτική Μονάδα 1.1: Τεχνικές δεξιότητες και προσόντα Εκπαιδευτική Μονάδα 1.1: Τεχνικές δεξιότητες και προσόντα Πέρα από την τυπολογία της χρηματοδότησης, των εμπλεκόμενων ομάδων-στόχων και την διάρκεια, κάθε project διακρατικής κινητικότητας αποτελεί μια

Διαβάστε περισσότερα

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Ιστορική αναδρομή 1713 Ο Francis Waldegrave, σε ένα γράμμα του, παρουσίασε την πρώτη μικτή στρατηγική μεγίστου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας)

3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας) ΚΕΦ. 3 Γενικές αρχές της κυματικής 3.1-1 3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας) 3.1.1 Γενική διατύπωση 3.1. Εύρος ισχύος της αρχής της υπέρθεσης 3.1.3 Μαθηματικές συνέπειες της αρχής της υπέρθεσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MANAGEMENT ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ. Ορισμοί

ΕΙΣΑΓΩΓΗ ΣΤΟ MANAGEMENT ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ. Ορισμοί Ορισμοί Ηγεσία είναι η διαδικασία με την οποία ένα άτομο επηρεάζει άλλα άτομα για την επίτευξη επιθυμητών στόχων. Σε μια επιχείρηση, η διαδικασία της ηγεσίας υλοποιείται από ένα στέλεχος που κατευθύνει

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

DPSDbeyond: The font Σκέψεις, παρατηρήσεις, συμπεράσματα

DPSDbeyond: The font Σκέψεις, παρατηρήσεις, συμπεράσματα DPSDbeyond: The font Σκέψεις, παρατηρήσεις, συμπεράσματα Η διαδικασία που ακολουθήθηκε στο ολιγόωρο workshop εκείνου του Σαββάτου (12/11/2011) είχε ως αποτέλεσμα την δημιουργία 59 σχεδίων, ένα (ή και περισσότερα

Διαβάστε περισσότερα

Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ

Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Περίληψη Τί προτείνουμε, πώς και γιατί με λίγα λόγια: 55 μαθήματα = 30 για ενιαίο

Διαβάστε περισσότερα

1. Σκοπός της έρευνας

1. Σκοπός της έρευνας Στατιστική ανάλυση και ερμηνεία των αποτελεσμάτων των εξετάσεων πιστοποίησης ελληνομάθειας 1. Σκοπός της έρευνας Ο σκοπός αυτής της έρευνας είναι κυριότατα πρακτικός. Η εξέταση των δεκτικών/αντιληπτικών

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

Νοητική Διεργασία και Απεριόριστη Νοημοσύνη

Νοητική Διεργασία και Απεριόριστη Νοημοσύνη (Επιφυλλίδα - Οπισθόφυλλο). ΜΙΑ ΣΥΝΟΨΗ Η κατανόηση της νοητικής διεργασίας και της νοητικής εξέλιξης στην πράξη απαιτεί τη συνεχή και σε βάθος αντίληψη τριών σημείων, τα οποία είναι και τα βασικά σημεία

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Γεώργιος Φίλιππας 23/8/2015

Γεώργιος Φίλιππας 23/8/2015 MACROWEB Προβλήματα Γεώργιος Φίλιππας 23/8/2015 Παραδείγματα Προβλημάτων. Πως ορίζεται η έννοια πρόβλημα; Από ποιους παράγοντες εξαρτάται η κατανόηση ενός προβλήματος; Τι εννοούμε λέγοντας χώρο ενός προβλήματος;

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Παράδειγμα σχεδιασμού διδακτικής ενότητας: ο σχεδιασμός της διδακτικής ενότητας «Stayman»

Παράδειγμα σχεδιασμού διδακτικής ενότητας: ο σχεδιασμός της διδακτικής ενότητας «Stayman» Παράδειγμα σχεδιασμού διδακτικής ενότητας: ο σχεδιασμός της διδακτικής ενότητας «Stayman» Στο προηγούμενο άρθρο μου παρουσίασα το διδακτικό πλαίσιο της διδασκαλίας του Μπριτζ στην Ελλάδα, ξεκινώντας από

Διαβάστε περισσότερα

Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες

Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες Πτυχιακή εργασία Φοιτήτρια: Ριζούλη Βικτώρια

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Δίκτυα ΙΙ. Κεφάλαιο 7

Δίκτυα ΙΙ. Κεφάλαιο 7 Δίκτυα ΙΙ Κεφάλαιο 7 Στο κεφάλαιο αυτό παρουσιάζεται ο τρόπος επικοινωνίας σε ένα δίκτυο υπολογιστών. Το κεφάλαιο εστιάζεται στο Επίπεδο Δικτύου του OSI (το οποίο είδατε στο μάθημα της Β Τάξης). Οι βασικές

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

Η ΔΙΚΑΙΙΚΗ ΘΕΜΑΤΟΠΟΙΗΣΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Αλέξης ΤΑΤΤΗΣ, Δ.Ν. Μάιος 2013

Η ΔΙΚΑΙΙΚΗ ΘΕΜΑΤΟΠΟΙΗΣΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Αλέξης ΤΑΤΤΗΣ, Δ.Ν. Μάιος 2013 Η ΔΙΚΑΙΙΚΗ ΘΕΜΑΤΟΠΟΙΗΣΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Αλέξης ΤΑΤΤΗΣ, Δ.Ν. Μάιος 2013 ΔΙΚΑΙΟ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΜΠΑΝ Συνήθης θεώρηση: 1. Το δίκαιο ρυθμίζει τον ιστορικά εξελισσόμενο κόσμο της πληροφορίας (π.χ. αρχεία,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Περιεχόμενο του μαθήματος

Περιεχόμενο του μαθήματος ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Απαιτήσεις Λογισμικού Περιπτώσεις χρήσης Δρ Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου Εαρινό Εξάμηνο 2012-2013 1 Περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Διάλεξη 10. Γενική Ισορροπία VA 30

Διάλεξη 10. Γενική Ισορροπία VA 30 Διάλεξη 10 Γενική Ισορροπία V 30 1 Μερική & Γενική Ισορροπία Μέχρι τώρα εξετάζαμε γενικά την αγορά ενός αγαθού μεμονωμένα. Το πώς δηλαδή η προσφορά και η ζήτηση επηρεάζονται από την τιμή του συγκεκριμένου

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ Βασίλης Καραγιάννης Η παρέμβαση πραγματοποιήθηκε στα τμήματα Β2 και Γ2 του 41 ου Γυμνασίου Αθήνας και διήρκησε τρεις διδακτικές ώρες για κάθε τμήμα. Αρχικά οι μαθητές συνέλλεξαν

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Συγγραφή Τεχνικών Κειμένων

Συγγραφή Τεχνικών Κειμένων Συγγραφή Τεχνικών Κειμένων Tο ύφος........ γραφής! Από τις διαλέξεις του μαθήματος του Α εξαμήνου σπουδών του Τμήματος Πολιτικών Μηχανικών και Μηχανικών Τοπογραφίας & Γεωπληροφορικής Κ. Παπαθεοδώρου, Αναπληρωτής

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο)

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Άσκηση Η15 Μέτρηση της έντασης του μαγνητικού πεδίου της γής Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Το γήινο μαγνητικό πεδίο αποτελείται, ως προς την προέλευσή του, από δύο συνιστώσες, το μόνιμο μαγνητικό

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Κεφάλαιο 7.3. Πρωτόκολλο TCP

Κεφάλαιο 7.3. Πρωτόκολλο TCP Κεφάλαιο 7.3 Πρωτόκολλο TCP Πρωτόκολλο TCP Το πρωτόκολλο Ελέγχου Μετάδοσης (Transmission Control Protocol, TCP) είναι το βασικό πρωτόκολο του Επιπέδου Μεταφοράς του μοντέλου TCP/IP. Παρέχει υπηρεσίες προσανατολισμένες

Διαβάστε περισσότερα

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD H Έννοια και η Φύση του Προγραμματισμού Αθανασία Καρακίτσιου, PhD 1 Η Διαδικασία του προγραμματισμού Προγραμματισμός είναι η διαδικασία καθορισμού στόχων και η επιλογή μιας μελλοντικής πορείας για την

Διαβάστε περισσότερα

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα