|
|
- Κλειώ Κορνάρος
- 9 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 w w u u w u = 1 w v = 0 u v = (w 1, w 2,..., w N ) a β k V β i,j = p(w j = 1 z i = 1)
27 θ d Dir(a) Dir(a) z d,n multi(θ d ) V w d,n β zd,n
28 p(θ,, a, β) = p(θ,, a, β) p( a, β)
29
30
31
32 similarity = (A, B) = AB A B = n i=1 A ib i n i=1 (A i) 2 n i=1 (B i) 2
33
34
35
36 p(c k F 1, F 2, F 3...F n ) = p(c k) p(f 1, F 2, F 3...F n C k ) p(f 1, F 2, F 3...F n ) prior likelihood prosterior = evidence C k F 1, F 2, F 3...F n F 1, F 2, F 3...F n C k p(f 1, F 2...F n C k ) = p(f 1 C k ) p(f 2 C k )... p(f n C k )
37
38
39
40
41
42
43
44
45
46
47
48 tf idf N df
49
50
51
52 ϵπιτυχιϵς τριαδϵς 100 N = 100
53
54
55
56
57
58
59 1000
60
61
62
63
64
65
66
67
68 ( )
69
70
71
- - - - RWC( %) PF PS = 100 PT PS (%) PF PS = 100 PF WC TW BW FW PF PS PS PD PS PS TW BW = = = C 7.12 A A 660 + 16. 8 = 642.5 µ logn = log N0 + a exp(
JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama
MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************
ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ
ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and
# " $! % $ " & "! # '' '!" ' ' ( &! )!! ' ( *+ & '
" # " $ % $ " & " # '' '" ' ' ( & ) ' ( *+ & ' "#$% &% '($&)$'%$ *($+,& #,-%($%./*, -./ "' ' + -0,$1./ 2 34 2 51 2 6.77.8. 9:7 ; 9:.? 9 9@7 9:> 9@>.77 9 9=< 9@>./= 9:=.7: 9=@.7@ 9::.87./>./7
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Στατιστική λήψη αποφάσεων
Στατιστική λήψη αποφάσεων Εποπτευόμενη Μάθηση: Χρησιμοποιώντας ένα σετ κατάρτισης (training set) για τον σχεδιασμό του ταξινομητή -> Χρησιμοποιώντας ένα ξεχωριστό σύνολο δοκιμών (test set ) για ακρίβεια.
HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)
Κεφάλαιο 6 ιανυσµατικοί χώροι...1
6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Εστω το ακόλουθο n n τριδιαγώνιο γραµµικό σύστηµα Ax = d A = b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c
౻жဦǺ3504 ٣ Ћ н த В ය Ǻ ύ ୯ Ʉ Ζ ԃ Ϥ Д Μ Β В த Ӧ ᗺ Ǻ ཥ Ԯ Ꮲ ၡ 2 ဦ (Ѡ Ꮲπ Ꮲπ ӕ Ϧ 202 )
3504 2 ( 202 ) 2 3 4 4 5 5 6 7 8 24 25 36 39 41 46-1 - - 2 - () 2 ( 202 ) () () () () () () () () - 3 - 6 7 37,364,665 () () () 6 8 23 () () () 24 () () () - 4 - () () 1070341072 () 25 35 () () () 1080304826
EL 1 EL ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ ΒΡΥΞΕΛΛΕΣ, 13/09/2011 ΓΕΝΙΚΟΣ ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ ΟΙΚΟΝΟΜΙΚΟ ΕΤΟΣ 2011 TMHMA III - ΕΠΙΤΡΟΠΗ ΤΙΤΛΟΙ 04, 13
ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ ΒΡΥΞΕΛΛΕΣ, 13/09/2011 ΓΕΝΙΚΟΣ ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ ΟΙΚΟΝΟΜΙΚΟ ΕΤΟΣ 2011 TMHMA III - ΕΠΙΤΡΟΠΗ ΤΙΤΛΟΙ 04, 13 ΜΕΤΑΦΟΡΑ ΠΙΣΤΩΣΕΩΝ ΑΡΙΘ. DEC 33/2011 Ευρώ ΠΡΟΕΛΕΥΣΗ ΤΩΝ ΠΙΣΤΩΣΕΩΝ ΑΠΟ ΤΟ ΚΕΦΑΛΑΙΟ
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3.
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY6 - Συστήματα Ανάκτησης Πληροφοριών 007 008 Εαρινό Εξάμηνο Φροντιστήριο Retrieval Models Άσκηση Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001
!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. ') '#*#(& )!#)! ##%' " (&! #!$"/001 ')!' &'# 2' '#)!( 3(&/004&' 5#(& /006 # '#)! 7!+8 8 8 #'%# ( #'## +,-'!$%(' & ('##$%('9&#' & ('##$%('9')
Pert ( Gent ( CPM. WBS ( CPM ( FBS (
100 : www.iedoc.ir . Pert. Gert CPM Gent. CPM : Pert FBS CPM. WBS CPM AOA AON ).... www.iedoc.ir A %50 B 10 A B A C D B E. B A. B A : B A. B A www iedoc.ir. B A Pert CPM A B C D E A B A, C B, D D B C B
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Πιθανοκρατικό μοντέλο
Πιθανοκρατικό μοντέλο Το μοντέλο MAP Αλέξανδρος Γκιμπερίτης Βασίλης Μπούργος Δημήτρης Σουραβλιάς 1 Εισαγωγικές έννοιες Κάθε έγγραφο d της συλλογής παριστάνεται από το δυαδικό διάνυσμα x = (x 1, x 2,...,
Ανάκτηση Πληροφορίας
Ανάκτηση Πληροφορίας Το μοντέλο Boolean Το μοντέλο Vector Ταξινόμηση Μοντέλων IR Ανάκτηση Περιήγηση Κλασικά Μοντέλα Boolean Vector Probabilistic Δομικά Μοντέλα Non-Overlapping Lists Proximal Nodes Browsing
E.E., Παρ. I, Αρ. 2271, Ν. 239/87
E.E., Παρ. I, Αρ. 2271, 6.11.87 147 Ν. 29/87 περί ιδικεύσες Συμπληρματικής Πιστώσες (Ταμείν Αναπτύξες) Νόμς (Αρ. 57) τυ 1987 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Θεµελιώδες Θεώρηµα Θεωρίας Επιφανειών Αφορά στην ανάπτυξη τριών διαφορετικών εξισώσεων (Gauss-Cdazzi)
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο
V I V I R. Επομένωςτοποσοστιαίοσφάλμαθαείναι. Παράδειγμα2 10 Γιατοσύστημαμεσυνάρτησημεταφοράς H. s ναβρεθείηπεριοχή. συχνοτήτωνλειτουργίας.
Παράδειγμα ΑςυποθέσουμεότιημέτρησητάσηςγίνεταιμεέμμεσοτρόπομετρώνταςτορεύμαΙ καιτηναντίσταση.ανκαιστιςδύοπεριπτώσειςτοσχετικόσφάλμαισούταιμε 0,% υπολογίστετοσχετικόσφάλμαστημέτρησητηςτάσης. I d di d I
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται
+ 2 + + + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ = 2 1 1 2 1 1 ˆ ˆ ˆ ˆ ˆ + + + + ˆ ˆ ˆ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + + + +
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων
Η μέθοδος του κινουμένου τριάκμου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 11 ο : Αυτόματη παραγωγή περιλήψεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 11 ο : Αυτόματη παραγωγή περιλήψεων Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)
Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7-8 Μπεϋζιανή εκτίμηση - συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Δυαδικές τ.μ. κατανομή Bernoulli : Εκτίμηση ML: Εκτίμηση Bayes για εκ των προτέρων
476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1
2008 10 Chinese Journal of Applied Probability and Statistics Vol.24 No.5 Oct. 2008 (,, 1000871;,, 100044) (,, 100875) (,, 100871). EM, Wishart Jeffery.,,,,. : :,,, EM, Wishart. O212.7. 1.,. 1894, Pearson.
DOCUMENTS DE TRAVAIL / WORKING PAPERS
DOCUMENTS DE TRAVAIL / WORKING PAPERS 2017-66 How shifting investment towards low-carbon sectors impacts employment: three determinants under scrutiny Quentin Perrier 1, *, Philippe Quirion 1,2 September
Εξόρυξη Γνώσης από Βάσεις Χωρικών και Χρονικών Δεδομένων
Εξόρυξη Γνώσης από Βάσεις Χωρικών και Χρονικών Δεδομένων Βασίλειος Μεγαλοοικονόμου, Ph.D. Κύρια σημεία Εισαγωγή Χωρικά δεδομένα Κίνητρα Προβλήματα Υπόβαθρο Διαμερισμός (partitioning) και ομαδοποίηση (clustering)
Διάνυσμα: έχει μέτρο, διεύθυνση και φορά
Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Πολλά φυσικά μεγέθη είναι διανυσματικά (π.χ. δύναμη, ταχύτητα, επιτάχυνση, γωνιακή ταχύτητα, ροπή, στροφορμή ) Συμβολισμός του διανύσματος: Συμβολισμός του μέτρου
!"ά$%&' 11 () *+,)$%ί).)" /" *0"01ώ3%"4 1'4!"%56/ύ4 *80/+".ή4 :/$"1".ή4
I"ώ+,/4 N$/,/3./ύD'4,!"#$%ή' (")*%*+")ή!"ά$%&' 11 () *+,)$%ί).)" /" *0"01ώ3%"4 1'4!"%56/ύ4 *80/+".ή4 :/$"1".ή4 ;1'
Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης
Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης Γλύκα ΤΖΙΟΥΒΑΡΑ, Αθηνά ΜΠΟΝΙΑ Γραφείο Τύπου Επικοινωνίας Ιωάν. ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ, Ιωάν. ΧΟΛΕΒΑΣ Δημοτικό Ραδιόφωνο ΚΠΝ Παναγιώτης ΚΑΡΑΪΣΚΟΣ,
Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης
Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης Γλύκα ΤΖΙΟΥΒΑΡΑ, Αθηνά ΜΠΟΝΙΑ Γραφείο Τύπου Επικοινωνίας Ιωάν. ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ, Ιωάν. ΧΟΛΕΒΑΣ Δημοτικό Ραδιόφωνο ΚΠΝ Παναγιώτης ΚΑΡΑΪΣΚΟΣ,
Μονάδες σιδερώματος με ατμό SI 2.600 CB. Τεχνικά στοιχεία
Μονάδες σιδερώματος με ατμό SI 2.600 CB Μείωση του χρόνου σιδερώματος στο μισό. Σιδέρωμα σαν επαγγελματίες γρήγορα και χωρίς κόπο. Χάρη στην πίεση ατμού τα υφάσματα σιδερώνονται γρήγορα και χωρίς κόπο.
Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων
Εισαγωγή στη Σχεδίαση F Κυκλωμάτων Κεφάλαιο,.3 Βασικές έννοιες Σχεδίασης F Κυκλωμάτων Σωτήριος Ματακιάς, 0-3, Σχεδίαση Τηλεπικοινωνιακών LI Κυκλωμάτων, Κεφάλαιο /34 Φασματική πυκνότητα ισχύος Power pectral
Οικιακός. &Επαγγελματικός. Εξοπλισμός
Οικιακός &Επαγγελματικός Εξοπλισμός 2016 > Primitive 130140 Tραπέζι τραπεζαρίας Μήκος 3,00m Μήκος 2,50m Μήκος 2,00m JERRY 2,20 x 1,00 01 > Primitive GT-017 Φ 0,70m Ύψος 0,72m GT-203 Φ 0,80m Ύψος 0,72m
DC BOOKS. a-pl½-z-v iao-w Da-c-n
a-pl½-z-v iao-w Da-c-n 1945 P-q-s-s-e 24þ\-v I-mkÀ-t-I-m-U-v aq-s-w-_-b-e-nâ P-\-n -p. {-K-Ù-I-À- -mh-v-, h-n-hà- I³-, d-n-«. A-²-y-m-]-I³. C-c-p-]- -n-\-m-e-p hàj-s- A-²-y-m-]-IP-o-h-n-X- -n-\-pt-i-j-w
0 fffltmttm -------------------------------------- * ------------------------------------- -
Μ Η Ν ΙΑ ΙΟ ^ K K j l H t i a t T I K O Ή ^ ρ ι ο ά ι κ ο 0 fffltmttm -------------------------------------- * ------------------------------------- - GKAJAGTλΙ He ΤΗΝ ΠΡΟΝΟΙλ TOY ceg. ΜΗΤΡΟΠΟΜΤΟΥ Μ YTI
......... tf idf t MATLAB \index{} \index{} tf.idf MATLAB N grams https://www.ncbi.nlm.nih.gov/pubmed/ http://www.brainmap.org/pubs/ https://www.ebay.com/ https://www.nlm.nih.gov/bsd/pmresources.html
HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη
Διαδικτυακή Εφαρμογή Κατανάλωση Ταινιών Γνησιότητας
Διαδικτυακή Εφαρμογή Κατανάλωση Ταινιών Γνησιότητας Τεχνικές Προδιαγραφές Σειριακού Αρχείου Έκδοση 2.0.0 20/3/2013 Έκδοση 2.0.0 1 / 6 Κατάλογος περιεχομένων 1.0 Γενικά. 3 2.0 Περιγραφή δομής. 3 2.1 Πεδίο
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
η π 2 /3 χ 2 χ 2 t k Y 0/0, 0/1,..., 3/3 π 1, π 2,..., π k k k 1 β ij Y I i = 1,..., I p (X i = x i1,..., x ip ) Y i J (j = 1,..., J) x i Y i = j π j (x i ) x i π j (x i ) x (n 1 (x),..., n J (x))
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Φροντιστήριο 5. Το πρώτο πράγµα λοιπόν που πρέπει να κάνουµε είναι να βρούµε τις πιθανότητες εµφάνισης των συµβόλων. Έτσι έχουµε:
Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2006-2007 Εαρινό Εξάµηνο Φροντιστήριο 5 Άσκηση 1 Θεωρείστε το αλφάβητο {α,β,γ,δ,ε} και την εξής φράση: «α α β γ
ΠΡΟΒΛΗΜΑΤΑ fca.1 ΐΐ^ΟΟιιΤίΐκϋΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ IAFFm A (Τ.Ε.Ι.) Κ Α Β Α Λ Α Σ ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ : ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ fca.1 ΐΐ^ΟΟιιΤίΐκϋΣ ΤΟΥ ΘΕΣΜΟΥ ΤΟΥ FRANCHISING ΣΤΗ ΧΩΡα ΜΑΣ Πτυχιακή τ,ργαοία
ΜΥΕ003: Ανάκτηση Πληροφορίας. Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 11: Πιθανοτική ανάκτηση πληροφορίας.
ΜΥΕ003: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο : Πιθανοτική ανάκτηση πληροφορίας. Κεφ. Πιθανοτική Ανάκτηση Πληροφορίας Βασική ιδέα: Διάταξη εγγράφων με βάση την πιθανότητα να είναι
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w
..,..,..,..,..,.. $#'().. #*#'!# !" #$% &'( )*%!"( %+
!" #$% &'( )*%!"( %+,--%. )!%/%#-%. %% (*%!%!)..,..,..,..,..,..!" #$#%$"& $#% $#'().. #*#'!# -0 --%0 % %--/%#-%0 %%0 () - %)!" %1 -# #( )%+!"&/ #$%+/,!% 1%/!"& )(00& 3 ) %4%)!% "% %-" ) )!%1 )(-% 3 651300
Φροντιστήριο Ψηφιακών Ηλεκτρονικών
Φροντιστήριο Ψηφιακών Ηλεκτρονικών Άσκηση 1 Μία TTL πύλη εγγυάται να τραβάει 10 ma χωρίς να ξεπεράσει το δυναμικό εξόδου VOL(max) = 0.4 Volt και να μπορεί να δώσει 5 ma χωρίς να πέσει το δυναμικό εξόδου
5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.
5ppm/ SOT-23 12/14/16nanoDAC AD562/AD564/AD566 nanodac AD566 16 AD564 14 AD562 12 12 1.25V/2.5V 5ppm/ 8SOT-23/MSOP 48nA 5V 2nA 3V 3V/5V 16 DAC 3 to SYNC 1. 1212/14/16nanoDAC 2. 1.25V/2.5V 5ppm/ 3. 8SOT-23
Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006
ΗΥ-464: Συστήματα Ανάκτησης Πληροφορίας Informaton Retreval Systems Πανεπιστήμιο Κρήτης Άνοιξη 2006 Φροντιστήριο 2 Θέμα : Retreval Models Ημερομηνία : 9 Μαρτίου 2006 Outlne Prevous Semester Exercses Set
ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ
ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:
ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι
ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 12 η - Γ ΜΕΡΟΣ ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1): θεωρίες ταχύτητας.
Part A. CS-463 Information Retrieval Systems. Yannis Tzitzikas. University of Crete. CS-463,Spring 05 PART (A) PART (C):
CS-463 Information Systems Μοντέλα Ανάκτησης ( Models) Part A Yannis Tzitzikas University of Crete CS-463,Spring 05 Lecture : 3 Date : 1-3- ιάρθρωση PART (A) Ανάκτηση και Φιλτράρισµα Εισαγωγή στα Μοντέλα
Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
PVWH! OILGEAR TAIFENG
!"#$EF! PVWH!"#$%&'()*+!"#$%&' 21!"#$!"#$%&'()*+,!"#$%!"#$%!"#$%&!"#!!"#$%&'!"#$%!"#$"%&'()*+,!"#$%&!!"#$%!"#$%&'#$!"#!"#$%&!"#$%&'( SE!"!"#$%&'!"#!"#$%&!!"!"#!"#$%&!"#$!"#$!"#$%&'()*+,!"#$%&!"#$%&'!"!"#$%&'!"#!"#$%&'()*+!"#$%!"#$%&'(!"#$%&'()*+,
πραγματικών (μιγαδικών αριθμών) σε m γραμμές και n στήλες. Αν m= πίνακας Α είναι ένας τετραγωνικός πίνακας τάξης n.
Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος
6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Επανάληψη Expectatio maximizatio for Gaussia mixtures. Αρχικοποιούμε τις άγνωστες παραμέτρους µ k, Σ k και π k 2. Υπολογίσμος των resposibilitiesγ(z k : γ ( z = k π ( x µ ˆ,
Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις
Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Άγγελος Τσακανίκας, Επίκουρος Καθηγητής ΕΜΠ Γεώργιος Σιώκας, Υποψήφιος Διδάκτορας
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/2017
K r i t i k i P u b l i s h i n g - d r a f t
T ij = A Y i Y j /D ij A T ij i j Y i i Y j j D ij T ij = A Y α Y b i j /D c ij b c b c a LW a LC L P F Q W Q C a LW Q W a LC Q C L a LC Q C + a LW Q W L P F L/a LC L/a LW 1.000/2 = 500
Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion
Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion *, **, **, * Kazuma HARAGUCHI Nobutaka SHIMADA Yoshiaki SHIRAI Jun MIURA *,{haraguti,jun}@cv.mech.eng.osaka-u.ac.jp
Διήθηση. σε τυχαία γραφήματα
Διήθηση σε τυχαία γραφήματα Διήθηση Ουσιαστικά η μελέτη γραφημάτων όταν αφαιρούμε ακμές (ή κορυφές). Συνήθως μας ενδιαφέρει η μελέτη της μεγαλύτερης συνιστώσας μέγεθος και ιδιότητες Πολλά φυσικά φαινόμενα
Information Retrieval
Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα; Βαθμολόγηση
Γραφικά Υπολογιστών Εισαγωγή
Γραφικά Υπολογιστών Εισαγωγή Γ. Παπαϊωάννου 2008-13 Σκοπός του Μαθήματος Εισαγωγή στις τεχνολογίες παραγωγής συνθετικής εικόνας Ανάλυση των βασικών μεθόδων απεικόνισης 2D δεδομένων Εισαγωγή στις δομές
Τι (άλλο) θα δούμε σήμερα;
Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδάστριες Γιαννιού Λαμπρινή Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα Εισηγητής Ταφιάδης Χρ.Διονύσης «Η γλώσσα
Μορφοποίηση της εξόδου
Μορφοποίηση της εξόδου (i) Όταν θέλουμε τα αποτελέσματα μιάς εντολής WRITE(*, *) να εμφανίζονται με συγκεκριμένο τρόπο τροποποιούμε τον δεύτερο αστερίσκο. 2 τρόποι μορφοποίησης WRITE(*, '(format εξόδου)')
Gaussian Processes Classification Combined with Semi-supervised Kernels
35 7 Vol. 35, No. 7 2009 7 ACTA AUTOMATICA SINICA July, 2009 1 1 1 2. : 1) ; 2) ; 3),. :,.,.,,, TP391 Gaussian Processes Classification Combined with Semi-supervised Kernels LI Hong-Wei 1 LIU Yang 1 LU
Πρόγραμμα Τεχνικής Εκπαίδευσης Δευτέρου Εξαμήνου 2015
Πρόγραμμα Τεχνικής Εκπαίδευσης Δευτέρου Εξαμήνου 2015 1 Επικοινωνία με το τμήμα εκπαίδευσης Ευστάθιος Σαμπαζιώτης (ΠροϊστάμενοςΤμήματος Εκπαίδευσης).. 210 62 96 698, 6948 117950 Σωτήρης Ζάχος (Τεχνικός
Πρόγραμμα Τεχνικής Εκπαίδευσης 2017 Σελίδα 1
1 Πρόγραμμα Τεχνικής Εκπαίδευσης Δευτέρου Εξαμήνου 2017 Πρόγραμμα Τεχνικής Εκπαίδευσης 2017 Σελίδα 1 2 Επικοινωνία με το τμήμα εκπαίδευσης Ευστάθιος Σαμπαζιώτης (Προϊστάμενος Τμήματος Εκπαίδευσης)... 210
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
ΑΣΚΗΣΗ. Δημιουργία Ευρετηρίων Συλλογής Κειμένων
Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος ΑΣΚΗΣΗ Δημιουργία Ευρετηρίων Συλλογής Κειμένων Σκοπός της άσκησης είναι η υλοποίηση ενός συστήματος επεξεργασίας
J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &
J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--
Various types of likelihood
Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood, Bayesian asymptotics 2. quasi-likelihood, composite likelihood 3.
! " #$ (!$ )* ' & )* # & # & ' +, #
! " #$ %%%$&$' %$($% (!$ )* ' & )* # & # & ' +, # $ $!,$$ ' " (!!-!.$-/001 # #2 )!$!$34!$ )$5%$)3' ) 3/001 6$ 3&$ '(5.07808.98: 23*+$3;'$3;',;.8/ *' * $
HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις
HY8- ιακριτά Μαθηµατικά Πέµπτη, 23/03/207 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/207
Topic Structure Mining based on Wikipedia and Web Search
DEWS2008 A7-5 Wikipedia Web AdamJatowt 606-8501 606-8501 E-mail: {nakatani,tezuka,adam,tanaka}@dl.kuis.kyoto-u.ac.jp Wikipedia Web Web Wikipedia Wikipedia Abstract Topic Structure Mining based on Wikipedia
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις Γραμμική παλινδρόμηση (Linear regression) Συνέχεια Γραμμική παλινδρόμηση (Linear regression) g = θϕ + θϕ + + θ ϕ = φ θ ( φ)... d d ϕ ϕ φ=, θ= [ θ θ... θd ]...
IMPLICIT NONE INTEGER :: a, b, c
Βρόχοι Επανάληψης (i) Εντολή DO DO Εντολή 1 Εντολή 2... Εντολή n υνητικά ατέρµονος βρόχος, απαραίτητη η χρήση EXIT 1 Εντολές ΕΧΙΤ και CYCLE Με την εντολή ΕΧΙΤδιακόπτεται η εκτέλεση του βρόχου και η εκτέλεση
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για
Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης)
Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο
Επεξεργασία & Οργάνωση Δεδομένων Κειμένου
Επεξεργασία & Οργάνωση Δεδομένων Εφαρμογές Γλωσσικής Τεχνολογίας Σοφία Στάμου Γλώσσα και Επικοινωνία Κάθε γλωσσικό σύστημα διέπεται από κανόνες για τη χρήση, τη σύνταξη και την ερμηνεία των λέξεων Γιατί