Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 w w u u w u = 1 w v = 0 u v = (w 1, w 2,..., w N ) a β k V β i,j = p(w j = 1 z i = 1)

27 θ d Dir(a) Dir(a) z d,n multi(θ d ) V w d,n β zd,n

28 p(θ,, a, β) = p(θ,, a, β) p( a, β)

29

30

31

32 similarity = (A, B) = AB A B = n i=1 A ib i n i=1 (A i) 2 n i=1 (B i) 2

33

34

35

36 p(c k F 1, F 2, F 3...F n ) = p(c k) p(f 1, F 2, F 3...F n C k ) p(f 1, F 2, F 3...F n ) prior likelihood prosterior = evidence C k F 1, F 2, F 3...F n F 1, F 2, F 3...F n C k p(f 1, F 2...F n C k ) = p(f 1 C k ) p(f 2 C k )... p(f n C k )

37

38

39

40

41

42

43

44

45

46

47

48 tf idf N df

49

50

51

52 ϵπιτυχιϵς τριαδϵς 100 N = 100

53

54

55

56

57

58

59 1000

60

61

62

63

64

65

66

67

68 ( )

69

70

71

- - - - RWC( %) PF PS = 100 PT PS (%) PF PS = 100 PF WC TW BW FW PF PS PS PD PS PS TW BW = = = C 7.12 A A 660 + 16. 8 = 642.5 µ logn = log N0 + a exp(

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

# " $! % $ " & "! # '' '!" ' ' ( &! )!! ' ( *+ & '

#  $! % $  & ! # '' '! ' ' ( &! )!! ' ( *+ & ' " # " $ % $ " & " # '' '" ' ' ( & ) ' ( *+ & ' "#$% &% '($&)$'%$ *($+,& #,-%($%./*, -./ "' ' + -0,$1./ 2 34 2 51 2 6.77.8. 9:7 ; 9:.? 9 9@7 9:> 9@>.77 9 9=< 9@>./= 9:=.7: 9=@.7@ 9::.87./>./7

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Κεφάλαιο 6 ιανυσµατικοί χώροι...1

Κεφάλαιο 6 ιανυσµατικοί χώροι...1 6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται

Διαβάστε περισσότερα

Η μέθοδος του κινουμένου τριάκμου

Η μέθοδος του κινουμένου τριάκμου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή

Διαβάστε περισσότερα

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και

Διαβάστε περισσότερα

+ 2 + + + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ = 2 1 1 2 1 1 ˆ ˆ ˆ ˆ ˆ + + + + ˆ ˆ ˆ + ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + + + +

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης

Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης Γλύκα ΤΖΙΟΥΒΑΡΑ, Αθηνά ΜΠΟΝΙΑ Γραφείο Τύπου Επικοινωνίας Ιωάν. ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ, Ιωάν. ΧΟΛΕΒΑΣ Δημοτικό Ραδιόφωνο ΚΠΝ Παναγιώτης ΚΑΡΑΪΣΚΟΣ,

Διαβάστε περισσότερα

Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης

Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης Δήμαρχος Κωνσταντίνος ΤΖΑΝΑΚΟΥΛΗΣ Γραφείο Γραμματειακής Υποστήριξης Γλύκα ΤΖΙΟΥΒΑΡΑ, Αθηνά ΜΠΟΝΙΑ Γραφείο Τύπου Επικοινωνίας Ιωάν. ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ, Ιωάν. ΧΟΛΕΒΑΣ Δημοτικό Ραδιόφωνο ΚΠΝ Παναγιώτης ΚΑΡΑΪΣΚΟΣ,

Διαβάστε περισσότερα

Μονάδες σιδερώματος με ατμό SI 2.600 CB. Τεχνικά στοιχεία

Μονάδες σιδερώματος με ατμό SI 2.600 CB. Τεχνικά στοιχεία Μονάδες σιδερώματος με ατμό SI 2.600 CB Μείωση του χρόνου σιδερώματος στο μισό. Σιδέρωμα σαν επαγγελματίες γρήγορα και χωρίς κόπο. Χάρη στην πίεση ατμού τα υφάσματα σιδερώνονται γρήγορα και χωρίς κόπο.

Διαβάστε περισσότερα

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. η &, 7!# v # $ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. - ι% ιι* ι' F ι ι ι% MS F MS between within MS MS

Διαβάστε περισσότερα

0 fffltmttm -------------------------------------- * ------------------------------------- -

0 fffltmttm -------------------------------------- * ------------------------------------- - Μ Η Ν ΙΑ ΙΟ ^ K K j l H t i a t T I K O Ή ^ ρ ι ο ά ι κ ο 0 fffltmttm -------------------------------------- * ------------------------------------- - GKAJAGTλΙ He ΤΗΝ ΠΡΟΝΟΙλ TOY ceg. ΜΗΤΡΟΠΟΜΤΟΥ Μ YTI

Διαβάστε περισσότερα

!"ά$%&' 11 () *+,)$%ί).)" /" *0"01ώ3%"4 1'4!"%56/ύ4 *80/+".ή4 :/$"1".ή4

!ά$%&' 11 () *+,)$%ί).) / *001ώ3%4 1'4!%56/ύ4 *80/+.ή4 :/$1.ή4 I"ώ+,/4 N$/,/3./ύD'4,!"#$%ή' (")*%*+")ή!"ά$%&' 11 () *+,)$%ί).)" /" *0"01ώ3%"4 1'4!"%56/ύ4 *80/+".ή4 :/$"1".ή4 ;1'

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ fca.1 ΐΐ^ΟΟιιΤίΐκϋΣ

ΠΡΟΒΛΗΜΑΤΑ fca.1 ΐΐ^ΟΟιιΤίΐκϋΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ IAFFm A (Τ.Ε.Ι.) Κ Α Β Α Λ Α Σ ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ : ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ fca.1 ΐΐ^ΟΟιιΤίΐκϋΣ ΤΟΥ ΘΕΣΜΟΥ ΤΟΥ FRANCHISING ΣΤΗ ΧΩΡα ΜΑΣ Πτυχιακή τ,ργαοία

Διαβάστε περισσότερα

Διαδικτυακή Εφαρμογή Κατανάλωση Ταινιών Γνησιότητας

Διαδικτυακή Εφαρμογή Κατανάλωση Ταινιών Γνησιότητας Διαδικτυακή Εφαρμογή Κατανάλωση Ταινιών Γνησιότητας Τεχνικές Προδιαγραφές Σειριακού Αρχείου Έκδοση 2.0.0 20/3/2013 Έκδοση 2.0.0 1 / 6 Κατάλογος περιεχομένων 1.0 Γενικά. 3 2.0 Περιγραφή δομής. 3 2.1 Πεδίο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

Φροντιστήριο Ψηφιακών Ηλεκτρονικών

Φροντιστήριο Ψηφιακών Ηλεκτρονικών Φροντιστήριο Ψηφιακών Ηλεκτρονικών Άσκηση 1 Μία TTL πύλη εγγυάται να τραβάει 10 ma χωρίς να ξεπεράσει το δυναμικό εξόδου VOL(max) = 0.4 Volt και να μπορεί να δώσει 5 ma χωρίς να πέσει το δυναμικό εξόδου

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w

Διαβάστε περισσότερα

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC. 5ppm/ SOT-23 12/14/16nanoDAC AD562/AD564/AD566 nanodac AD566 16 AD564 14 AD562 12 12 1.25V/2.5V 5ppm/ 8SOT-23/MSOP 48nA 5V 2nA 3V 3V/5V 16 DAC 3 to SYNC 1. 1212/14/16nanoDAC 2. 1.25V/2.5V 5ppm/ 3. 8SOT-23

Διαβάστε περισσότερα

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Άγγελος Τσακανίκας, Επίκουρος Καθηγητής ΕΜΠ Γεώργιος Σιώκας, Υποψήφιος Διδάκτορας

Διαβάστε περισσότερα

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος

Διαβάστε περισσότερα

K r i t i k i P u b l i s h i n g - d r a f t

K r i t i k i P u b l i s h i n g - d r a f t T ij = A Y i Y j /D ij A T ij i j Y i i Y j j D ij T ij = A Y α Y b i j /D c ij b c b c a LW a LC L P F Q W Q C a LW Q W a LC Q C L a LC Q C + a LW Q W L P F L/a LC L/a LW 1.000/2 = 500

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

Γραφικά Υπολογιστών Εισαγωγή

Γραφικά Υπολογιστών Εισαγωγή Γραφικά Υπολογιστών Εισαγωγή Γ. Παπαϊωάννου 2008-13 Σκοπός του Μαθήματος Εισαγωγή στις τεχνολογίες παραγωγής συνθετικής εικόνας Ανάλυση των βασικών μεθόδων απεικόνισης 2D δεδομένων Εισαγωγή στις δομές

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα; Βαθμολόγηση

Διαβάστε περισσότερα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδάστριες Γιαννιού Λαμπρινή Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα Εισηγητής Ταφιάδης Χρ.Διονύσης «Η γλώσσα

Διαβάστε περισσότερα

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

Μορφοποίηση της εξόδου

Μορφοποίηση της εξόδου Μορφοποίηση της εξόδου (i) Όταν θέλουμε τα αποτελέσματα μιάς εντολής WRITE(*, *) να εμφανίζονται με συγκεκριμένο τρόπο τροποποιούμε τον δεύτερο αστερίσκο. 2 τρόποι μορφοποίησης WRITE(*, '(format εξόδου)')

Διαβάστε περισσότερα

Πρόγραμμα Τεχνικής Εκπαίδευσης Δευτέρου Εξαμήνου 2015

Πρόγραμμα Τεχνικής Εκπαίδευσης Δευτέρου Εξαμήνου 2015 Πρόγραμμα Τεχνικής Εκπαίδευσης Δευτέρου Εξαμήνου 2015 1 Επικοινωνία με το τμήμα εκπαίδευσης Ευστάθιος Σαμπαζιώτης (ΠροϊστάμενοςΤμήματος Εκπαίδευσης).. 210 62 96 698, 6948 117950 Σωτήρης Ζάχος (Τεχνικός

Διαβάστε περισσότερα

Ταχυσύνδεσμοι γερμανικού προφίλ. Unitair ΕΠΕ Σπ. Πάτση 20, Βοτανικός, 10447, Αθήνα. Ταχυσύνδεσμοι αέρος

Ταχυσύνδεσμοι γερμανικού προφίλ. Unitair ΕΠΕ Σπ. Πάτση 20, Βοτανικός, 10447, Αθήνα. Ταχυσύνδεσμοι αέρος Ταχυσύνδεσμοι αέρος Ταχυσύνδεσμοι γερμανικού προφίλ Ταχυσύνδεσμοι γερμανικού προφίλ μίνι Ταχυσύνδεσμοι ιταλικού προφίλ Ταχυσύνδεσμοι Universal Ταχυσύνδεσμοι Ιαπωνίας Kawasaki Ταχυσύνδεσμοι γερμανικού προφίλ

Διαβάστε περισσότερα

Topic Structure Mining based on Wikipedia and Web Search

Topic Structure Mining based on Wikipedia and Web Search DEWS2008 A7-5 Wikipedia Web AdamJatowt 606-8501 606-8501 E-mail: {nakatani,tezuka,adam,tanaka}@dl.kuis.kyoto-u.ac.jp Wikipedia Web Web Wikipedia Wikipedia Abstract Topic Structure Mining based on Wikipedia

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης)

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο

Διαβάστε περισσότερα

IMPLICIT NONE INTEGER :: a, b, c

IMPLICIT NONE INTEGER :: a, b, c Βρόχοι Επανάληψης (i) Εντολή DO DO Εντολή 1 Εντολή 2... Εντολή n υνητικά ατέρµονος βρόχος, απαραίτητη η χρήση EXIT 1 Εντολές ΕΧΙΤ και CYCLE Με την εντολή ΕΧΙΤδιακόπτεται η εκτέλεση του βρόχου και η εκτέλεση

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ»

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ» Ελληνική Εταιρεία Μελέτης της Διαταραχής Εθισμού στο Διαδίκτυο 3ο Πανελλήνιο Διεπιστημονικό Συνέδριο E-LIFE 2013 Κινηματογράφος ΔΑΝΑΟΣ - Αθήνα, 1-2 Νοεμβρίου 2013 «ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F

Διαβάστε περισσότερα

ΝΕΟΣ ΚΑΤΑΛΟΓΟΣ ΔΙΑΔΡΟΜΟΙ

ΝΕΟΣ ΚΑΤΑΛΟΓΟΣ ΔΙΑΔΡΟΜΟΙ ΝΕΟΣ ΚΑΤΑΛΟΓΟΣ ΔΙΑΔΡΟΜΟΙ RL 35 ΠΛΑΙΣΙΟ ΑΛΟΥΜΙΝΙΟΥ ECONOMY Διάδρομος αλουμινίου εξαιρετικής ποιότητας, υψηλής αισθητικής, εξαιρετικά ελαφρύς. Είναι σχεδιασμένος όπως όλα τα προϊόντα για να μην χρειάζεται

Διαβάστε περισσότερα

Αρτηρίες και Φλέβες. Σκοπός του κυκλοφορικού Συστήματος είναι η μεταφορά ουσιών σε όλα τα κύτταρα του Σώματος μέσω του αίματος

Αρτηρίες και Φλέβες. Σκοπός του κυκλοφορικού Συστήματος είναι η μεταφορά ουσιών σε όλα τα κύτταρα του Σώματος μέσω του αίματος Αρτηρίες και Φλέβες Οι ιδιότητες και οι λειτουργίες των διαφόρων τμημάτων του αγγειακού συστήματος διαφέρουν σημαντικά από το ένα αγγειακό τμήμα στο άλλο. Σκοπός του κυκλοφορικού Συστήματος είναι η μεταφορά

Διαβάστε περισσότερα

Υπολογιστική Ευφυΐα και Εφαρµογές

Υπολογιστική Ευφυΐα και Εφαρµογές Υπολογιστική Ευφυΐα και Εφαρµογές ρ. Σταύρος Ι. Περαντώνης sper@iit.demokritos.gr Εργαστήριο Υπολογιστικής Ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΗΜΟΚΡΙΤΟΣ http://www.iit.demokritos.gr/cil

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης Θέμα: Διήθηση ανεπιθύμητης ηλεκτρονικής αλληλογραφίας

Διαβάστε περισσότερα

Δημιουργία Ευρετηρίων Συλλογής Κειμένων

Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 - Project Σεπτεμβρίου Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος Εξέταση: Προφορική, στο τέλος της εξεταστικής. Θα βγει ανακοίνωση στο forum. Ομάδες

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Kοίλες και Οιονεί Kοίλες Συναρτήσεις Ονοματεπώνυμο Φοιτητή Πεσλή Στυλιανή Πατρώνυμο

Διαβάστε περισσότερα

Τυχαία Διανύσματα και Ανεξαρτησία

Τυχαία Διανύσματα και Ανεξαρτησία Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

Βυτία Μεταφοράς Γάλακτος

Βυτία Μεταφοράς Γάλακτος Βυτία Μεταφοράς Γάλακτος Ασφαλής μεταφορά ΜΕΤΑΦΟΡΑ ΓΑΛΑΚΤΟΣ MP CoolMilk Transfer Ψύξη με ρεύμα ή γεννήτρια (CTT500-2.000lt) Tα ψυχόμενα βυτία μεταφοράς γάλακτος MP CoolMilk Transfer είναι η ιδανική λύση

Διαβάστε περισσότερα

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

Συμμετρίες Lie και Noether Διαφορικών Εξισώσεων

Συμμετρίες Lie και Noether Διαφορικών Εξισώσεων Μεταπτυχιακό Δίπλωμα Ειδίκευσης Τμήμα Φυσικής (ΕΚΠΑ) Τομέας Αστρονομίας, Αστροφυσικής και Μηχανικής Συμμετρίες Lie και Noether Διαφορικών Εξισώσεων Ανδρόνικος Παλιαθανάσης Επιβλέπων Μ. Τσαμπαρλής Αθήνα,

Διαβάστε περισσότερα

10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K

Διαβάστε περισσότερα

Τριφασικοί ηλεκτροκινητήρες DR/DV/DT/DTE/DVE, Ασύγχρονοι Σερβοκινητήρες CT/CV

Τριφασικοί ηλεκτροκινητήρες DR/DV/DT/DTE/DVE, Ασύγχρονοι Σερβοκινητήρες CT/CV Ηλεκτροµειωτήρες \ Βιοµηχανικοί µειωτήρες \ Ηλεκτρονικά κινητήριων µηχανισµών \ Αυτοµατισµοί \ Υπηρεσίες Τριφασικοί ηλεκτροκινητήρες DR/DV/DT/DTE/DVE, Ασύγχρονοι Σερβοκινητήρες CT/CV A6.C01 Έκδοση 07/200

Διαβάστε περισσότερα

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt) Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ & ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΜΒΑΘΥΝΣΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ & ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΜΒΑΘΥΝΣΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ & ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΜΒΑΘΥΝΣΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Διπλωματική εργασία Επίδραση των πυρκαγιών στο υδατικό

Διαβάστε περισσότερα

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ).

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ). Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Οι στατιστικές δείγµατος που υπολογίζονται από τα δεδοµένα που έχουν συλλεχθεί, όπως η δειγµατική µέση τιµή x και η δειγµατική διασπορά s 2, χρησιµοποιούνται για την εκτίµηση

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους και τον Προγραμματισμό. 3η Διάλεξη Είσοδος Δεδομένων Συνθήκες Βρόχοι Παραδείγματα

Εισαγωγή στους Αλγόριθμους και τον Προγραμματισμό. 3η Διάλεξη Είσοδος Δεδομένων Συνθήκες Βρόχοι Παραδείγματα Εισαγωγή στους Αλγόριθμους και τον Προγραμματισμό 3η Διάλεξη Είσοδος Δεδομένων Συνθήκες Βρόχοι Παραδείγματα Τελεστές συντομογραφίας Τελεστές σύντομης ανάθεσης += παράδειγμα: sum+=10; αντί για: sum = sum

Διαβάστε περισσότερα

(Πράξεις για την ισχύ των οποίων απαιτείται δημοσίευση)

(Πράξεις για την ισχύ των οποίων απαιτείται δημοσίευση) 24.11.2003 EL Επίσηµη Εφηµερίδα της Ευρωπαϊκής Ένωσης L 307/1 I (Πράξεις για την ισχύ των οποίων απαιτείται δημοσίευση) ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 2032/2003 ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 4ης Νοεμβρίου 2003 για τη δεύτερη

Διαβάστε περισσότερα

10/12/2012 ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΕΡΙΕΧΟΜΕΝΑ

10/12/2012 ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΙΑΛΕΞΗ Βεργινάδης Γιάννης Δρ. Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ ΠΕΡΙΕΧΟΜΕΝΑ 1 ΧΡΟΝΙΚΗ ΑΝΑΛΥΣΗ ΙΚΤΥΩΝ ΠΑΡΑ ΕΙΓΜΑΤΑ 1 Ανάλυση δικτύου με τη μέθοδο CPM Προσδιορισμός της

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΚΑΤΕΡΓΑΣΙΕΣ ΚΟίΙΗΣ ΟΛΟΝΤΩΣΕΩΝ

ΚΑΤΕΡΓΑΣΙΕΣ ΚΟίΙΗΣ ΟΛΟΝΤΩΣΕΩΝ ΤΕΧ.ΝΟΛΟΓ ΙΚΟ ΕΚΙΙΛΙΛΚΥ ΤΙΚΟ ΙΛΡΥ.ΜΑ ΚΑΒΑ.\ΑΣ ΣΧΟΑΗ ΤΕΧ.ΝΟΑΟΠΚίίΝ ΕΦΑΡΜΟΓΩΝ ΤΟΜΕΑ ΚΑΤΑΣΚΕΥΩΝ - ΕΤΚΑΤΑΣΤΑΣΕίίΝ - ΠΑΡΑΓΩΓΗΣ ΚΑΤΕΡΓΑΣΙΕΣ ΚΟίΙΗΣ ΟΛΟΝΤΩΣΕΩΝ Πάπαρης Αγγελος Διπλωματική Εργασία Επιβ>χπων Καθηγητής:

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α )

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) Χρήστος Ι Σχοινάς Αν Καθηγητής ΔΠΘ Σημειώσεις για το μάθημα «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) ΞΑΝΘΗ, 008 - - - - ΚΕΦΑΛΑΙΟ ΔΙΑΝΥΣΜATA Ορισμοί και ιδιότητες Συχνά, σε διάφορα προβλήματα στα Μαθηματικά,

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β) Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον

Διαβάστε περισσότερα

Ερωτήσεις αυτοαξιολόγησης τετραπλής επιλογής για το μάθημα Προγραμματισμός I.

Ερωτήσεις αυτοαξιολόγησης τετραπλής επιλογής για το μάθημα Προγραμματισμός I. Ερωτήσεις αυτοαξιολόγησης τετραπλής επιλογής για το μάθημα Προγραμματισμός I. (1) Η γλώσσα C αποτελεί: (α) Γλώσσα προγραμματισμού υψηλού επιπέδου (β) Γλώσσα μηχανής (γ) Γλώσσα assembly (δ) Τίποτε από τα

Διαβάστε περισσότερα

MP4 PLAYER - Εγχειρίδιο Χρήσης -

MP4 PLAYER - Εγχειρίδιο Χρήσης - MP4 PLAYER - Εγχειρίδιο Χρήσης - Περιεχόμενα Περιεχόμενα... 1 ΠΡΟΕΙΔΟΠΟΙΗΣΕΙΣ... 2 Όψη... 4 Πλήκτρα λειτουργιών, υποδοχές και επεξηγήσεις... 5 Ενεργοποίηση/ Απενεργοποίηση... 5 Χαμηλή Στάθμη Μπαταρίας...

Διαβάστε περισσότερα

ill Β ΜΚιτλ t # M .» I B « H W H IM Ι^ Η Μ Η Μ Β Μ μ μ Η ΙM l μ η β η Β ι Η M l M K I I 1 H ^ H H B Μ Ι ι ί ι Λ β ι ^ μ Ρ Η Μ H 1 l ««βι#ι 1 W!

ill Β ΜΚιτλ t # M .» I B « H W H IM Ι^ Η Μ Η Μ Β Μ μ μ Η ΙM l μ η β η Β ι Η M l M K I I 1 H ^ H H B Μ Ι ι ί ι Λ β ι ^ μ Ρ Η Μ H 1 l ««βι#ι 1 W! μ η β M K I I 1.» I B «M l η η ΗΒΗΗΜΗβ μ Μ ^ ^ ^ ^ Η ^ μ Μ 1 111 μ Ιμ Β ^ Κ ι η η β η Η Β Η I H S im M R m m m W rn m m m H ^ H H B ill xakbumim H,t m i.' :ί Η ΗΗρ Ιρ Ε! m hih n nk& n Wm H R H K w l 1

Διαβάστε περισσότερα

ABCDEF abcdef 123456 ABCDEF abcdef 123456 AB ab 12 ABCDEF abcdef 123456 ABCDEF abcdef 123456 ABCDEF abcdef 123456 18

Διαβάστε περισσότερα

Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT

Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT 1,a) 1,2,b) 1. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1 7-3-1 113-0033 2 NTT 3-1 243-0198 a) Tomohio Naamura@ipc.i.u-toyo.ac.jp b) ameoa@hil.t.u-toyo.ac.jp/ameoa.hiroazu@lab.ntt.co.jp

Διαβάστε περισσότερα

Το γενικό περιβάλλον. Εισαγωγή στο Scilab

Το γενικό περιβάλλον. Εισαγωγή στο Scilab Το γενικό περιβάλλον Εισαγωγή στο Scilab Απλοί αριθμητικοί υπολογισμοί Ο συνήθεις αριθμητικές πράξεις πραγματοποιούνται με τα σύμβολα πρόσθεση + αφαίρεση - πολλαπλασιασμός * Διαίρεση / Ύψωση σε δύναμη

Διαβάστε περισσότερα

uscita aria uscita acqua acqua uscita ingresso acqua ingresso ingresso aria

uscita aria uscita acqua acqua uscita ingresso acqua ingresso ingresso aria Τεχνικό εγχειρίδιο 2x1 για συστήµατα κλιµατισµού GR Μονάδες 2x1 ΠΕΡΙΕΧΟΜΕΝΑ 3. Η ιδέα 4. Κατασκευαστικά χαρακτηριστικά 5. Τεχνικά χαρακτηριστικά 5. ιαστάσεις 6. Λειτουργία ψύξης 2σωλήνιο σύστηµα 7. Λειτουργία

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

ΝΕΟΤΕΡΕΣ ΑΠΟΨΕΙΣ ΓΙΑ ΤΟ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΑΥΤΟΕΛΕΓΧΟΣ ΣΤΟ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ

ΝΕΟΤΕΡΕΣ ΑΠΟΨΕΙΣ ΓΙΑ ΤΟ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΑΥΤΟΕΛΕΓΧΟΣ ΣΤΟ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΝΕΟΤΕΡΕΣ ΑΠΟΨΕΙΣ ΓΙΑ ΤΟ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΑΥΤΟΕΛΕΓΧΟΣ ΣΤΟ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΠΛΗΘΟΡΙΚΗ ΝΟΣΟΣ ΝΟΣΟΣ ΤΩΝ ΑΚΡΩΝ ΤΗΣ ΑΣΤΑΘΕΙΑΣ (ΥΠΟΓΛΥΚΑΙΜΙΑ ΥΠΕΡΓΛΥΚΑΙΜΙΑ) ΣΥΝΟΛΟ ΤΩΝ ΙΑΤΡΙΚΩΝ ΕΙΔΙΚΟΤΗΤΩΝ ΤΕΡΑΣΤΙΟ ΚΟΣΤΟΣ ΘΕΡΑΠΕΙΑΣ

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΙI ANOVA

Έλεγχος υποθέσεων ΙI ANOVA Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση

Διαβάστε περισσότερα

Αποδοτική ενσωμάτωση της αιολικής ενέργειας στο ελληνικό σύστημα με χρήση γενετικών αλγορίθμων

Αποδοτική ενσωμάτωση της αιολικής ενέργειας στο ελληνικό σύστημα με χρήση γενετικών αλγορίθμων Αποδοτική ενσωμάτωση της αιολικής ενέργειας στο ελληνικό σύστημα με χρήση γενετικών αλγορίθμων Γ.Κάραλης 1, Στ.Δεληκαράογλου 1, Κ. Ράδος 2, Α. Ζερβός 1 1 Εθνικό Μετσόβιο Πολυτεχνείο, Εργαστήριο Αιολικής

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Διερεύνηση των παραγόντων επιρροής της χρήσης κράνους από Ευρωπαίους μοτοσυκλετιστές

Διερεύνηση των παραγόντων επιρροής της χρήσης κράνους από Ευρωπαίους μοτοσυκλετιστές Διερεύνηση των παραγόντων επιρροής της χρήσης κράνους από Ευρωπαίους μοτοσυκλετιστές Χρήστος Κατρακάζας Επιβλέποντες : Γιώργος Γιαννής, Αναπληρωτής Καθηγητής Ματθαίος Καρλαύτης, Αναπληρωτής Καθηγητής Αθήνα,

Διαβάστε περισσότερα

ÐÑÏËÏÃÏÓ. ÖïéôçôÝò ÉäéïêôÞôåò áõôïêéíþôùí ðïõ åíäéáöýñïíôáé να ασχοληθούν µόνοι τους µε το αυτοκίνητο

ÐÑÏËÏÃÏÓ. ÖïéôçôÝò ÉäéïêôÞôåò áõôïêéíþôùí ðïõ åíäéáöýñïíôáé να ασχοληθούν µόνοι τους µε το αυτοκίνητο ιάγνωση βλαβών επί του αυτοκινήτου EOBD OBD II Πρόσθετοι Τυποποιηµένοι Κωδικοί Βλαβών DTC 2008 2012 3 ÐÑÏËÏÃÏÓ Ôï âéâëßï «ιάγνωση βλαβών επί του αυτοκινήτου EOBD - OBD II» ðïõ êñáôüôå óôá Ýñéá óáò åßíáé

Διαβάστε περισσότερα

nr.c ( (n+1)r.c) Όποτε αρκεί να αποδείξουμε την ισοδυναμία ενός εκ των δυο περιορισμών.

nr.c ( (n+1)r.c) Όποτε αρκεί να αποδείξουμε την ισοδυναμία ενός εκ των δυο περιορισμών. Ενδεικτική Λύση 2 ης Άσκησης (Περιγραφικές Λογικές) Ερώτημα 1 α) Ο κατασκευαστής Q συμβολίζει τους προσοντούχους περιορισμούς πληθυκότητας, δηλαδή τις έννοιες της μορφής: nr.c, nr.c Αρχικά σύμφωνα με τους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ : Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΞΗΣ Μια συνάρτηση f : A B C αντιστοιχίζει σε κάθε ζεύγος (a,b) (με Γράφουμε τότε a A και b B ) ένα στοιχείο c C f(a,b)c Η συνάρτηση αυτή μπορεί να χαρακτηριστεί και

Διαβάστε περισσότερα

Γεωμετρικοί Μετασχηματισμοί

Γεωμετρικοί Μετασχηματισμοί Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στον Ευκλείδιο χώρο: p=[ p, p,z p ] T, όπου p, p, z p πραγματικοί αριθμοί. Εστω Ε 3 το σύνολο των p. Ενας γεωμετρικός μετασχηματισμός Τ(π), με διάνυσμα παραμέτρων

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΗΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ:

Διαβάστε περισσότερα

Ιατρικά Μαθηματικά & Βιοστατιστική

Ιατρικά Μαθηματικά & Βιοστατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Λογαριθμιστική παλινδρόμηση Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης Δημολιάτης, Ευαγγελία

Διαβάστε περισσότερα

Άλγεβρα Boole και Υλικό Υπολογιστή

Άλγεβρα Boole και Υλικό Υπολογιστή Άλγεβρα Boole και Υλικό Υπολογιστή Άλγεβρα Boole Η σχέση της άλγεβρας Boole με την δομή των υπολογιστών και με τον προγραμματισμό. Υλικό υπολογιστή Οργάνωση Κεντρικής Μονάδας Επεξεργασίας, μνήμη, είσοδος

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. Ενότητα: Ψηφιακά Συστήματα. Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ψηφιακά Συστήματα. Ενότητα: Ψηφιακά Συστήματα. Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ψηφιακά Συστήματα Ενότητα: Ψηφιακά Συστήματα Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ZODIAC Ζ200 ZODIAC Z 200 M2 6.1 KW + ΔΩΡΟ 1.433,00 ZODIAC Z 200 M3 9 KW + ΔΩΡΟ 1.895,00 ZODIAC Z 200 M4 12 KW + ΔΩΡΟ 2.416,00 ZODIAC Z 200 M5 14.1

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα