πραγματικών (μιγαδικών αριθμών) σε m γραμμές και n στήλες. Αν m= πίνακας Α είναι ένας τετραγωνικός πίνακας τάξης n.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "πραγματικών (μιγαδικών αριθμών) σε m γραμμές και n στήλες. Αν m= πίνακας Α είναι ένας τετραγωνικός πίνακας τάξης n."

Transcript

1 Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος Β 0 Είδος Γ 9 Ο πίνακας δικτύου αεροπορικών συνδέσεων τεσσάρων πόλεων ( υπάρχει σύνδεση, - δεν υπάρχει) : Αθήνα Θεσσαλονίκη Ηράκλειο Αλεξανδρούπολη Αθήνα 0 Θεσσαλονίκη 0 - Ηράκλειο 0 - Αλεξανδρούπολη Ένας πραγματικός (μιγαδικός) πίνακας Α διάστασης m είναι μία διάταξη m πραγματικών (μιγαδικών αριθμών) σε m γραμμές και στήλες Αν m, τότε ο πίνακας Α είναι ένας τετραγωνικός πίνακας τάξης Παράδειγμα: πίνακας και τετραγωνικός πίνακας τετραγωνικός 0 9, Ένας πίνακας που αποτελείται από μία στήλη ( m ) ή μία γραμμή ( ), ονομάζεται πίνακας-στήλη (διάνυσμα στήλη ή απλά διάνυσμα) ή πίνακαςγραμμή (ή διάνυσμα γραμμή) αντίστοιχα Ένας πίνακας λέγεται πίνακας στοιχείο Παράδειγμα:, 0 9, [ ] [ ] Συχνά συμβολίζουμε τον πίνακα ως A a και το στοιχείο της i γραμμής και j σ τήλης με a ή ij -στοιχείο του πίνακα Συνήθως για τα ονόματα των πινάκων ij χρησιμοποιούμε κεφαλαία γράμματα και για τα ονόματα των διανυσμάτων πεζά Από εδώ και πέρα όταν αναφερόμαστε σε πίνακες θα εννοούμε πραγματικούς πίνακες Η κύρια διαγώνιος ενός τετραγωνικού πίνακα τάξης αποτελείται από τα στοιχεία aii i Ως ίχνος του τετραγωνικού πίνακα Α (trace) ονομάζουμε το άθροισμα των στοιχείων της κυρίας διαγωνίου του: ij m

2 Κεφάλαιο Βασικοί πίνακες i tr( A) a a a a ii Ένας πίνακας του οποίου όλα τα στοιχεία είναι μηδενικά ονομάζεται μηδενικός και συμβολίζεται συνήθως με O m Ένας τετραγωνικός πίνακας U που έχει όλα τα στοιχεία κάτω από την κυρία διαγώνιο μηδενικά ονομάζεται άνω-τριγωνικός (upper triagular) Ένας τετραγωνικός πίνακας L που έχει όλα τα στοιχεία πάνω από την κυρία διαγώνιο μηδενικά ονομάζεται κάτω-τριγωνικός (lower triagular) u u u u l u u u l l U, L 0 0 u u l l l u l l l l U άνω τριγωνικός u 0 όταν i > j L κάτω τριγωνικός l 0 όταν i< j ij ij Ένας τετραγωνικός πίνακας D που είναι συγχρόνως άνω-τριγωνικός και κάτωτριγωνικός, ονομάζεται διαγώνιος (diagoal) Ένας διαγώνιος πίνακας I του οποίου τα διαγώνια στοιχεία είναι ίσα με, ονομάζεται μοναδιαίος d d D, I 0 0 d d U διαγώνιος d 0 όταν i j I μοναδιαίος: διαγώνιος και I ij Ένας τετραγωνικός πίνακας ο οποίος έχει μη μηδενικά στοιχεία στην κύρια διαγώνιο και σε ίσο αριθμό άνω και κάτω διαγωνίων, ενώ τα υπόλοιπα στοιχεία είναι μηδέν, ονομάζεται πίνακας δέσμη (baded) Όταν ο αριθμός των μη μηδενικών γειτονικών προς την κύρια διαγώνιο είναι ένα τότε ο πίνακας λέγεται τριδιαγώνιος (tridiagoal) ii

3 Πίνακες a a a a a a a a 0 T a a a a a T τριδιαγώνιος T Ο ανάστροφος A (traspose) ενός πίνακα προκύπτει εάν στον πίνακα αλλάξουμε τις γραμμές σε στήλες και τις στήλες σε γραμμές Ένας τετραγωνικός πίνακας A λέμε ότι είναι συμμετρικός αν ισχύει η σχέση T T A A όπου A, ο ανάστροφος του A Σε έναν πίνακα Z με μιγαδικά στοιχεία ο πίνακας με τα συζυγή στοιχεία του λέγεται συζυγής πίνακας Z z Ο ανάστροφος συζυγής του πίνακα Z συμβολίζεται με ερμιτιανός Παραδείγματα: Z * T Z Εάν ισχύει ij Z * Z τότε ο πίνακας ονομάζεται T 0 0 T 9, T 0 T T [ ], [ 0 9 ], [ ] [ 9 * i i i 5i i 5i ] Πίνακες και πράξεις Δύο πίνακες μπορούν αν συγκριθούν εάν είναι της ίδιας διάστασης Δύο πίνακες (ιδίας διάστασης) είναι ίσοι όταν έχουν ένα προς ένα τα στοιχεία τους ίσα A B a b i m, j ij ij Παράδειγμα: Οι παρακάτω πίνακες δεν μπορούν να συγκριθούν γιατί δεν έχουν την ίδια διάσταση

4 Κεφάλαιο Ενώ για τους πίνακες ισχύει διότι Τέλος εάν τότε 0 0 9, A 0 0, B ,,, Δύο πίνακες μπορούν να προστεθούν εάν είναι της ίδιας διάστασης Το άθροισμα δύο πινάκων (ιδίας διάστασης) είναι ένας πίνακας ιδίας διάστασης που έχει ως στοιχεία το άθροισμα (στην αντίστοιχη θέση) των στοιχείων των προσθετέων C A B c a b i m, j ij ij ij Η διαφορά πινάκων ορίζεται ως A B A ( B) Για την πρόσθεση πινάκων (εννοείται κατάλληλων πινάκων ώστε να γίνεται η πράξη) ισχύει: A B B A (αντιμεταθετική ιδιότητα) ( A B) C A ( B C) (προσεταιρισική) A O A(ουδέτερο στοιχείο) A ( A) O Ορίζεται το γινόμενο (πραγματικού ή μιγαδικού) αριθμού επί πίνακα ως ένας πίνακας που έχει ως στοιχεία το γινόμενο του αριθμού επί το στοιχείο του πίνακα σε κάθε θέση ka ka ij Για το γινόμενο αριθμού επί πίνακα ισχύει: ( k l) A ka la k( A B) ka kb kla ( ) ( kla ) A A Αν la O τότε ή l 0ή A O (εννοείται κατάλληλοι πινάκες ώστε να γίνεται η πράξη)

5 Παραδείγματα: Πίνακες Αφού τα διανύσματα είναι ένα είδος πίνακα, το γινόμενο πραγματικού αριθμού επί ένα διάνυσμα είναι ένα διάνυσμα: x ax a a πχ z az 0 0 Κάθε συνιστώσα (ή συντεταγμένη) πολλαπλασιάζεται επί τον αριθμό Επίσης, ανάλογα ορίζεται και το άθροισμα δύο διανυσμάτων: x x x x πχ z z z z Τέλος, ο γραμμικός συνδυασμός διανυσμάτων διανυσμάτων είναι το ένα άθροισμα γινομένων διανυσμάτων επί αριθμούς Πχ x x x λx λx λx λ λ λ λ λ λ z z z λz λz λz επί πίνακα- Ορίζουμε το γινόμενο πίνακα-γραμμή (ή διάνυσμα γραμμή) στήλη (διανύσματος) : b b a a a, a, ab ab a, b, a, b, a ibi i b, b, Το αποτέλεσμα της πράξης αυτής είναι ένας πίνακας στοιχείο Όπως θα δούμε σε επόμενο κεφάλαιο θα ορίσουμε το στοιχείο του πίνακα αυτού ως εσωτερικό γινόμενο των δύο διανυσμάτων 5

6 Κεφάλαιο Παραδείγματα: ( ) ( ) 09 8 [ ] [ ] [ ] Εάν τότε Ορίζουμε το γινόμενο πίνακα m επί πίνακα-στήλη (διάνυσμα) ως τον πίνακα-στήλη (διάνυσμα) που στην i -συνιστώσα του έχει το εσωτερικό γινόμενο της i -γραμμής του πίνακα το διάνυσμα Παράδειγμα: [ ] ab i i i b ab a, b, aibi b ab a m, b a a, i b,, am a m am b am, b, a, ib i b, am b amb, i ai, b i i ( ) ( ) ( ) ( ) 0 8 Ορίζουμε το γινόμενο πίνακα Α m επί πίνακα Β k ως τον πίνακα m k για τον οποίο το ( i, j )- στοιχείο προκύπτει από το γινόμενο της i -γραμμής του πίνακα Α επί της j -στήλης του πίνακα Β C AB [ cij ] aipbpj p Οπότε για να ορίζεται το γινόμενο ο αριθμός των στηλών του πίνακα Α θα πρέπει να είναι ίσος με τον αριθμό των γραμμών του πίνακα Β Παράδειγμα: 6

7 Πίνακες x Έστω A 0, B 0 0, C, όπου x R Από τις παρακάτω παραστάσεις να υπολογισθούν όσες έχουν νόημα ΑΒ, ΒΑ, T AA, CB, BC, B, A B Έχουμε x x 0 x 0 x x AB T x x x x x x AA 0 x 0 x 0 0, x ( ) BC Οι υπόλοιπες παραστάσεις δεν έχουν νόημα Για παράδειγμα, το πλήθος των στηλών του Β δεν είναι ίσο με το πλήθος των γραμμών του Α και επομένως δεν ορίζεται το γινόμενο BA Το άθροισμα ΑΒ δεν ορίζεται γιατί οι πίνακες Α, Β είναι διαφορετικού μεγέθους Για το γινόμενο πινάκων (εννοείται η επιλογή κατάλληλων διαστάσεων πινάκων ώστε να γίνεται η πράξη) ισχύει: ( AB) C ABC ( ) (προσεταιρισική) A( B C) AB AC (επιμεριστική από αριστερά ιδιότητα) ( B C) A BA CA (επιμεριστική από δεξιά ιδιότητα) AO O ή OA O γενικά AI A ή IA Aκαι για τετραγωνικούς IA AI A k( AB) ( ka) B A( kb) Γενικά, ακόμη και αν ορίζεται το γινόμενο, για πίνακες δεν ισχύει η αντιμεταθετικότητα AB BA k Ορίζεται και η κ-δύναμη τετραγωνικού πίνακα ως A A A και k φορές A I Για έναν διαγώνιο τετραγωνικό πίνακα η κ-δύναμη του είναι ένας διαγώνιος τετραγωνικός πίνακας με διαγώνια στοιχεία τις κ-δυνάμεις των διαγώνιων στοιχείων του αρχικού 7

8 Κεφάλαιο ( ) Τώρα που ορίσαμε τις πράξεις μπορούμε να παραθέσουμε τις ακόλουθες ιδιότητες: Ιδιότητες Αναστρόφων πινάκων T ( A ) T A ( A B) T A T B T ( ka) T ka T ( AB) T B T A T Ιδιότητες ίχνους τετραγωνικού πίνακα tr ( A B) tr( A) tr( B) tr ( AB) tr( BA) tr ( ka) k tr( A) T ( ) ( ) tr A tr A Παράδειγμα: Ο πίνακας των πωλήσεων της εταιρείας του πρώτου παραδείγματος είναι ο Το ετήσιο σύνολο των πωλήσεων ανά είδος δίνεται από το γινόμενο Το σύνολο των πωλήσεων ανά τρίμηνο δίνεται από το γινόμενο Τ Εάν το κέρδος για το πρώτο προϊόν είναι 0 για το δεύτερο και για το τρίτο το συνολικό κέρδος ανά τρίμηνο δίνεται από το γινόμενο 8

9 Πίνακες Τ και το ετήσιο σύνολο των κερδών Τ [ ] [50] Παράδειγμα: Η αναπαράσταση ενός κατευθυνόμενου γραφήματος όπως το παρακάτω 5 6 δίνεται με την μορφή του πίνακα A όπου υπάρχει κατευθυνόμενο τόξο από τον κόμβο i στον κόμβο j aij 0 δεν υπάρχει κατευθυνόμενο τόξο από τον κόμβο i στον κόμβο j Μπορούμε εύκολα να διαπιστώσουμε ότι ο αριθμός των διαφορετικών τρόπων μετάβασης (συνδέσεων) από τον κόμβο i στον κόμβο j διατρέχοντας ακριβώς κατευθυνόμενα τόξα (ακολουθώντας την φορά τους) είναι ίσος προς τον αριθμό: aa aa aa i j i j i6 6j (δηλαδή μέσω του κόμβου ή μέσω του κόμβου ή ή μέσω του κόμβου 6) Από τον ορισμό του γινομένου πινάκων διαπιστώνουμε ότι ο αριθμός αυτός είναι το στοιχείο (i,j) του πίνακα A Παρόμοια, ο αριθμός των διαφορετικών τρόπων μετάβασης από τον κόμβο i στον κόμβο j διατρέχοντας ακριβώς κατευθυνόμενα 9

10 Κεφάλαιο τόξα (ακολουθώντας την φορά τους) είναι ίσος προς το στοιχείο (i,j) του πίνακα κοκ Αν ο πίνακας Α έχει την εξής μορφή 0 A 0 0 και αντιστοιχεί στο διάγραμμα A Τότε ο A Διαπιστώνουμε για παράδειγμα ότι ο κόμβος μπορεί να επικοινωνήσει με τον κόμβο με τη χρήση δύο τόξων με ένα τρόπο ( ), ενώ ο κόμβος μπορεί να επικοινωνήσει με τον κόμβο με τη χρήση δύο τόξων κατά δύο τρόπους (, ) ενώ ο κόμβος μπορεί να επικοινωνήσει με εαυτό του κόμβο με τη χρήση δύο τόξων κατά δύο τρόπους (, ) Για σύνδεση με τη χρήση τριών τόξων υπολογίζουμε: Ο αντίστροφος πίνακας A Ένας τετραγωνικός πίνακας A λέμε ότι είναι μη ιδιάζων (o sigular) ή - αντιστρέψιμος εάν υπάρχει πίνακας A για τον οποίο ισχύει - - AA A A I - Ο πίνακας A ονομάζεται ο αντίστροφος (iverse) του A Ένας πίνακας για τον οποίο δεν υπάρχει αντίστροφος λέγεται ιδιάζων (sigular) Παραδείγματα: Ας εξετάσουμε αν ο A είναι αντιστρέψιμος, δηλαδή αν υπάρχει x B z w τέτοιος ώστε AB BA I Παρατηρούμε ότι 0

11 Πίνακες x 0 AB I z w 0 x z x z w 0 w 0 x z w 0 x z 0 w Λύνοντας το σύστημα βρίσκουμε x,, z, w Μέχρι στιγμής δεν έχουμε δείξει ότι ο Α είναι αντιστρέψιμος, αλλά έχουμε εντοπίσει έναν υποψήφιο πίνακα για το Β Θέτοντας B εύκολα επαληθεύεται ότι AB BA I Άρα ο Α είναι αντιστρέψιμος Τώρα, ας εξετάσουμε αν ο A x είναι αντιστρέψιμος Έστω B z w Παρατηρούμε ότι x z w 0 AB I x z w 0 x z w 0 x z 0 w Το σύστημα αυτό δεν έχει λύση, γιατί από την πρώτη και τρίτη εξίσωση παίρνουμε 0 Άρα δεν υπάρχει πίνακας B με AB I Συνεπώς ο Α δεν είναι αντιστρέψιμος Όταν μας δίνεται ή υπολογίζουμε κάποιον αντίστροφο καλό είναι να επαληθεύουμε - - ότι πράγματι ισχύει η σχέση AA A AI Δεν χρειάζεται ωστόσο να - - υπολογίσουμε και τα δύο γινόμενα, παράδειγμα εάν έχουμε υπολογίσει ότι για AA A A, αρκεί το ένα από αυτά Για A ισχύει A θα πρέπει AA Για έναν διαγώνιο πίνακα η αντίστροφος του είναι ένας διαγώνιος πίνακας με διαγώνια στοιχεία τους αντίστροφους των διαγώνιων στοιχείων του αρχικού

12 Κεφάλαιο επίσης υπάρχουν πίνακες που εάν υψωθούν σε μία δύναμη μας δίνουν τον μοναδιαίο πχ ( για αυτόν A Ισχύουν (εφόσον υπάρχουν οι αντίστροφοι): ( AB) B A ( Α ) Α T ( Α ) ( Α ) k ( Α ) ( Α ) T k I οπότε - A Α ) Αλγόριθμος υπολογισμός του αντιστρόφου με τη μέθοδο του επαυξημένου πίνακα Θεωρούμε τον επαυξημένο πίνακα [ A I ] και εφαρμόζουμε σε αυτόν στοιχειώδεις γραμμοπράξεις που μετατρέπουν τον Α σε ανηγμένο κλιμακωτό πίνακα Κ Τότε ο K B [ A I ] έχει μετατραπεί σε έναν πίνακα της μορφής [ ] Αν K I, τότε ο Α είναι αντιστρέψιμος και A B Αν K I, τότε ο Α δεν είναι αντιστρέψιμος Παραδείγματα Ας εφαρμόσουμε τα παραπάνω στον Έχουμε διαδοχικά 0 A 8

13 Πίνακες [ A I] Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ ΓΓ Επειδή στο αριστερό μισό του τελευταίου πίνακα εμφανίστηκε ο μοναδιαίος, συμπεραίνουμε ότι ο Α είναι αντιστρέψιμος και A Τώρα, εξετάζουμε αν ο A 0 είναι αντιστρέψιμος 0 0 Έχουμε [ A I] Γ Γ Γ Γ Γ Στο αριστερό μισό του τελευταίου πίνακα υπάρχει ο ανηγμένος κλιμακωτός 0 πίνακας 0 0 που δεν είναι ίσος με τον μοναδιαίο Άρα ο Α δεν είναι αντιστρέψιμος 5 Επίλυση συστημάτων με τη χρήση του αντιστρόφου Ένα γραμμικό σύστημα μπορεί να γραφεί στη μορφή Ax b Εφόσον υπάρχει ο αντίστροφος του πίνακα A, η λύση του συστήματος δίνεται από τον τύπο x A b Οι ακόλουθες προτάσεις είναι ισοδύναμες για κάθε τετραγωνικό πίνακα Το σύστημα Ax 0 έχει μοναδική λύση το x 0 Το σύστημα Ax b έχει μοναδική λύση για κάθε διάνυσμα b

14 Κεφάλαιο Ο πίνακας είναι μη ιδιάζων (δηλαδή αντιστρέφεται) Παράδειγμα: Ας δούμε το γνωστό μας σύστημα: u v w 5 u 5 u 5 u 6v 6 0 v v 6 0 u 7v w 9 7 w 9 w 7 9 θεωρούμε τον επαυξημένο πίνακα Γ Γ Γ Γ ΓΓ [ A I] Γ Γ Γ Γ Γ Γ Γ ΓΓ Γ Γ / /8 / / 5/8 / 0 0 / 5/6 /8 Γ ΓΓ Γ Γ 0 0 / /8 / 0 0 / /8 / Οπότε u 5 / 5/6 /8 5 v 6 0 / /8 / w Μεταθετικοί Πίνακες Οι παρακάτω πίνακες εφαρμόζουν γραμμοπράξεις όταν πολλαπλασιάσουν από αριστερά έναν πίνακα Α Ο πίνακας που εφαρμόζει τη γραμμοπράξη Γi κ Γ i(δηλαδή πολλαπλασιάζει την i γραμμή επί k ) είναι ο όπου το k βρίσκεται στην ii -θέση P i ( κ) k

15 Για παράδειγμα ο πίνακας πίνακα επί Πίνακες πολλαπλασιάζει την η γραμμή ενός x Ο πίνακας που εφαρμόζει τη γραμμοπράξη Γi Γ i κ πολλαπλασιάζει την j γραμμή επί k και την προσθέτει στην i ) είναι ο όπου το k βρίσκεται στην ij -θέση Γ ij ( κ ) κ Γ (δηλαδή 0 0 Για παράδειγμα ο πίνακας 0, όπου το (,) στοιχείο του είναι -, 0 0 πολλαπλασιάζει την η γραμμή ενός x πίνακα επί - και την προσθέτει στη η Ενώ ο πίνακας 0 0, όπου το (,) στοιχείο του είναι, πολλαπλασιάζει την 0 0 η γραμμή ενός x πίνακα επί και την προσθέτει στην η 0 ( 6) Τέλος, ο πίνακας που εφαρμόζει τη γραμμοπράξη i γραμμή με την j γραμμή) Γ Γ (δηλαδή εναλλάσσει την i j j 5

16 Κεφάλαιο E ij 0 0 όπου οι μονάδες βρίσκονται στην ij -θέση και στην Για παράδειγμα ο πίνακας με την η γραμμή ji -θέση εναλλάσσει πολλαπλασιάζει την η γραμμή Ας δούμε τώρα το γνωστό μας σύστημα και να εκτελέσουμε όλες τις γραμμοπράξεις με τη χρήση μεταθετικών πινάκων: u v w 5 u 5 u 6v 6 0 v u 7v w 9 7 w u v w u u v v 7 w w από όπου με προς τα πίσω αντικατάσταση παίρνω τη λύση Κάνοντας το ίδιο για το παράδειγμα εύρεσης του αντιστρόφου του ίδιου πίνακα, το γινόμενο των μεταθετικών πινάκων είναι: 6

17 / / / 5/6 / / /8 / Πίνακες μετασχηματισμών Πίνακες Τέλος, ας δούμε μία εφαρμογή των πινάκων που σχετίζεται με τα γραφικά υπολογιστών Εάν πολλαπλασιάσουμε τον πίνακα Q ϑ cosϑ siϑ c siϑ cosϑ s s c όταν c cosϑ s siϑ x με το διάνυσμα των συντεταγμένων ενός σημείου του καρτεσιανού επιπέδου τότε παίρνουμε τις συντεταγμένες του σημείου που προκύπτει από την αριστερόστροφη στροφή γύρω από την αρχή των αξόνων (0,0) κατά γωνία ϑ x ' x c s x cxs Qϑ ' s c sx c θ x Παραδείγματα: Εάν στρέψουμε ένα σημείο κατά π ο πίνακας στροφής είναι ο π π cos si 0 Q π π π 0 si cos οπότε το σημείο στρέφεται και πάει στο 0 x x ' πετά την περιστροφή είναι ' x Εάν στρέψουμε ένα σημείο κατά π ο πίνακας στροφής είναι ο 0 και οι συντεταγμένες του σημείου 7

18 Κεφάλαιο π π cos si Q π π π si cos x οι συντεταγμένες του σημείου πετά την περιστροφή είναι Εκ νέου περιστροφή κατά QQ π π x x ' ' x π τότε ο τελικός πίνακας περιστροφής θα είναι 0 0 Γενικά με τη χρήση απλών τριγωνομετρικών τύπων μπορούμε να βρούμε ότι cosϑ siϑ cosϑ siϑ Q ϑ siϑ cosϑ siϑ cosϑ cos ϑ si ϑ cosϑ siϑ cos ϑ si ϑ cosϑ siϑ cos ϑ si ϑ si ϑ cos ϑ και γενικότερα ότι Qϑ ϑ Qϑ Qϑ cosϑ siϑ cosϑ siϑ Qϑ Q ϑ siϑ cosϑ siϑ cosϑ cosϑ cosϑ siϑ siϑ cosϑ siϑ siϑ cosϑ siϑcosϑ cosϑsi ϑ siϑsiϑ cosϑcosϑ ( ϑ ϑ) si ( ϑ ϑ) ( ϑ ϑ ) cos( ϑ ϑ ) cos Q si Σας υπενθυμίζεται ότι ϑ ϑ si( ω ± φ) si( ω)cos( φ) ± cos( ω)si( φ) και cos( ω ± φ) cos( ω) cos( φ) si( ω)si( φ) Εάν πολλαπλασιάσουμε τον πίνακα c cs Pϑ cs s x με το διάνυσμα των συντεταγμένων ενός σημείου του καρτεσιανού επιπέδου τότε παίρνουμε τις συντεταγμένες του σημείου που προκύπτει από την προβολή πάνω σε μία ευθεία η οποία έχει κλίση γωνία ϑ και περνά από τον άξονα (0,0) 8

19 Πίνακες x x ' x Pϑ θ ' Παραδείγματα: c Εάν προβάλουμε το σημείο τότε οι συντεταγμένες της προβολής θα είναι 0 cs 0 ενώ εάν προβάλουμε το σημείο και οι συντεταγμένες της προβολής του cs σημείου θα είναι s Στην περίπτωση που η γωνία κλίσης της ευθείας είναι π π τότε c cos, π s si οπότε P π και η προβολή του σημείου στη συγκεκριμένη ευθεία έχει συντεταγμένες P π 6 Εάν πολλαπλασιάσουμε τον πίνακα H ϑ c cs cs s x με το διάνυσμα των συντεταγμένων ενός σημείου του καρτεσιανού επιπέδου τότε παίρνουμε τις συντεταγμένες του σημείου που προκύπτει από την ανάκλαση ως προς την ευθεία η οποία έχει κλίση γωνία ϑ 9

20 Κεφάλαιο x θ x ' x Hϑ ' Παραδείγματα: Εάν το συμμετρικό του σημείου ως προς την ευθεία θα έχει συντεταγμένες 0 c ενώ το συμμετρικό του σημείου cs 0 θα είναι το σημείο cs s Στην περίπτωση που η γωνία κλίσης της ευθείας είναι π π τότε c cos, 6 6 π s si οπότε H π 6 και το συμμετρικό 6 του σημείου ως προς τη συγκεκριμένη ευθεία έχει συντεταγμένες H π 6 Η εφαρμογή δύο συνεχόμενες φορές της ανάκλασης ως προς την ίδια ευθεία έχει πίνακα μετασχηματισμού (c ) ( cs) ( c ) cs cs( s ) ( ) ( ) ( ) c cs c cs Hθ cs s cs s c cs cs s (s ) cs 0 0 Αφού c s, s c οπότε ( ) ( ) (c ) cs (c c ) cs c c ( s ) c c επίσης ( ) ( ) (s ) cs (s s ) cs s s ( c ) s s και ( c ) cs cs( s ) cs( c s ) 0 0

21 Δηλαδή μας γυρνά στο αρχικό σημείο Πίνακες Όπως είδαμε διαδοχικά γινόμενα εφαρμόζουν διαδοχικούς μετασχηματισμούς Δηλαδή μία περιστροφή κατά γωνία ϑ, προβολή σε ευθεία με γωνία ϑ και ανάκλαση ως προς ευθεία με γωνία ϑ θα έχει πίνακα μετασχηματισμού Hϑ Pϑ Q ϑ Παράδειγμα: Ο τελικός πίνακας μετασχηματισμού περιστροφής ενός σημείου κατά προβολής σε ευθεία με γωνία κλίσης π και τελικά συμμετρίας του ως προς ευθεία με γωνία κλίσης 6 π είναι π, H P Q π π π Λυμένες ασκήσεις πάνω στους πίνακες Έστω x A 0, 0 B 0, C, όπου x R Από τις παρακάτω παραστάσεις να υπολογισθούν όσες έχουν νόημα ΑΒ, ΒΑ, (ΑΒ)C, BC, B, 5B Λύση Ο πίνακας Α είναι x και ο Β είναι x επομένως ο ΑΒ ορίζεται και είναι ο επόμενος x πίνακας x 0 0 x ( ) x x x AB ( ) 0 Ο πίνακας ΒΑ δεν ορίζεται, αφού το πλήθος των στηλών του Β είναι άλλο από το πλήθος των γραμμών του Α Ο πίνακας ΑΒ επίσης δεν ορίζεται, αφού οι πίνακες δεν είναι του ίδιου τύπου, συνεπώς δεν ορίζεται και (ΑΒ)C Ο πίνακας ΒC είναι πίνακας x, και βρίσκουμε BC Ο πίνακας Β επίσης δεν ορίζεται, αφού ο πίνακας Β δεν είναι τετραγωνικός

22 Κεφάλαιο Τέλος ο x πίνακας ( ) B Δίνονται οι πίνακες: A, B C και D, [ ] Να εξεταστεί αν ορίζονται και να υπολογιστούν (στην περίπτωση που ορίζονται) οι πίνακες: (i) AB (ii) B A (iii) CD και (iv) DC Λύση: (i) Ο πίνακας B, όπως και ο Β, είναι Ο πίνακας Α είναι Άρα δεν ορίζεται το γινόμενο AB και επομένως και το άθροισμα AB B (ii) Ο πίνακας B είναι και ο πίνακας Α είναι Επομένως ο πίνακας είναι Έχουμε B και άρα BA B A (iii) Ο πίνακας C είναι και ο πίνακας D είναι Άρα ο πίνακας CD είναι, δηλ [] αδή αριθμός Έχουμε CD [ ] (iv) Ο πίνακας D είναι και ο πίνακας είναι C Άρα ο πίνακας DC είναι Έχουμε DC [ ] Δίνονται οι πίνακες A, B, C, D Σε ποια ειδική κατηγορία πινάκων ανήκει ο πίνακας C; Τι μπορείτε να πείτε για το C, C - ; Αποδείξτε ότι A BCD Αφού υπολογίσετε το DB και με τη χρήση του A BCD υπολογίστε το Α Λύση: 0 / 0 Ο πίνακας C είναι διαγώνιος Ισχύει C, C 0 0 / DB I ( ) 5 5 ( ) BCD A, A BCDBCDBCDBCD BCICICICD BC D

23 Πίνακες Σας δίνεται ο πίνακας A 0 Υπολογίστε τον πίνακα 0 Β ( 5 A A I ) και στη συνέχεια υπολογίστε τον πίνακα ( AB ) 5 Λύση: 0 A A ( A A I) / 5 / /5 / /5 /5 /5 /5 0 0 AB 0 0 /5 / /5 / Οπότε B A ( A AI ) και ( ) 5 AB ( AA ) 5 I x 5 Έστω A 0,χρησιμοποιώντας επαγωγή, αποδείξτε ότι ( ) x A, 0 για,,, Λύση: ( ) x Επαγωγικά προφανώς για έχουμε A A 0 Έστω ότι ισχύει k k k ( ) x για κάθε k, δηλ A Θα δείξουμε ότι ισχύει και για κάθε 0 k Πράγματι, k k k k k k k k k ( ) x x x ( ) x ( ) A A A οποίο δείχνει ότι ισχύει η έκφραση του A για κάθε,,, x το

24 Κεφάλαιο ΕΠΑΓΩΓΗ Πολλές μαθηματικές προτάσεις είναι μερικές φορές δύσκολο να τις αποδείξουμε απ ευθείας Για να αποδείξουμε τέτοιες προτάσεις που αναφέρονται σε ακεραίους ν χρησιμοποιούμε μια μέθοδο που είναι γνωστή ως τέλεια ή μαθηματική επαγωγή Τί κάνουμε: Αντί να αποδείξουμε απ ευθείας την πρόταση αποδεικνύουμε το εξής: Βήμα : Αποδεικνύουμε ότι η πρόταση ισχύει για ν Βήμα ::Δεχόμαστε ότι η συγκεκριμένη πρόταση ισχύει για κάποιον κ Βήμα : Και με βάση το Βήμα αποδεικνύουμε ότι ισχύει και για τον επόμενό του κ Παράδειγμα: Για να αποδείξουμε τον τύπο Τότε ο τύπος γίνεται ν ( ν ) ν κοιτάμε τι γίνεται για ν που ισχύει Αν τώρα ν ( ν ) ν, τότε ν ( ν ) ( ν )( ν ) ν ( ν ) ( ν ) και η πρόταση ισχύει και για ν ν ( ν )(ν ) Ο τύπος ν αποδεικνύεται παρόμοια (i) Δίνεται ο πίνακας: A 0 0 Δείξτε ότι A A A I, για κάθε 0,,, χρησιμοποιώντας την μέθοδο της Επαγωγής: Δείξτε πρώτα ότι ο τύπος ισχύει για 0, Κατόπιν δεχθείτε ότι ισχύει για k και δείξτε ότι ισχύει για k (ii) Υπολογίστε τον πίνακα (Υπόδειξη: 00 A ( ) ( ) ( ) I) A A A A A A I Λύση: (i) A

25 0 0 0 Επομένως, A I Ακόμη, A A A( A I) A I Υποθέτουμε ότι A A A I Τότε A A A( A A ) A( A I) A I Επομένως, κάθε,, A A A I Πίνακες, για (ii) 00 προσθεταίοι A ( A A ) ( A A ) ( A I) I 00 ( A I) I A I A I Εφαρμόζοντας τον Αλγόριθμο Υπολογισμού Αντίστροφου Πίνακα (δηλαδή με τη χρήση επαυξημένου πίνακα) βρείτε τον αντίστροφο του πίνακα: A 0 0 Με τη χρήση της μεθόδου του αντίστροφου πίνακα λύστε το σύστημα: x z z z Λύση [ A I] / Γ Γ Γ Γ Γ /( 5/ ) / 0 / /5 9/ Γ Γ Γ /5 /5 / Γ Γ Γ Γ Γ /5 / /5 /5 0 6/5 9/5 0 0 /5 / /5 /5 Γ ΓΓ /5 / /5 / /5 /5 Άρα /5 /5 A 0 /5 /5 0 /5 /5 5

26 Κεφάλαιο Ένα γραμμικό σύστημα μπορεί να γραφεί στη μορφή Ax b Εφόσον υπάρχει ο αντίστροφος του πίνακα A, η λύση του συστήματος δίνεται από τον τύπο x A b /5 /5 A 0 b, οπότε x A b 0 /5 /5 0 0 /5 /5 0 8 Έστω A 7, όπου a R Εφαρμόζοντας τον Αλγόριθμο Υπολογισμού a Αντίστροφου Πίνακα να βρεθούν οι τιμές του a R για τις οποίες ο Α είναι αντιστρέψιμος και για τις τιμές αυτές να υπολογιστεί ο A Λύση Σχηματίζουμε τον 6 πίνακα γραμμοπράξεις έχουμε: Με στοιχειώδεις a Γ Γ Γ 0 0 Γ ΓΓ a a Γ ΓΓ Γ Γ a 0 0 a Για να μπορέσουμε να συνεχίσουμε διακρίνουμε τις ακόλουθες περιπτώσεις: Περίπτωση Έστω a Τότε το αριστερό μισό του πίνακα αυτού είναι ο 0 K 0 που είναι σε ανηγμένη κλιμακωτή μορφή Επειδή ο Κ είναι διάφορος του μοναδιαίου συμπεραίνουμε από τον αλγόριθμο υπολογισμού αντίστροφου πίνακα ότι ο Α δεν είναι αντιστρέψιμος Περίπτωση Έστω a Τότε συνεχίζουμε με στοιχειώδεις μετασχηματισμούς γραμμών για να φέρουμε το αριστερό μισό του B σε ανηγμένη κλιμακωτή μορφή Γ Γ 0 0 a Γ Γ Γ 0 0 Γ Γ Γ 0 0 a 0 0 a a a 6

27 6 a a a a a a a 0 0 a a 0 0 a a a a a a a a a a a a Πίνακες Επειδή το αριστερό μισό του πίνακα αυτού είναι ο μοναδιαίος, συμπεραίνουμε ότι το δεξιό μισό είναι ο αντίστροφος του Α, δηλαδή A a 7 a a a a a a a a a a a 9 Έστω Α ένας πραγματικός πίνακας τέτοιος ώστε A A I 0 ( ) Αποδείξτε ότι οι A και A I είναι αντιστρέψιμοι και ότι Λύση Aπό τη σχέση A A I A A I A 0 έπονται οι σχέσεις ( A )( A I) I,( A I) ( A ) I A I A I A Όμοια και κατά συνέπεια ο είναι αντιστρέψιμος με ( ) αποδεικνύεται ότι ο Α είναι αντιστρέψιμος Αντικαθιστώντας έχουμε ( ) ( ) A A I A A A A A A A Επειδή ο Α είναι αντιστρέψιμος έχουμε ( A A A A A A ) A ( A ) I A A A A I Δίνεται ο πίνακας A 5 Υπολογίστε τον A k για κ,,, Τι παρατηρείτε; Μπορείτε να δώσετε έναν τύπο που να ισχύει για κάθε κ; Αποδείξτε στη συνέχεια την ισχύ του τύπου αυτού με τη μέθοδο της επαγωγής Λύση: Παρατηρώ ότι A A οπότε και A k A AA AA Aκαι γενικά A A Επαγωγική απόδειξη: Ισχύει φανερά για ν Δέχομαι για vκ και θα δείξω ότι ισχύει για νκ k k A AA AAA A Ισχύει, οπότε η απόδειξη ολοκληρώθηκε 7

28 Κεφάλαιο 0 Δίνονται οι πίνακες M, A k Υπολογίστε τους πίνακες 0 M A για κ,, και εκφράστε τους σε συνάρτηση με τον πίνακα A Μπορείτε να δώσετε έναν τύπο που να εκφράζει το γινόμενο M A σε συνάρτηση με τον πίνακα A και να ισχύει για κάθε κ; Αποδείξτε στη συνέχεια την ισχύ του τύπου αυτού με τη μέθοδο της επαγωγής Λύση: MA 5 5A ( ) ( ) 5 5 5, M A MMA M A MA A M A MM A M A MA A Οπότε συνάγουμε ότι M A 5 A Επαγωγική απόδειξη: Ισχύει φανερά για ν Δέχομαι για vκ και θα δείξω ότι ισχύει για νκ k k k k k k M A MM A M 5 A 5 MA 5 5A 5 A ( ) Ισχύει, οπότε η απόδειξη ολοκληρώθηκε Δίνονται οι πίνακες A, B , C Αφού υπολογίσετε τον D ABC υπολογίστε τον D Λύση: D ABC Οπότε D Έστω όπου (,,, ), βρείτε την ορίζουσα του πίνακα και τον αντίστροφό του, εάν αυτός υπάρχει Στη συνέχεια δείξτε ότι και μετά με τη βοήθεια της επαγωγής αποδείξτε ότι ισχύει, Με τη χρήση της προηγούμενης σχέσης και της ταυτότητας η οποία ισχύει για γενικούς πίνακες,, αποδείξτε ότι για τον πίνακα (όπου ο μοναδιαίο ς) ισχύει εφόσον 0 Λύση 8

29 Πίνακες Εάν τότε det 0 (εφόσον ) οπότε συμπεραίνουμε ότι ο πίνακας δεν αντιστρέφεται Επαγωγικά ει για ισχύ μαι ι για v δηλαδή ότι ισχύει Δέχο ότι ισχύε Αποδεικνύω ότι ισχύει για ν, δηλαδή Πράγματι Εφαρμόζοντας την ταυτότητα και χρησιμοποιώντας τη σχέση που αποδείξαμε επαγωγικά και ότι 0 έχουμε 0 0 Έστω τετραγωνικοί πίνακες και όπου ο αντιστρέψιμος Αποδείξτε με χρήση της επαγωγής ότι για κάθε υσικό αριθμό ισχύει φ Αν και δείξτε ότι ο είναι διαγώνιος πίνακας Στη συνέχεια με τη χρήση της σχέσης δείξτε ότι: Λύση Επαγωγική απόδειξη: Iσχύει φανερά, για Δέχομαι ότι ισχύει για v δηλαδή ότι ισχύει Αποδεικνύω ότι ισχύει για ν, δηλαδή Πράγματι Για να βρω τον αντίστροφο του υπολογίζω αρχικά την ορίζουσά του det Και από τον τύπο υπολογισμού του αντιστρόφου πίνακα x έχω Από τη σχέση που έχουμε αποδείξει συμπεραίνουμε ότι

30 Κεφάλαιο 5 Δίνονται οι πίνακες A, B,, C D 9 0 Να υπολογισθούν, εφ όσον έχουν νόημα, οι παρακάτω πίνακες T T A BA, DC, AD, C, A C D Λύση A B δεν έχει νόημα A D C A T T D C A C D δεν έχει νόημα επειδή αν και ο C είναι αντιστρέψιμος o A είναι ενώ ο C - 6 Σας δίνεται ο πίνακας A Υπολογίστε τον πίνακα Β A 6A 5I Στη συνέχεια υπολογίστε τον πίνακα ( AB ) Λύση: 7 8 A B A 6A 5I Οπότε ( AB) ΠΑΡΑΤΗΡΗΣΗ: Το παρόν υλικό δεν αποτελεί αυτόνομο διδακτικό υλικό, βασίζεται στο σύγγραμμα που διανέμεται και στην προτεινόμενη βιβλιογραφία του μαθήματος Το περιεχόμενο του αρχείου απλά αποτελεί περίγραμμα των παραδόσεων του μαθήματος Αποτελεί υλικό της διδασκαλίας του μαθήματος από το διδάσκοντα για δική του χρήση και παρακαλώ να μη χρησιμοποιηθεί και να μην αναπαραχθεί και διανεμηθεί για άλλο σκοπό 0

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με Κεφάλαιο Ορίζουσες Βασικοί ορισμοί a b Εάν A τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό a b ad bc Συμβολίζουμε την ορίζουσα του πίνακα και ως A Εάν A τότε ( ) 8 Εάν a a a A a a a a a a τότε η

Διαβάστε περισσότερα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να

Διαβάστε περισσότερα

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Γραμμική Άλγεβρα Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010-2011 ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΙΝΑΚΑΣ Ένας πίνακας Α με στοιχεία από το σύνολο F (συνήθως θεωρούμε τα σύνολα

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πίνακες και Γραμμικά Συστήματα: Ο Αλγόριθμος Guss Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017 ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ι,

Γραμμική Άλγεβρα Ι, Γραμμική Άλγεβρα Ι, 207-8 Ασκήσεις2 και Ασκήσεις3: Γραμμοϊσοδύναμοι Πίνακες και Επίλυση Γραμμικών Συστημάτων Βασικά σημεία Γραμμοϊσοδυναμία πινάκων o Στοιχειώδεις πράξεις γραμμών o Ανηγμένη κλιμακωτή μορφή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Ορισμοί και πράξεις πινάκων

Ορισμοί και πράξεις πινάκων Ορισμοί και πράξεις πινάκων B.. Εισαγωγή Κατά την εύρεση των μαθηματικών μοντέλων των σύγχρονων δυναμικών συστημάτων, διαπιστώνεται ότι οι διαφορικές εξισώσεις που εμπλέκονται μπορούν να γίνουν πολύ περίπλοκες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

, ορίζουμε deta = ad bc. Πρόταση Ένας πίνακας Α είναι αντιστρέψιμος τότε και μόνο αν deta 0.

, ορίζουμε deta = ad bc. Πρόταση Ένας πίνακας Α είναι αντιστρέψιμος τότε και μόνο αν deta 0. Για κάθε πίνακα Α ορίζουμε μία τιμή που λέγεται ορίζουσα και συμβολίζεται deta ή Α Ο ορισμός γίνεται επαγωγικά για = 2, 3, 4, και ισχύουν τα εξής: a b Για 22 πίνακα Α = c d, ορίζουμε deta = ad bc a 1 b

Διαβάστε περισσότερα

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής.

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις4: Ορίζουσες Βασικά σημεία Ορισμός και ιδιότητες οριζουσών (ιδιότητες γραμμών και στηλών, αναπτύγματα οριζουσών, det( B) det( )det( B)) Ένας τετραγωνικός πίνακας είναι

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Πίνακες Γραμμικά Συστήματα

Πίνακες Γραμμικά Συστήματα Πίνακες Γραμμικά Συστήματα 1. Είδη Πινάκων Οι πίνακες είναι ένα χρήσιμο μαθηματικό εργαλείο, με εφαρμογές και διασυνδέσεις σε πολλές επιστήμες. Η σημαντικότερη εφαρμογή των πινάκων είναι στην επίλυση συστημάτων

Διαβάστε περισσότερα

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss .4 Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss Σχέση ισοδυναμίας. Έστω το σύνολο των ρητών αριθμών Q και η σχέση της ισότητας σε αυτό που ορίζεται ως εξής: Δύο στοιχεία α, γ Q είναι ίσα αν

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Συστήματα Γραμμικών Εξισώσεων Εισαγωγή Σύστημα γραμμικών εξισώσεων a x a x a x b 11

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου

Διαβάστε περισσότερα

(Καταληκτική ηµεροµηνία παραλαβής 16/11/2004) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις:

(Καταληκτική ηµεροµηνία παραλαβής 16/11/2004) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις: 1 η Εργασία 004-005 (Καταληκτική ηµεροµηνία παραλαβής 16/11/004) Άσκηση 1 (7 µονάδες) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις: (α) A+ B C µε A + B C (β) A+ B AB

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ]. 4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του

Διαβάστε περισσότερα

2x y = 1 x + y = 5. 2x y = 1. x + y = 5. 2x y = 1 4x + 2y = 0. 2x y = 1 4x + 2y = 2

2x y = 1 x + y = 5. 2x y = 1. x + y = 5. 2x y = 1 4x + 2y = 0. 2x y = 1 4x + 2y = 2 Σημειώσεις μαθήματος Μ22 Γραμμική Άλγεβρα Ι Βασισμένες στο βιβλίο του GStrang Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2 Εισαγωγή Αυτές οι σημειώσεις καλύπτουν την ύλη του μαθήματος

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Επιμέλεια: Ι. Λυχναρόπουλος. Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f b) f : R R f y, ( +, y

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ

ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ Η άλγεβρα πινάκων μας επιτρέπει: Να γράψουμε με περιεκτικό τρόπο ένα μεγάλο σύστημα γραμμικών εξισώσεων Να ελέγξουμε την ύπαρξη λύσης σε ένα σύστημα γραμμικών εξισώσεων με τη χρησιμοποίηση

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 7 Ορθογώνιοι Πίνακες Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Κεφάλαιο 4 ιανυσµατικοί Χώροι Κεφάλαιο 4 ιανυσµατικοί Χώροι 4 ιανυσµατικοί χώροι - Βασικοί ορισµοί και ιδιότητες ιανυσµατικοί Χώροι Ένας ιανυσµατικός Χώρος V (δχ) είναι ένα σύνολο από µαθηµατικά αντικείµενα (αριθµούς, διανύσµατα, πίνακες,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2009-2010 Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Ένα σύνολο m εξισώσεων n αγνώστων που έχει την ακόλουθη

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A =

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A = 1 Ορίζουσες Άσκηση 1.1 Θεωρούμε τον πίνακα 1 x x x x 1 x x x x 1 x x x x 1, όπου x είναι τυχόν στοιχείο του σώματος R. Να βρεθούν όλες οι τιμές του x για τις οποίες ο πίνακας A δεν είναι αντιστρέψιμος.

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι Ασκήσεις

Απειροστικός Λογισμός Ι Ασκήσεις Απειροστικός Λογισμός Ι Ασκήσεις Μ. Παπαδημητράκης . Για καθεμία από τις ανισότητες ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ + >, +, + > +3 3+, ( )( 3) ( ) 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων το σύνολο

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Μαθηματικά Κατεύθυνσης Β Λυκείου-Απ Παπανικολάου ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε με α β τον πραγματικό αριθμό αβ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006 η Εργασία Ηµεροµηνία αποστολής: 9 Νοεµβρίου 6. α. Να βρεθεί η γωνία µεταξύ των διανυσµάτων a = i + j k και b = 6 i j + k. β. Να δείξετε ότι τα διανύσµατα a, b, c είναι ορθογώνια και µοναδιαία. a = ( i

Διαβάστε περισσότερα