ΠΑΡΑΡΤΗΜΑ: ΠΑΡΑΔΕΙΓΜΑ ΛΕΙΤΟΥΡΓΙΑΣ ΜΕΤΑΒΙΒΑΣΙΜΩΝ ΑΔΕΙΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΡΤΗΜΑ: ΠΑΡΑΔΕΙΓΜΑ ΛΕΙΤΟΥΡΓΙΑΣ ΜΕΤΑΒΙΒΑΣΙΜΩΝ ΑΔΕΙΩΝ"

Transcript

1 ΠΑΡΑΡΤΗΜΑ: ΠΑΡΑΔΙΓΜΑ ΛΙΤΟΥΡΓΙΑΣ ΜΤΑΒΙΒΑΣΙΜΩΝ ΑΔΙΩΝ Στο Παράρτημα αυτό θα εξετάσουμε ένα αριθμητικό παράδειγμα λειτουργίας μιας αγοράς μεταβιβάσιμων αδειών και θα γίνει σύγκριση με την πολιτική εντολών και ελέγχου. Θα χρησιμοποιήσουμε επίσης το παράδειγμα αυτό για να συνδέσουμε τη χρήση των διαγραμμάτων οριακού κόστους μείωσης των ρύπων. Θυμηθείτε ότι έχουμε χρησιμοποιήσει διαγράμματα στων οποίων τον οριζόντιο άξονα μετρούμε μείωση των ρύπων (για παράδειγμα τα διαγράμματα 7. και 7.3) και διαγράμματα στων οποίων τον οριζόντιο άξονα μετρούμε ποσότητα ρύπων (για παράδειγμα τα διαγράμματα 7. και 8.). Ας υποθέσουμε ότι έχουμε ένα κλάδο με δύο επιχειρήσεις, κάθε μία από τις οποίες έχει μία τεχνολογία μείωσης των ρύπων που δίνεται από την συνάρτηση: TAC, i ( A) bai όπου με Α συμβολίζουμε την ποσότητα κατά την οποία μειώνει η επιχείρηση i τους ρύπους της. Το μέρος (α) του διαγράμματος 8.Α.. απεικονίζει γραφικά αυτή την συνάρτηση η οποία μας δίνει μια συνεχώς αύξουσα καμπύλη. Το οριακό κόστος μείωσης των ρύπων είναι πάντα θετικό, MAC i ( A) ba, όπως απεικονίζεται στο μέρος (β) του διαγράμματος 8.Α... ίναι δηλαδή της μορφής που χρησιμοποιήσαμε στα διαγράμματα 7. και 7.3. Ας υποθέσουμε ότι το οριακό κόστος μείωσης των ρύπων είναι διαφορετικό για τις δύο επιχειρήσεις. Η επιχείρηση έχει μεγαλύτερο οριακό κόστος μείωσης των ρύπων από την επιχείρηση, δηλαδή MAC >MAC. TAC i (A i ) MAC (A ) MAC (A ) Α Α (α) Συνολικό (β) Οριακό Διάγραμμα 8.Α... Συνολικό και οριακό κόστος μείωσης των ρύπων της επιχείρησης ι σαν συνάρτηση της μείωσης των ρύπων. Ας υποθέσουμε ότι οι δύο επιχειρήσεις έχουν τις παρακάτω συγκεκριμένες συναρτήσεις κόστους μείωσης των ρύπων τους: πιχείρηση : TAC = (,5/5) A MAC = (4,3/5)A πιχείρηση : TAC = (0,) A MAC = (0,)A

2 Ας υποθέσουμε ότι χωρίς την παρέμβαση της κυβέρνησης και οι δύο επιχειρήσεις εκπέμπουν το μέγιστο ποσό ρύπων E E 00. Ας υποθέσουμε ότι η κυβέρνηση αποφασίζει να μειώσει τους συνολικούς ρύπους στο μισό. Η ποσότητα των ρύπων που κάθε μία επιχείρηση θα έχει μετά την μείωση των ρύπων της κατά Α είναι: Ei E i Ai Λύνοντας την σχέση αυτή ως προς Α ι ( Ai E i Ei ) και αντικαθιστώντας στο συνολικό κόστος των επιχειρήσεων, μπορούμε να εκφράσουμε το κόστος μείωσης των ρύπων σαν συνάρτηση των συνολικών ρύπων μετά την μείωσή τους κατά Α ι. πιχείρηση : TAC = (,5/5)( E E ) =(,5/5) = E +(,5/5) E MAC = -7 + (4,3/5) E πιχείρηση : TAC = (0,) ( E E ) = (0,) E + (0,) E = MAC = 40 + (0,) E E - (4,3/5) E E - (0,) E E + (0,) E E +(,5/5) E Στο διάγραμμα 8.Α.. περιγράφεται το συνολικό κόστος μείωσης των ρύπων της επιχείρησης, σαν συνάρτηση των συνολικών της ρύπων. Το συνολικό κόστος μειώνεται συνεχώς μέχρι το επίπεδο E = 00, σημείο στο οποίο έχει την ελάχιστη τιμή του που είναι ίση με το μηδέν. Παρόμοιο είναι και το διάγραμμα για την επιχείρηση TAC (E ) Διάγραμμα 8.Α... Συνολικό κόστος μείωσης των ρύπων της επιχείρησης ι σαν συνάρτηση των ρύπων.

3 Το διάγραμμα 8.Α..3 δίνει τα οριακά κόστη μείωσης των ρύπων των δύο επιχειρήσεων σαν συνάρτηση των ρύπων τους. Στο επίπεδο E = 00 των ρύπων το οριακό κόστος μηδενίζεται, δηλαδή MAC ( E ) = -7 + (4,3/5) 00 = 0 και αντίστοιχα MAC ( E ) = 0. Στο διάγραμμα 8.Α..3 σχεδιάζουμε τις απόλυτες τιμές του οριακού κόστους. 7 MAC ΜΑC (00)=86 40 MAC ΜΑC (00)= Διάγραμμα 8.Α..3. Οριακό κόστος μείωσης των ρύπων της επιχείρησης ι σαν συνάρτηση των ρύπων. Πολιτική εντολών και ελέγχου Ας επιστρέψουμε τώρα στην κυβέρνηση που θέλει να περιορίσει τους ρύπους στο μισό. Για να επιβάλει την μείωση των ρύπων στο μισό, αρχικά η κυβέρνηση εφαρμόζει την πολιτική εντολών και ελέγχου. Στην περίπτωση αυτή η κάθε μία επιχείρηση πρέπει να μειώσει τους ρύπους της κατά 00 μονάδες, δηλαδή Α C C = Α =E C = E C = 00, όπου το C υποδεικνύει ότι εφαρμόζουμε πολιτική εντολών και ελέγχου. Το οριακό κόστος της τελευταίας μονάδας (00 ης μονάδας) για κάθε επιχείρηση είναι MAC (E C ) = -7 + (4,3/5) 00 = -86 MAC (E C ) = (0,) 00 = -0 Το συνολικό κόστος μείωσης των ρύπων για την επιχείρηση είναι: TCA = (00)+(,5/5)(00) = Καθώς δεν υπάρχουν σταθερά κόστη, το συνολικό κόστος μπορεί επίσης να υπολογιστεί ως το εμβαδό της επιφάνειας του σκιασμένου τριγώνου στο διάγραμμα

4 8.Α..3, (χρησιμοποιώντας την απόλυτη τιμή του οριακού κόστους) το οποίο είναι: (00)(86) Σημειώστε ότι το συνολικό κόστος μείωσης των ρύπων μπορούμε να το υπολογίσουμε και από την συνάρτηση TAC = (,5/5) A, αντικαθιστώντας όπου A E E Και με την μορφή αυτή πάλι το συνολικόκόστος μείωσης των ρύπων είναι Τέλος, το συνολικό κόστος μείωσης των ρύπων θα μπορούσε να υπολογιστεί και ως το εμβαδό της περιοχής κάτω από την καμπύλη του οριακού κόστους μείωσης των ρύπων από 0 έως 00 στο μέρος β του διαγράμματος 8.Α... Αντίστοιχα μπορούμε να βρούμε με έναν εκ των τεσσάρων τρόπων που αναφέραμε παραπάνω, το συνολικό κόστος της επιχείρησης, το οποίο είναι.000. πομένως το συνολικό κόστος μείωσης των ρύπων από 400 σε 00 μονάδες είναι ίσο με: TCA TCA TCA Πολιτική μεταβιβάσιμων αδειών εκπομπών Η κυβέρνηση θα μπορούσε να επιλέξει την πολιτική μεταβιβάσιμων αδειών εκπομπών. Στην περίπτωση αυτή η κυβέρνηση θα εξέδιδε 00 άδειες, κάθε μία από τις οποίες θα αντιστοιχούσε σε μία μονάδα ρύπων. Ας υποθέσουμε ότι η κυβέρνηση αρχικά μοιράζει τις άδεις ισόποσα στις δύο επιχειρήσεις, κάθε μία από τις οποίες λαμβάνει 00 άδειες. Μετά την αρχική κατανομή των αδειών οι επιχειρήσεις μπορούν να πωλούν η μία στην άλλη άδειες. Όπως φαίνεται στο διάγραμμα 8.Α..4 το οριακό κόστος μείωσης της 00 ης μονάδας ρύπων είναι 86 για την επιχείρηση και 0 για την επιχείρηση. πομένως η μείωση των ρύπων κοστίζει πολύ λιγότερο στην επιχείρηση από ότι στην επιχείρηση. Η επιχείρηση μπορεί να πληρώσει στην επιχείρηση ένα ποσό μεγαλύτερο του οριακού κόστους της (μεγαλύτερο από 0) έτσι ώστε η επιχείρηση να μειώσει κατά μία μονάδα παραπάνω τους ρύπους της (από 00 σε 0) και να πουλήσει στην επιχείρηση μία άδεια έτσι ώστε η επιχείρηση να χρειάζεται να μειώσει τους ρύπους της μόνο κατά 99 μονάδες. Με βάση τη λογική αυτή η επιχείρηση θα πουλά άδειες στην επιχείρηση μέχρις ότου τα οριακά κόστη των δύο επιχειρήσεων εξισωθούν. Τα επίπεδα των ρύπων της κάθε επιχείρησης υπολογίζονται από την λύση του παρακάτω συστήματος δύο εξισώσεων, όπου το υποδεικνύει ότι εφαρμόζουμε πολιτική μεταβιβάσιμων αδειών: MAC (E )= MAC (E ) (0,)E = (4,3/5)E E + E = 00 Η λύση του παραπάνω συστήματος δίνει E = 6,5 και E =37, 75. Αντικαθιστώντας παίρνουμε τα οριακά κόστη των επιχειρήσεων στην ισορροπία, τα οποία είναι ίσα μεταξύ τους και η απόλυτη τιμή τους ίση με την τιμή των αδειών P E : MAC (E ) = (4,3/5) 6,5 = - 3,45 MAC (E ) = (0,) 37,75 = - 3,45 πομένως, P E = MAC (E ) = MAC (E ) = 3,45.

5 MAC Δ ΜΑC =ΜΑC = P E = 3,45 MAC A Γ B 37, ,5 00 Διάγραμμα 8.Α..4. Κόστος μείωσης των ρύπων με πολιτική μεταβιβάσιμων αδειών. πομένως,στην ισορροπία η επιχείρηση, εκπέμπει ρύπους ίσους με E = 6,5 μονάδες, έχει μόνον 00 άδειες που της εκχώρησε η κυβέρνηση και επομένως αγοράζει 6,5 άδειες στην τιμή P E = 3,45. επομένως, η επιχείρηση δαπανά για άδειες ΔΑ =.03,5. πίσης καθώς η επιχείρηση μειώνει τους ρύπους της κατά A E E 00 6,5 37,75. Το συνολικό κόστος μείωσης των ρύπων μπορεί να υπολογιστεί με οποινδήποτε από τους τέσσερεις τρόπους που αναφέρθηκαν στην προηγούμενη ενότητα. Για παράδειγμα: TAC = (,5/5) A = (,5/5)(37,75) =6,78 Η επιχείρηση εκπέμπει ρύπους ίσους με E =37,75, ενώ έχει στην κατοχή της από την αρχική κατανομή της κυβέρνησης 00 άδειες, και επομένως πουλά το πλεόνασμα των 00 37,75 = 6,5 αδειών. Ως εκ τούτου, η επιχείρηση η οποία πουλά άδειες έχει έσοδα από την πώληση αδειών ίσα με Α =.03,5. πίσης η επιχείρηση μειώνει τους ρύπους της κατά A E E 00 37,75 6, 5 μονάδες. Ας υπολογίσουμε το συνολικό κόστος μείωσης των ρύπων της επιχείρησης ως το εμπαδό της γραμμοσκιασμένης περιοχής στο διάγραμμα 8.Α..4, το οποίο είναι: TAC (6,5)(3,45).63,5 Με τον ίδιο τρόπο μπορούμε να υπολογίσουμε το κόστος της επιχείρησης, το οποίο είναι TAC 6, 78. Η επιχείρηση έχει όμως έξοδα για την αγορά αδειών τα οποία είναι ίσα με τα έσοδα της επιχείρησης, δηλαδή είναι Α =.03,5. πομένως, σε επίπεδο επιχείρησης, το καθαρό συνολικό κόστος του προγράμματος μείωσης

6 εκπομπών για την επιχείρηση είναι NTAC =.63,5-.03, = 609,38. Το αντίστοιχο καθαρό συνολικό κόστος για την επιχείρηση είναι NTAC = 6, , =.635,9. Σε σχέση με την πολιτική εντολών και ελέγχου και οι δύο επιχειρήσεις μειώνουν το κόστος τους καθώς το κόστος της επιχείρησης ήταν και τώρα.635,9 και της επιχείρησης ήταν.000 και τώρα 609,38. Σε επίπεδο κοινωνικής ευημερίας η μεταβίβαση χρημάτων από την επιχείρηση στην επιχείρηση γα την αγορά των αδειών δεν έχει καμμία επίπτωση και επομένως το συνολικό κοινωνικό κόστος επίτευξης του περιβαλλοντικού στόχου, δηλαδή της μείωσης των ρύπων από 400 σε 00 μονάδες είναι: TCA TCA TCA.63,5 6, ,8. Το συνολικό κόστος επίτευξης του περιβαλλοντικού στόχου μειώνεται σε σχέση με την πολιτική εντολών και ελέγχου, καθώς 3.45,8 < C TCA TCA. Παρατηρείστε ότι στο συνολικό κόστος μείωσης των ρύπων στην περίπτωση των μεταβιβάσιμων αδειών δεν συνυπολογίζουμε τα έξοδα της επιχείρησης για άδειες καθώς το ποσό αυτό είναι μια απλή μεταβίβαση από την επιχείρηση στην επιχείρηση και δεν εμπλέκει χρήση πόρων. Ας δούμε τώρα από πού προέρχεται η διαφορά στα συνολικά κόστη. Από το διάγραμμα 8.Α..4 παρατηρούμε ότι σε σχέση με την πολιτική εντολών και ελέγχου, τα κόστη μείωσης των ρύπων της επιχείρησης αυξάνονται κατά το εμβαδόν του τραπεζίου με βάσεις MAC (E C ) = 0 και P E = 3,45 και ύψος τον αριθμό των αδειών που πωλούνται από την επιχείρηση στην (00-37,75 = 6,5). Δηλαδή η αύξηση του κόστους της επιχείρησης είναι ίσο με: C TCA TCA TCA (0 3,45)6,5.63,5 Καθώς η επιχείρηση πουλά τις 6,5 άδειες που απελευθερώνει αυξάνοντας τη μείωση των ρύπων της από 00 σε 6,5, έχει έσοδα Α =.03,5. πομένως τα καθαρά έσοδα της επιχείρησης από την συμμετοχή της στην αγορά των μεταβιβάσιμων αδειών είναι: NB = Α - TCA =.03,5.63,5 = 390,65 Το ποσό αυτό αντιστοιχεί στο εμβαδόν του τριγώνου ΑΓ στο διάγραμμα 8.Α..4. Παρομοίως, η επιχείρηση μειώνει τα κόστη της σε σχέση με την περίπτωση της πολιτικής εντολών και ελέγχου κατά το εμβαδόν του τραπεζίου με βάσεις MAC (E C ) = 86 και P E = 3,45 και ύψος τον αριθμό των αδειών που αγοράζει η επιχείρηση από την επιχείρηση (6,5-00 = 6,5). Δηλαδή η μείωση του κόστους της επιχείρησης είναι ίσο με: C TCA TCA TCA (86 3,45)6, ,76

7 Καθώς η επιχείρηση αγοράζει τις 6,5 άδειες χρειάζεται επιπλέον των 00 που ήδη έχει, καυώς μειώνει την προσπάθεια μείωσης των ρύπων της από 00 σε 37,75, έχει δαπάνες ΔΑ =.03,5. πομένως το καθαρό όφελος της επιχείρησης από την συμμετοχή της στην αγορά των μεταβιβάσιμων αδειών είναι: NB = TCA - ΔΑ = 3.686, ,5 =.663,635 Το ποσό αυτό αντιστοιχεί στο εμβαδόν του τριγώνου ΒΔ στο διάγραμμα 8.Α..4. Το άθροισμα των εμβαδών των τριγώνων ΑΓ και ΒΔ, δηλαδή των καθαρών οφελών των δύο επιχειρήσεων, είναι και το συνολικό καθαρό κοινωνικό όφελος από την χρήση της πολιτικής μεταβιβάσιμων αδειών σε σχέση με την πολιτική εντολών και ελέγχου. C NB +NB = TCA TCA.663, , ,8 Μέσω της χρήσης των μεταβιβάσιμων αδειών, η κυβέρνηση κατορθώνει να επιμερίσει το βάρος μείωσης των ρύπων με τρόπο ώστε η πλέον αποτελεσματική επιχείρηση (αυτή με το μικρότερο οριακό κόστος) να αυξήσει την προσπάθεια μείωσης των ρύπων και αντίστοιχα η επιχείρηση με το μεγαλύτερο οριακό κόστος να μειώσει την προσπάθεια μείωσης των ρύπων. Σχέση μεταβιβάσιμων αδειών και περιβαλλοντικού φόρου άν η κυβέρνηση επέλεγε να επιβάλει έναν περιβαλλοντικό φόρο ίσο με τ = 3,5, το απατέλεσμα στην ισορροπία θα ήταν ακριβώς το ίδιο με την περίπτωση των μεταβιβάσιμων αδειών. Στο μόνο που διαφέρει ο φόρος από τις άδειες, στην περίπτωση που οι άδειες δίνονται στις επιχειρήσεις χωρίς χρέωση, είναι ότι το μόνο κόστος των επιχειρήσεων είναι το κόστος μείωσης των ρύπων και το κόστος (ή κέρδος) από την αγορά (πώληση) των αδειών. πομένως στην περίπτωση του φόρου η κυβέρνηση θα έχει έσοδα ίσα με: Φ = τ 00 = (3,5) 00 = νώ στην περίπτωση των αδειών δεν θα έχει έσοδα.

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ

ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ Ας υποθέσουμε ότι έχουμε ένα αγαθό το οποίο δημιουργεί κατά την παραγωγή ή την κατανάλωσή του έναν ρύπο, και ας υποθέσουμε ότι για κάθε μία μονάδα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΤΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ. Ενότητα 4. Ευτύχιος Σαρτζετάκης Τμήμα Οικονομικών Επιστημών

ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΤΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ. Ενότητα 4. Ευτύχιος Σαρτζετάκης Τμήμα Οικονομικών Επιστημών ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΤΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ Ενότητα 4 Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

Ανακρίνοντας τρία διαγράμματα

Ανακρίνοντας τρία διαγράμματα Ανακρίνοντας τρία διαγράμματα 1) Ένα σώµα κινείται πάνω στον άξονα x και στο διάγραµµα φαίνεται η θέση του σε συνάρτηση µε το χρόνο. Με βάση πληροφορίες που µπορείτε να αντλήσετε µελετώντας το παραπάνω

Διαβάστε περισσότερα

Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ

Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ ΚΕΦΑΛΑΙΟ ΠΕΜ Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ 1. Έννοια και λειτουργία της αγοράς Σε μια πρωτόγονη οικονομία, όπως του Ροβινσώνα Κρούσου, όπου δεν υπάρχει καταμερισμός της εργασίας ο άνθρωπος παράγει μόνος του

Διαβάστε περισσότερα

Κεφάλαιο 3. x 300 = = = Άσκηση 3.1

Κεφάλαιο 3. x 300 = = = Άσκηση 3.1 Άσκηση. Κεφάλαιο Έστω χ η πόσοτητα ενός αγαθού που παράγει μια επιχείρηση. Η κάθε μονάδα αυτής της ποσότητας μπορεί να πουλήθει στην τιμή που δίνεται από τη συνάρτηση P = 00. Το συνολικό κόστος για την

Διαβάστε περισσότερα

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1 Philip McCann Αστική και περιφερειακή οικονομική 2 η έκδοση Chapter 1 Κεφάλαιο 1 Χωροθέτηση δραστηριοτήτων Περιεχόμενα διάλεξης Υπόδειγμα για τη χωροθέτηση της παραγωγής Weber και Moses Ανάλυση της περιοχής

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός. Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι.

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2013-2014 Τµήµα Οικονοµικών Επιστηµών Εξεταστική περίοδος Απριλίου Εξέταση στο µάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Ράπανος, Γεωργία Καπλάνογλου Η εξέταση αποτελείται

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ Άσκηση 3 Η ζήτηση τυριού τύπου δίνεται από τη συνάρτηση: Q 300 35P 14PB 24 20B όπου: Q η ζητούμενη ποσότητα τυριού τύπου P η τιμή τυριού τύπου P B η τιμή τυριού τύπου B η δαπάνη

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,

Διαβάστε περισσότερα

ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ. Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός

ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ. Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ Β.1. Το Πλεόνασµα του Καταναλωτή Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός ότι κάποιοι καταναλωτές πληρώνουν για ένα αγαθό λιγότερο από αυτό

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2.

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2. ΜΡΟΣ Β 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ 1 Ορισμοί μβαδόν τετραγώνου 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α. E α α α μβαδόν ορθογωνίου Το εμβαδόν ενός ορθογωνίου µε πλευρές

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Παρασκευή 17 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α.1 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 13/1/13 ΘΕΜ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιουνίου-Ιουλίου 011 1 Ιουλίου 011 Νίκος Θεοχαράκης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

Μεταβιβάσιµες Άδειες Ρύπανσης (Tradeable Emission Permits) Ας θεωρήσουµε και πάλι ότι υπάρχουν επιχειρήσεις n, ( i 1,2,..., n)

Μεταβιβάσιµες Άδειες Ρύπανσης (Tradeable Emission Permits) Ας θεωρήσουµε και πάλι ότι υπάρχουν επιχειρήσεις n, ( i 1,2,..., n) : Άδειες ή ικαιώµατα Ρύπανσης Μεταβιβάσιµες Άδειες Ρύπανσης (Tdeble Emsso Pemts) Ας θεωρήσουµε και πάλι ότι υπάρχουν επιχειρήσεις, (,,..., ) =, που ευθύνονται για την παραγωγή αποβλήτων (ρύπων) ποσότητας,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1.

Διαβάστε περισσότερα

Λύσεις 2. Ψ χ /Β χ = Ψ υ /Β υ 10 - ½ B X = 5 B X * = 10 Β Υ = 10

Λύσεις 2. Ψ χ /Β χ = Ψ υ /Β υ 10 - ½ B X = 5 B X * = 10 Β Υ = 10 Λύσεις 2 1. (α) Όταν η πρόσβαση στις λίµνες είναι ελεύθερη τότε ο κάθε ψαράς κοιτάζει την δικιά του σοδειά που είναι το µέσο προϊόν: Ψ χ /Β χ = 10 - ½ B X για την λίµνη Χ, και Ψ υ /Β υ = 5 για την λίµνη

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ Κεφάλαιο 8 Ε. Σαρτζετάκης Διαφορισμός τιμών Τιμολόγησηότανηεπιχείρησηέχειισχυρήθέσηστηναγορά: διαφορισμός τιμών Οι επιχειρήσεις οι οποίες έχουν σε κάποιο βαθμό δύναμη σε κάποια αγορά

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης)

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) ΕΙΣΑΩΗ Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) Μικροοικονομία ή Θεωρία Τιμών Σημείο αναφοράς είναι ο προσδιορισμός της τιμής ενός αγαθού. Ν Ο

Διαβάστε περισσότερα

Εσωτερικός βαθμός απόδοσης

Εσωτερικός βαθμός απόδοσης Εσωτερικός βαθμός απόδοσης Διεθνώς ονομάζεται internal rate of return, και συμβολίζεται με IRR. Με τη μέθοδο αυτή δεν χρησιμοποιούμε επιτόκιο υπολογισμού της αξίας της επένδυσης, αλλά υπολογίζουμε το επιτόκιο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα.

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Η εξέταση αποτελείται από δύο

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών /3/7 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΤΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ. Ενότητα 7. Ευτύχιος Σαρτζετάκης Τμήμα Οικονομικών Επιστημών

ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΤΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ. Ενότητα 7. Ευτύχιος Σαρτζετάκης Τμήμα Οικονομικών Επιστημών ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΤΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ Ενότητα 7 Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2. Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:

Διαβάστε περισσότερα

Β ΚΥΚΛΟΣ ΣΥΓΧΡΟΝΩΝ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ Προτεινόμενα Θέματα Α ΓΕΛ ΝΟΕΜΒΡΙΟΣ Φυσική ΘΕΜΑ Α

Β ΚΥΚΛΟΣ ΣΥΓΧΡΟΝΩΝ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ Προτεινόμενα Θέματα Α ΓΕΛ ΝΟΕΜΒΡΙΟΣ Φυσική ΘΕΜΑ Α Φυσική ΘΕΜΑ Α γενικής παιδείας Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Το μέτρο της στιγμιαίας ταχύτητας είναι ίσο με τη

Διαβάστε περισσότερα

Τα μέσα της εμπορικής πολιτικής

Τα μέσα της εμπορικής πολιτικής Τα μέσα της εμπορικής πολιτικής Περίγραµµα Ανάλυση µερικής ισορροπίας των δασµών: προσφορά, ζήτηση και εµπόριο σ ένα µεµονωµένο κλάδο Κόστος και όφελος των δασµών Επιδοτήσεις εξαγωγών Ποσοστώσεις στις

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

Άριστο επίπεδο περιβαλλοντικής προστασίας

Άριστο επίπεδο περιβαλλοντικής προστασίας Άριστο επίπεδο περιβαλλοντικής προστασίας Για να απαντήσουμε το αν υπάρχει άριστο επίπεδο περιβαλλοντικής προστασίας θα κάνουμε χρήση ενός θεμελιώδους κανόνα της οριακής ανάλυσης. Σύμφωνα μ αυτόν τον κανόνα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό τη λέξη Σωστό, αν η πρόταση είναι σωστή, και

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Μαρτίου

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Ημερομηνία παράδοσης: Ερωτήσεις πολλαπλών

Διαβάστε περισσότερα

Διάλεξη 3. Εφαρμοσμένη Ανάλυση, VA 16, 23

Διάλεξη 3. Εφαρμοσμένη Ανάλυση, VA 16, 23 Διάλεξη 3 Εφαρμοσμένη Ανάλυση, VA 16, 23 Φόροι επί της ποσότητας Ένας φόρος επί της ποσότητας, που αντιστοιχεί σε t ανά μονάδα προϊόντος, είναι ένας φόρος t, ο οποίος πληρώνεται ανά μονάδα αγοραζόμενης

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η οποία

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την 1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

14 Το ολιγοπώλιο Ολιγοπώλιο και αλληλεξάρτηση Συνεργασία ή ανταγωνισμός; Σκοπός Εξηγούνται με λεπτομέρειες υποδείγματα ολιγοπωλίου.

14 Το ολιγοπώλιο Ολιγοπώλιο και αλληλεξάρτηση Συνεργασία ή ανταγωνισμός; Σκοπός Εξηγούνται με λεπτομέρειες υποδείγματα ολιγοπωλίου. 14 Το ολιγοπώλιο Σκοπός Εξηγούνται με λεπτομέρειες υποδείγματα ολιγοπωλίου. Προσδοκώμενα αποτελέσματα Όταν θα έχετε μελετήσει το κεφάλαιο αυτό, θα γνωρίζετε: Ποιες είναι οι διαφορές του ολιγοπωλίου από

Διαβάστε περισσότερα

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Κεφάλαιο 7 Οικονοµικά της ευηµερίας! Τα οικονοµικά της ευηµερίας εξετάζουν τους τρόπους µε τους οποίους η κατανοµή των πόρων επηρεάζει την ευηµερία

Διαβάστε περισσότερα

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά - Ορισμός: Η αγορά ενός αγαθού είναι η διαδικασία (θεσμικό πλαίσιο) μέσω της οποίας έρχονται σε επικοινωνία οι αγοραστές και οι πωλητές του συγκεκριμένου

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D ) 2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος 2016-17 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) 1 ιάλεξη2 Ανταγωνισμός, οικονομική

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ. 2 cm

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ. 2 cm ΠΑΡΑΡΑΦΟΣ Β.1.3 ΕΜΒΑΑ ΕΠΙΠΕΩΝ ΣΧΗΜΑΤΩΝ Τετράγωνο -Ορθογώνιο ΑΣΚΗΣΕΙΣ 1) Ένα τετράγωνο έχει εμβαδό 81 cm 2. Με πόσο ισούται η πλευρά του; (Απάντηση: 9 cm) 2) Ένα τετράγωνο έχει περίμετρο 32 m. Nα υπολογίσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

13 Το απλό κλασικό υπόδειγμα

13 Το απλό κλασικό υπόδειγμα 13 Το απλό κλασικό υπόδειγμα Σκοπός Σκοπός του κεφαλαίου αυτού είναι να συνδυάσει τα δύο προηγούμενα κεάλαια και να δώσει μια συνολική εικόνα του απλού μακροοικονομικού υποδείγματος. Θα εξετάσει, επίσης,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2011-2012 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Ράπανος Γεωργία Καπλάνογλου 2 ο Πακέτο Ασκήσεων Ημερομηνία παράδοσης:

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 8 Ιανουάριος 2014 Μορφές αγοράς 1. Τέλειος ανταγωνισμός [Perfect competition] 2. Μονοπωλιακός ανταγωνισμός

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα στις θέσεις x 1 = - 3 m και x 2 = + 6 m ενός άξονα x'x, όπως φαίνεται στο παρακάτω

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ Β Λ (ΠΡΟΕΤΟΙΜΑΣΙΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 04/01/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2.

Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2. ΜΕΡΟΣ Β 3.5 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ 345 3.5 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. ρ Χωρίζουμε τον κύκλο σε πιο μικρά μέρη και σχηματίζεται ένα ορθογώνιο με διαστάσεις

Διαβάστε περισσότερα

Εισαγωγή. Ανάλυση Νεκρού Σημείου Σημειώσεις. Σημασία Νεκρού Σημείου

Εισαγωγή. Ανάλυση Νεκρού Σημείου Σημειώσεις. Σημασία Νεκρού Σημείου Εισαγωγή Ανάλυση Νεκρού Σημείου Σημειώσεις ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ ΙΟΙΚΗΣΗΣ Αν. Καθ. ημήτρης Ασκούνης Η ανάλυση του Νεκρού Σημείου είναι ένα σπουδαίο χρηματοοικονομικό μέσο και αποτελεί βασικά μια αναλυτική

Διαβάστε περισσότερα

Εξετάσεις Η επιβολή από το κράτος κατώτατης τιμής στα αγροτικά προϊόντα έχει ως σκοπό την προστασία του εισοδήματος των αγροτών.

Εξετάσεις Η επιβολή από το κράτος κατώτατης τιμής στα αγροτικά προϊόντα έχει ως σκοπό την προστασία του εισοδήματος των αγροτών. ΚΕΦΑΛΑΙΟ 5: Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ Να σημειώσετε με Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Η επιβολή από το κράτος ανώτατης τιμής σε ένα προϊόν δημιουργεί συνήθως «μαύρη αγορά». Εξετάσεις

Διαβάστε περισσότερα

Ανάλυση CVP Υπολογισμός Νεκρού Σημείου

Ανάλυση CVP Υπολογισμός Νεκρού Σημείου Institut Universitaire Kurt Bosch, IUKB Bachelor Programs Ανάλυση CVP Υπολογισμός Νεκρού Σημείου Παρουσίαση Σαμαρίνας Π. Μιχάλης Εαρινό Εξάμηνο 2012-2013 Βασικές Έννοιες Ανάλυσης CVP Κόστος TC Συνολικό

Διαβάστε περισσότερα

Ανάλυση Νεκρού Σημείου Σημειώσεις

Ανάλυση Νεκρού Σημείου Σημειώσεις Ανάλυση Νεκρού Σημείου Σημειώσεις ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ Αν. Καθ. Δημήτρης Ασκούνης Εισαγωγή Η ανάλυση του Νεκρού Σημείου είναι ένα σπουδαίο χρηματοοικονομικό μέσο και αποτελεί βασικά μια αναλυτική

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π.

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012 Πρόοδοι 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. 2. Να σχηματίσετε την Α.Π. που έχει α 8 =30 και α 12 =46 3. Σε Α.Π.

Διαβάστε περισσότερα

Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις :

Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις : Κεφάλαιο 1. ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ Εισαγωγή Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις : α) Υπάρχουν πολλές εταιρίες οι

Διαβάστε περισσότερα

να μεταβάλει την ποσότητα ενός ή περισσότερων από τους συντελεστές που χρησιμοποιεί

να μεταβάλει την ποσότητα ενός ή περισσότερων από τους συντελεστές που χρησιμοποιεί ΕΠΑΝΑΛΗΠΤΙΚΟ test ΣΤΟ ΚΕΦΑΛΑΙΟ 3 Σημειώστε το Σ αν η φράση είναι σωστή και το Λ αν η φράση είναι λανθασμένη: 1. Βραχυχρόνια περίοδος είναι το χρονικό διάστημα μέσα στο οποίο η επιχείρηση δεν μπορεί να

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

Πόλωση των Τρανζίστορ

Πόλωση των Τρανζίστορ Πόλωση των Τρανζίστορ Πόλωση λέμε την κατάλληλη συνεχή τάση που πρέπει να εφαρμόσουμε στο κύκλωμα που περιλαμβάνει κάποιο ηλεκτρονικό στοιχείο (π.χ τρανζίστορ), έτσι ώστε να εξασφαλίσουμε την ομαλή λειτουργία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Βάλτε σε κύκλο το σωστό γράμμα: 1 ο ΔΙΑΓΩΝΙΣΜΑ Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Σ Λ Α. 2. Έστω δύο αγαθά

Διαβάστε περισσότερα