BILANTURI DE MATERIALE SI ENERGIE. Lucian Gavrila Bilanturi de materiale si de energie 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "BILANTURI DE MATERIALE SI ENERGIE. Lucian Gavrila Bilanturi de materiale si de energie 1"

Transcript

1 BILANTURI DE MATERIALE SI ENERGIE Luc Gvrl Bltur d trl s d rg 1

2 BILANŢUL DE MATERIALE o Ptru proctr ş xplotr stlţlor dustrlor d procs st csră cuoştr clttvă ş ctttvă trllor cr crculă pr fcr puct l stlţ, î fcr ot l fucţoăr cst. o Mtrll sut dft pr: spcl chc, copozţ ş coctrţl soluţlor ş stcurlor, str d grgr, cttăţl su dbtl î puctl, scţul su zol cr trsză. Luc Gvrl Bltur d trl s d rg 2

3 BILANŢUL DE MATERIALE Dtl csr lborăr ş rzolvăr blţurlor d trl sut: o dtl ţl (prr) rfrtor l: dbtul (cpctt) stlţ, proprtăţl tr pr, proprtăţl produsulu, crctrstcl thologc spcfc stlţ; o sch thologcă stlţ ş vrtl posbl l cst; o dt stochotrc ş ctc l rcţlor cr dcurg î stlţ; o dt supr chlbrlor d rcţ ş d fză î sstl xstt î stlţ. Luc Gvrl Bltur d trl s d rg 3

4 BILANŢUL DE MATERIALE oecuţ grlă d blţ d trl st xprs lg cosrvăr tr: trl trt trl xstt trl st trl rs o Tr cuţ rprztă cttăţ su dbt, xprt pr s (dbtul sc) Luc Gvrl Bltur d trl s d rg 4

5 odfrţ: A BILANŢUL DE MATERIALE trl trt trl st portă dur d cuulr. o Ptru procsl cotu, î rg stţor, cuulr st ulă: trl rs trl xstt trl trt trl st Luc Gvrl Bltur d trl s d rg 5

6 BILANŢUL DE MATERIALE `Îtocr blţulu d trl trbu îsoţtă îtotdu d prczr: ct su zo d stlţ l cr s rfră blţul (dfr coturulu d blţ); tpulu î rport cu îcputul prlucrăr u şrj (u î czul procslor dscotu); durt d tp ptru cr s îtocşt blţul: procs cotu - p utt d tp (scudă, oră, z, ); procs dscotu ct. d subst. s rportză l o şrjă ş s rclculz l UM (kg, t, kol tc.) d tr pră su produs ft; procs î rg trztoru -blţurl sut dfrţl. Luc Gvrl Bltur d trl s d rg 6

7 BILANŢUL DE MATERIALE S pot îtoc: o blţur grl (totl su globl), ptru îtrg stlţ ş tot trll przt, o blţur prţl: ptru îtrg stlţ, dr u ptru u sgur trl; ptru tot trll, dr u ptru o prt stlţ: u utlj, o ută zoă (b dftă) uu utlj, u lt dfrţl d volu dtr-u utlj; ptru u sgur trl ş o prt stlţ (utlj, lt d utlj, lt dfrţl d volu). Luc Gvrl Bltur d trl s d rg 7

8 Blt grl - xplu SULF AER Topr-fltrr sulf Fltrr r Ardr sulf Uscr r / Dlur H 2 SO 4 ACID SULFURIC Oxdr ctltc SO 2 l SO 3 Absorbt SO 3 H2 SO 4 H2 SO 4 Luc Gvrl Bltur d trl s d rg 8

9 Blt prtl - xplu SULF Bltul sulfulu trg stlt Topr-fltrr sulf Ardr sulf Uscr r / Dlur H 2 SO 4 Oxdr ctltc SO 2 l SO 3 Absorbt SO 3 H2 SO 4 H2 SO 4 ACID SULFURIC Luc Gvrl Bltur d trl s d rg 9

10 Blt prtl - xplu Bltul tuturor trllor rctorul d cotct Gz sulfuros: SO 2 ; O 2 ; N 2 Oxdr ctltc SO 2 l SO 3 Gz sulfuros oxdt: SO 3 ; SO 2 ; O 2 ; N 2 Luc Gvrl Bltur d trl s d rg 10

11 Blt prtl - xplu Bltul SO 2 tr-u strt d ctlztor d rctorul d cotct SO 2 l trr strt Strt d ctlztor SO 2 l sr d strt Luc Gvrl Bltur d trl s d rg 11

12 BILANŢUL DE MATERIALE Mtrll lut î cosdrr î blţur pot f: o spc chc b dft (spc olculr, o, rdcl, to); o trl d copozţ dftă (strl, rzduu, cuşă, tc.). Cu jutorul cuţlor d blţ d trl pot f obţut forţ prcs supr crculţ trllor ptru cr dtrărl drct (pr câtărr su ăsurr) lpssc su prztă covt. Luc Gvrl Bltur d trl s d rg 12

13 BILANŢUL DE MATERIALE Exprr copozţ s d rcţ o să d rcţ totltt copotlor rctţ, produş d rcţ, trl rt, ctlztor cr s găssc l u ot dt î: o stlţ, u utlj, o porţu d utlj, u lt dfrţl d volu. Luc Gvrl Bltur d trl s d rg 13

14 BILANŢUL DE MATERIALE o L odul cl grl, s d rcţ st lcătută d p rctţ A I, q produş d rcţ A I ş r rt A I, cuţ crctrstcă procsulu d trsforr r for: p r q p r A A " A ' A A " Luc Gvrl Bltur d trl s d rg 14

15 BILANŢUL DE MATERIALE Copozţ s d rcţ s pot xpr pr: o ăr xtsv (uăr d ol, s, volu) o ăr tsv (frcţ olr, sc, voluc, rport olr, sc, voluc, coctrţ olr, sc, voluc, tc.). Luc Gvrl Bltur d trl s d rg 15

16 Luc Gvrl Bltur d trl s d rg 16 BILANŢUL DE MATERIALE o Mărl xtsv: xprt î [kol] su [kol/s]; xprt î [kg] su [kg/s]; xprt î [ 3 ] su [ 3 /s]. T A A A L L L " ' T A A A L L L " ' T A A A V V V V L L L " '

17 Luc Gvrl Bltur d trl s d rg 17 BILANŢUL DE MATERIALE omărl xtsv sut dtv (clusv volul, î czul gzlor dl). o C urr: p q r A A A N T p q r A A A N T p q r A A A N T V V V V V " ' " ' " ' 1

18 BILANŢUL DE MATERIALE oîtr ărl xtsv s stblsc rlţl: rspctv M V V M î cr M I sl olr [kg/kol], V M volul olr [ 3 /kol] l copoţlor. Luc Gvrl Bltur d trl s d rg 18

19 BILANŢUL DE MATERIALE o Mărl tsv coctrţ o NU dpd d cttt d substţă d sst. o Ptru stcur oog (clusv solut) s folossc frct: olr sc voluc Luc Gvrl Bltur d trl s d rg 19

20 BILANŢUL DE MATERIALE o Frcţ olră uu copot orcr rportul dtr r. d ol cop. ( ) ş r. totl d ol d sst ( T ). o Ptru u sst fort d z copot, frcţ olră uu copot orcr v f: x 1 2 z T kol d kol copot stc Luc Gvrl Bltur d trl s d rg 20

21 BILANŢUL DE MATERIALE o Frcţ scă uu copot rportul dtr s d copot d stc ( ) ş s totlă stculu ( T ): x 1 2 z T kg d kg copot stc Luc Gvrl Bltur d trl s d rg 21

22 BILANŢUL DE MATERIALE o Frcţ volucă rportul dtr voluul uu copot orcr d stc (V ) ş voluul totl (V T ) l stculu: y V 1 V 2 V V z V V T 3 d 3 copot stc Luc Gvrl Bltur d trl s d rg 22

23 BILANŢUL DE MATERIALE o Pt. vpor ş gz, copozţ s pot xpr ş pr prsul prţl l copoţlor, clcult d lg Dlto: p y P T o Î czul gzlor ş vporlor, frcţl (proctl) olr sut urc gl cu frcţl (proctl) d volu. o Egltt u st vlblă îsă î czul lchdlor ş soldlor. Luc Gvrl Bltur d trl s d rg 23

24 Luc Gvrl Bltur d trl s d rg 24 BILANŢUL DE MATERIALE o S pot dostr uşor că su frcţlor tuturor copotlor d sst st glă cu utt: T T T z T z T T z T T T z T z T T z T T T z T z T T z V V V V V V V V V V V V y x x L L L L L L L L L L L L

25 BILANŢUL DE MATERIALE o Rportul olr rportul dtr r. d ol do copoţ dtr-u stc. o Pt. u stc cu z copoţ, coc. uu cop. orcr s pot xpr î rport cu orcr dtr cllţ (z 1) copoţ: X X M X,1,2, z 1 2 z kol d copot kol d copot kol d copot kol d copot kol d copot kol d copot 1 2 z Acst od d xprr coctrţ s utlzză frcvt î clculul oprţlor d EXTRACŢIE. Luc Gvrl Bltur d trl s d rg 25

26 BILANŢUL DE MATERIALE o Rportul sc rportul dtr sl do copoţ dtr-u stc. o Pt. u stc cu z copoţ, s pot scr urătorl rport sc ptru u cop. î rport cu orcr dtr cllţ (z 1) cop.: X X M X,1,2, z 1 2 z kg d copot kg d copot kg d copot kg d copot kg d copot kg d copot 1 2 z Acst od d xprr coctrţ s utlzză frcvt î clculul oprţlor d CRISTALIZARE DIN SOLUŢII BINARE. Luc Gvrl Bltur d trl s d rg 26

27 Luc Gvrl Bltur d trl s d rg 27 BILANŢUL DE MATERIALE o Rport voluc -F V 1,V 2,...,V,...,V z volul copoţlor 1,2,...,,...,z flţ î stc. Coctrţl copotulu sub foră d rport voluc s scru: z V V Y V V Y V V Y z z d copot d copot 2 d copot d copot 1 d copot d copot 3 3, 3 3 2, ,1 M

28 Luc Gvrl Bltur d trl s d rg 28 BILANŢUL DE MATERIALE Trcr d l frcţ l rport ş vrs s fc cu rlţ d for: y y Y x x X x x X Y Y y X X x X X x 1 ; 1 ; 1 1 ; 1 ; 1

29 BILANŢUL DE MATERIALE oî prctcă s utlzză xprr coctrţ pr: Ms su r d ol dtr-u copot d utt d volu (kg/ 3, rspctv kol/ 3 ). Dc s utlzză ltrul c utt d volu, coctrţl s xpră î kg/l (g/l) su kol/l (ol/l). Coc. soluţlor utlzt î lz chcă s pot xpr ş sub for ttrulu, dcă î g/l. Uor coctrţ soluţlor (solubltt) s xpră î gr d solut (substţă dzolvtă) l 100 g solvt (dzolvt). Luc Gvrl Bltur d trl s d rg 29

30 EXPRIMAREA BILANŢULUI DE MATERIALE COM- PO- NENT kol [kol/s] INTRARE (ALIMENTARE) kg [kg/s] 3 [ 3 /s] Frcţ olr Frcţ sc kol [kol/s] IEŞIRE (EVACUARE) kg [kg/s] 3 [ 3 /s] Frcţ olr Frcţ sc A A A V A x A x A A A V A x A x A A A ' A ' V A ' x A ' A ' x A ' A ' V A ' x A ' x A ' A A " A " V " A x A " x A " A " A " V " A x A " x A " TOTAL T T V T 1 1 T T V T 1 1 Luc Gvrl Bltur d trl s d rg 30

31 EXPRIMAREA BILANŢULUI DE MATERIALE omărl ţl sut cuoscut f d ăsurr drctă, f d blţul procsulu prcdt. o Ptru dtrr copozţ fl, fără fctu o lză copltă s d rcţ, s utlzză odll ttc d blţ d trl. Luc Gvrl Bltur d trl s d rg 31

32 EXPRIMAREA BILANŢULUI DE MATERIALE o Uor, ptru f sugstv, blţul d trl s rprztă sub foră grfcă, cuoscută sub dur d dgr Sky. o Dgr Sky o schă ctttvă fluxulu thologc, rprzttă l scră. o Fzl, oprţl su utljl procsulu drptughur d cr ş spr cr porsc ş sossc fluxurl d trl, rprztt sub for uor bz colort su hşurt dfrt. olăţ bzlor cr rprztă fluxurl d trl st proporţolă cu cttăţl d trl cr prtcpă l fluxul thologc. Luc Gvrl Bltur d trl s d rg 32

33 EXPRIMAREA BILANŢULUI DE MATERIALE Dgr Sky l gzfcr crbulor Luc Gvrl Bltur d trl s d rg 33

34 EXPRIMAREA BILANŢULUI DE MATERIALE Extr bur Istlt d vporr cu coprs cc d vpor: Abur prr TC SD Abur scudr (gt trc) SC cods Luc Gvrl Bltur d trl s d rg 34

35 EXPRIMAREA BILANŢULUI DE MATERIALE Istlt d vporr cu coprs cc d vpor: A - Sol. dlut B - Abur scudr B1 - Extrbur C - Sol. coctrt D - Abur prr E Cods Luc Gvrl Bltur d trl s d rg 35

36 EXPRIMAREA BILANŢULUI DE MATERIALE Extr bur (B1) Abur Prr (D) TC Abur scudr B) (gt trc) SD (A) Cods (E) SC (C) Luc Gvrl Bltur d trl s d rg 36

37 MODELE MATEMATICE DE BILANŢ DE MATERIALE oî ch fzcă st utlzt grdul d vsr l u rcţ chc, dft pr rlţ: Λ A ν A A o Prcplul vtj l utlzăr grdulu d vsr costă î fptul că cst st A ' uc ptru toţ prtcpţ l rcţ. A ' ν A ' (20) Luc Gvrl Bltur d trl s d rg 37

38 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Î gr procslor fzc s chc s utlzză cu prcădr grdul d trsforr (covrs, grd d covrs) l rcttulu ch (rcttulu vloros). of A k rcttul ch l u rcţ d for grlă: ν A ν A ' (21) A A ' Luc Gvrl Bltur d trl s d rg 38

39 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Grdul d trsforr l rcttulu ch, η, s dfşt c: η ν ν A A A ν ν A ' A ' A ' (22) Luc Gvrl Bltur d trl s d rg 39

40 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Prcplul vtj l utlzăr grdulu d trsforr dcurg d fptul că cst vrză îtotdu îtr 0 ş 1. od rlţl (20) ş (22) rzultă rlţ d lgătură dtr grdul d vsr l rcţ ş grdul d trsforr l copotulu ch: ν η Λ (23) Luc Gvrl Bltur d trl s d rg 40

41 MODELE MATEMATICE DE BILANŢ DE MATERIALE ocâd ν 1 ş ol, tuc. o Orc rcţ chcă pot f scrsă stfl îcât ν 1, dr îtr-u procs dustrl cocrt u s pot cosdr 1 η ol. o Utlzr grdulu d trsforr ptru îtocr blţurlor st u u vtjosă, dr ş csră. 1 Λ Luc Gvrl Bltur d trl s d rg 41

42 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Procs oog (să d rcţ oofzcă) dscrs d o sgură cuţ stochotrc dpdtă, c. lgbrc prr d blţ d să d c. (22): A A ' A " A A ' A " ( 1 η ) ν ν ν ν A A ' η Luc Gvrl Bltur d trl s d rg 42 η (24)

43 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Îsuâd c. (24) r. totl d ol l şr d sst (dbtul olr fl î czul procslor cotu): T Σν Σν 1 A ' A x η T ν (25) Luc Gvrl Bltur d trl s d rg 43

44 MODELE MATEMATICE DE BILANŢ DE MATERIALE onotâd cu α xprs: α Σ ν A ' ν Σ ν A x (26) cuţ (25) dv: T T ( α η ) 1 (27) Luc Gvrl Bltur d trl s d rg 44

45 MODELE MATEMATICE DE BILANŢ DE MATERIALE omăr α : α < 0 - procs cr dcurg cu cşorr uărulu d ol, α > 0 - procs cr dcurg cu ărr uărulu d ol, α 0 - procs cr dcurg fără vrţ uărulu d ol. Luc Gvrl Bltur d trl s d rg 45

46 EXEMPLE α < 0 -cşorr uărulu d ol: stz oculu: N 3H 2NH 2 2 oxdr ctltc SO 2 : SO O SO 3 Luc Gvrl Bltur d trl s d rg 46

47 EXEMPLE α > 0 -ărr uărulu d ol: rforr tulu cu bur: CH H O CO 3H oxdr ctltc oculu: 4 NH 5O 4NO 6H O Luc Gvrl Bltur d trl s d rg 47

48 EXEMPLE α 0 -fără vrţ uărulu d ol: stz HCl d lt: H Cl 2HCl 2 2 stz NO d lt: N O NO Luc Gvrl Bltur d trl s d rg 48

49 MODELE MATEMATICE DE BILANŢ DE MATERIALE oecuţl (24), îpruă cu cuţ (27) lcătusc odlul lgbrc d blţ d să prr l procsulu cosdrt. o Câd s d rcţ s coportă c u stc d gz dl, cuţl odlulu pot f xprt ş î fucţ d volu, su d utăţ sc, utlzâd rlţl d trsforr corspuzător. rspctv M V V M Luc Gvrl Bltur d trl s d rg 49

50 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Rzolvr odlulu lgbrc d blţ d să prr plcă cuoştr p lâgă ărl d trr ş grdulu d trsforr η. o Acst u st o ăr drct ăsurblă, dtrâdu-s pr ăsurr u coctrţ l şr d procs. Luc Gvrl Bltur d trl s d rg 50

51 MODELE MATEMATICE DE BILANŢ DE MATERIALE odcă, d xplu, s ăsoră pot f dftă utlzâd dfţ, cst frcţ olr ş odlul lgbrc d blţ prr c fd: x x x 1 1 ( η ) α η (28) Luc Gvrl Bltur d trl s d rg 51

52 MODELE MATEMATICE DE BILANŢ DE MATERIALE o D (28) s pot xpr grdul d trsforr η, fucţ u d ăr cuoscut: η x x α x x (29) Luc Gvrl Bltur d trl s d rg 52

53 MODELE MATEMATICE DE BILANŢ DE MATERIALE odcă s d rcţ st polfzcă, su dcă î s d rcţ u loc rcţ ultpl: s dfşt cât u grd d trsforr ptru fcr rcţ stochotrc dpdtă ş/su ptru fcr trsforr d fză. lborr odlulu lgbrc d blţ d să trbu să ţă cot d succsu dsfăşurăr î tp procslor dpdt cosdrt. Luc Gvrl Bltur d trl s d rg 53

54 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Ecuţl scudr d blţ d să s obţ d cuţl prr pr îlocur grdulu d trsforr fucţ d ărl d trr ş d şr ăsurt drct. Dcă s ăsoră drct coctrţ rcttulu vloros, x, grdul d trsforr s xpră d cuţ d blţ copotulu vloros (24 ): ( η ) 1 (24) Luc Gvrl Bltur d trl s d rg 54 η (30)

55 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Îlocud (30) î cuţl (24) s obţ: A A A ' " A A A ' " ( ) ν ν ν ν A A ' ( ) ( ) (31) Luc Gvrl Bltur d trl s d rg 55

56 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Îsuâd rlţl (31) s obţ xprs uărulu totl d ol: T ud T 1 1 β β β x x Σν A' ν Σν A (32) Luc Gvrl Bltur d trl s d rg 56

57 MODELE MATEMATICE DE BILANŢ DE MATERIALE o Îlocud (32) î cuţl (31), ţâd cot d cuţ d dfţ frcţ olr s obţ odlul lgbrc d blţ d să scudr: A A ' A " T T T T γ x x x x A A ' A " 1 β x γ 1 β x k ν ν ν ν A A ' ( x γ ) ( x γ ) x x Luc Gvrl Bltur d trl s d rg 57 (33)

58 BILANŢ DE MATERIALE ÎN REGIM STAŢIONAR A v, ρ, S R E v, ρ, S Î cofortt cu sch d fgur, s cosdră că î rcptul R, flt î rg stţor, tră fludul A ş s fludul E. v ρ S v (34) ρ S Egltt dbtlor clor două flud, î cofortt cu cuţ cosrvr s st dtă d rlţ (34): Luc Gvrl Bltur d trl s d rg 58

59 Luc Gvrl Bltur d trl s d rg 59 BILANŢ DE MATERIALE ÎN REGIM STAŢIONAR odcă î rcpt tră ş s ult flud, cuţ (34) dv: o Î czul coductlor crculr (S πd 2 /4), cuţ d blţ cpătă for: S v S v ρ ρ (35) ( ) ( ) d v d v 2 2 ρ ρ (36)

60 BILANŢ DE MATERIALE ÎN REGIM STAŢIONAR oecuţ d blţ copotulu A k d flud r for: v ρ x S v ρ x S (37) oî cuţl d sus: v vtz fludulu, ăsurtă prpdculr p scţu coduct [/s], ρ dstt fludulu [kg/ 3 ], Sr scţu coduct [ 2 ], d dtrul tror l coduct [], x frcţ scă copotulu A k î flud [dsol]. Luc Gvrl Bltur d trl s d rg 60

61 BILANŢ DE MATERIALE ÎN REGIM STAŢIONAR oidc ş s rfră l flud ltt, rspctv vcut d rcpt, o Sul după rspctv după cuprd tot fludl ltt, rspctv vcut. oprodusul vx ρ cu utăţl [kg/( 2.s)] portă dur d vtză scă su flux. Luc Gvrl Bltur d trl s d rg 61

62 BILANŢ DE MATERIALE ÎN REGIM STAŢIONAR odcă stcr î rcptul R pot f cosdrtă prfctă, tuc ş ρ u clş vlor î tot coductl d vcur d rcpt. x Luc Gvrl Bltur d trl s d rg 62

63 BILANŢ DE MATERIALE ÎN REGIM NESTAŢIONAR ocodţ d rg stţor plcă vrţ î tp prtrlor procsulu, clusv vrţ cuulăr o blţul d trl s îtocşt ptru u trvl d tp ftzl, dt. Luc Gvrl Bltur d trl s d rg 63

64 BILANŢ DE MATERIALE ÎN REGIM NESTAŢIONAR A v, ρ, S R E v, ρ, S ocuţ blţulu d trl î rg stţor r xprs: v ρ S dt M v ρ S dt M M t dt (38) Luc Gvrl Bltur d trl s d rg 64

65 BILANŢ DE MATERIALE ÎN REGIM NESTAŢIONAR o Tr I ş III d cuţ rprztă sul slor d flud ltt, rspctv vcut d stlţ î trvlul d tp dt. o Trul M rprztă cuulr (zstr) xsttă î stlţ pâă l otul t, r ultul tr rprztă cuulr l otul (t dt). Luc Gvrl Bltur d trl s d rg 65

66 BILANŢ DE MATERIALE ÎN REGIM NESTAŢIONAR o Efctuâd clcull, cuţ (38) dv: v ρ S M odcă dbtl sut vrbl, vtzl v ş v s îlocusc cu rlţ d for: v f o î cr: v rprztă vtz fludulu l otul t 0, st u cofct; v ş sut spcfc fcăr coduct cu dbt vrbl. v ρ ( t) v t S t (39) (40) Luc Gvrl Bltur d trl s d rg 66

67 Luc Gvrl Bltur d trl s d rg 67 BILANŢ DE MATERIALE ÎN REGIM NESTAŢIONAR oblţul uu copot orcr A k s scr sub for: odfrţd ultul bru, (41) dv: ( ) t M x x S v x S v ρ ρ (41) t x M t M x x S v x S v ρ ρ (42)

68 BILANŢ DE MATERIALE ÎN REGIM NESTAŢIONAR CU TRANSFORMARE CHIMICĂ o Î cst codţ î cuţ (42) s troduc u tr ou, r,tr t cr xpră vtz d forr, dtortă rcţ chc, copotulu A k. oecuţ (42) dv: r v ρ S x v ρ S x t x M M t x t (43) Luc Gvrl Bltur d trl s d rg 68

69 BILANŢ DE MATERIALE ÎN REGIM NESTAŢIONAR o Trul CU TRANSFORMARE CHIMICĂ r t st cosdrt: poztv dcă A k st produs d rcţ; gtv dcă A k st rctt; o Lg cosrvăr tr pu c: r A t 0 (44) tuc câd sur s fc după toţ copoţ A cr trv î rcţ (rctţ ş produş d rcţ). Luc Gvrl Bltur d trl s d rg 69

70 APLICATIE o 1000 kg solut pos d glucoz (C 6 H 12 O 6 ) vd coctrt 20% sc (x 0,2), s supu frtt lcoolc. Std c grdul d trsforr glucoz tol st d 65% s cr: Itocr bltulu d trl p copot s p fz; Copltr tblulu d blt; Aflr coctrt d lcool (% sc) dup frtt. Trsr dgr Sky; Luc Gvrl Bltur d trl s d rg 70

71 Rzolvr o Ecut crctrstc procsulu: [ C H O H O] [ C H OH H O C H O ] [ CO ] g l o Ecut rct stochotrc dpdt: H O frtt lcoolc C H OH C 2 CO x 46 2 x 44 l 2 o Ms olculr, kg/kol Luc Gvrl Bltur d trl s d rg 71

72 Rzolvr o Dfr grdulu d trsforr glucoz: η G G G G Et OH ν Et OH ν G Et OH G CO ν ν 2 2 CO G 2 CO G 0,65 Luc Gvrl Bltur d trl s d rg 72

73 Luc Gvrl Bltur d trl s d rg 73 Rzolvr o Modl ttc d blt d s prr ( utt olr): ( ) η η η η G T T O H O H G CO CO G OH Et OH Et G G

74 Luc Gvrl Bltur d trl s d rg 74 Rzolvr o Exprr bltulu prr utt sc (. M): ( ) T G G CO OH Et G O H CO OH Et G T O H O H O H O H G G CO CO CO CO CO G G OH Et OH Et OH Et OH Et OH Et G G G G M M M M M M M M M M M M η η η η

75 o Vlor urc: INTRARI Rzolvr G T x G 10000,2 200 kg H 2 O T x H 2 O T (1 x G ) 1000(1 0,2) 10000,8 800 kg Et OH 0 CO 2 0 T G H 2 O kg Luc Gvrl Bltur d trl s d rg 75

76 o Vlor urc: IESIRI G 2 Et OH CO H 2 O G ( 1 η) 200( 1 0,65) CO H 2 Et OH 2 O 2 M 2 M CO G kg M M Et OH G G Rzolvr G 2000,35 η 0 2 η kg 0,65 0,65 63,55 kg 66,44 kg T G Et OH CO 2 H 2 O 70 66,44 63, ,99 kg 1000 kg Luc Gvrl Bltur d trl s d rg 76

77 o Tblul d blt Fz Gz Lchd Copot C 6 H 12 O 6 H 2 O Totl grl Rzolvr trr kg C 2 H 5 -OH ,44 0,0709 Totl [] l ,00 936,44 0,9997 CO ,55 1,00 Totl [] g ,55 1, x 0,20 0,80 - kg ,99 sr 0,0745 0,8543 Luc Gvrl Bltur d trl s d rg 77 x -

78 Rzolvr o Coctrt lcoolulu solut dup frtt: x Et OH Et OH [] l 66,44 936,44 0,0709 o su 7,09% sc. Luc Gvrl Bltur d trl s d rg 78

79 Dgr Sky: Solut tl Ap 800 kg Glucoz 200 kg Frtt lcoolc Ap 800 kg Glucoz 70 kg Etol 66,44 kg CO 2 63,56 kg Solut fl Fz gzos Luc Gvrl Bltur d trl s d rg 79

80 BILANŢUL ENERGIILOR oaş cu blţul d trl st xprs lg cosrvăr tr, blţul rglor st xprs prcpulu cosrvăr rg. oblţul rglor srvşt l: urărr fluxurlor rgtc prtr-o stlţ, stblr rdtlor rgtc, dsor uor utlj. Luc Gvrl Bltur d trl s d rg 80

81 BILANŢUL ENERGIILOR oecuţ grlă d blţ rgtc ptru u cotur d blţ stblt î prlbl (stlţ, utlj, porţu d utlj, lt dfrţl d volu) r for: E E E r E (45) E rgl trt (ltt) î sst, E rgl xstt î sst l otul ţl, E r rgl răs î sst î otul fl, E rgl şt d sst. Luc Gvrl Bltur d trl s d rg 81

82 BILANŢUL ENERGIILOR oc ş î czul blţulu d trl, blţul rgtc s îtocşt ptru o durtă prstbltă: durt prlucrăr u şrj (dcă procsul st dscotuu), utt d tp (scudă, oră, z, ) î czul procslor cotu. Luc Gvrl Bltur d trl s d rg 82

83 BILANŢUL ENERGIILOR o Acuulr d rg st dtă d dfrţ: E E E r E (46) o Ptru procsl cr dcurg î rg stţor, cuulr d rg st ulă. Luc Gvrl Bltur d trl s d rg 83

84 BILANŢUL ENERGIILOR S pot îtoc: o blţur rgtc totl (grl), ptru îtrg stlţ, o blţur rgtc prţl: ptru u sgur utlj, ptru o porţu d utlj, ptru u lt dfrţl d volu. o Ergl s trsforă cu uşurţă dtr-o foră îtr-lt u s pot toc blţur prţl, rfrtor l u sgur fl d rg. Luc Gvrl Bltur d trl s d rg 84

85 BILANŢUL ENERGIILOR - xplu Blt globl, p trg stlt d vporr AR GN AS AS AS AP CB SD Solut Abur prr (AP) Abur scudr (AS) Gz codsbl (GN) Ap d rcr (AR) SC Luc Gvrl Bltur d trl s d rg 85

86 BILANŢUL ENERGIILOR - xplu Blt prtl, p u sgur corp d vporr AR GN AS AS AS AP CB SD Solut Abur prr (AP) Abur scudr (AS) Gz codsbl (GN) Ap d rcr (AR) Luc Gvrl Bltur d trl s d rg 86 SC

87 FORME DE ENERGIE o Erg potţlă su rg d pozţ, E p, rzulttă d pozţ p vrtclă corpurlor, î rport cu u pl orzotl rbtrr d rfrţă: E p g z (47) s corpulu [kg], g cclrţ grvtţolă [/s 2 ], z îălţ [] l cr s flă corpul fţă d plul orzotl d rfrţă. Luc Gvrl Bltur d trl s d rg 87

88 FORME DE ENERGIE o Erg ctcă su rg d şcr, E c, corspuzător şcăr corpurlor: E c o Erg tră, U, - o proprtt trscă corpurlor, fucţ d tur, str ş cttt lor: U 1 v 2 (48) 2 u (49) u rg tră scă [J/kg]. Luc Gvrl Bltur d trl s d rg 88

89 FORME DE ENERGIE o Lucrul xtror su rg d prsu, L, lucrul fctut d dul xtror ptru troduc u flud î sst, su lucrul fctut d sst ptru vcu u flud d sst: V v s L P dv P dv s P v s (50) 0 P prsu [P], V voluul [ 3 ] s [kg], v s voluul spcfc [ 3 /kg]. 0 Luc Gvrl Bltur d trl s d rg 89

90 FORME DE ENERGIE o Erg ccă, W, trodusă î sst prtr-o popă prtr-u gttor o Căldur, Q, trodusă d xtror pr prţ uu rzrvor pr suprfţ d trsfr trc o Alt for d rg rg d suprfţă, rg lctrcă, rg gtcă, rg luosă uzul, s gljză î probll curt Luc Gvrl Bltur d trl s d rg 90

91 BILANŢUL TERMIC o Ptru jortt procslor fzc, fzco-chc, chc, bochc cr s ptrc î botholog su î thologl dustr ltr, blţul rglor s pot splfc l for cuoscută sub dur d blţ trc. Luc Gvrl Bltur d trl s d rg 91

92 BILANŢUL TERMIC o Splfcr gljr: lucrulu cc, vrţ rg potţl, vrţ rg ctc, rg lctrc, rg gtc, rg luos, tc., Acst u rror pot v u rol portt. Luc Gvrl Bltur d trl s d rg 92

93 BILANŢUL TERMIC oblţul trc r l bză prcpul îtâ l trodc, cofor căru rg sstulu ş rg dulu xtror, cosdrt îpruă, rprztă o costtă. o Altfl spus: ΔE ΔE sst xtror 0 (51) Luc Gvrl Bltur d trl s d rg 93

94 BILANŢUL TERMIC o Dorc rg (l prsu costtă) st îsăş tlp, cuţ grlă blţulu trc î rg stţor r for: Q Q Q Q Q xt r (52) oq tlp (cttăţ d căldură), Luc Gvrl Bltur d trl s d rg 94

95 BILANŢUL TERMIC Q tlpl trt (ltt) î sst, Q tlpl xstt î sst l otul ţl, Q r tlpl răs î sst î otul fl, Q tlpl şt d sst, Q xt tlp schbtă d sst (cdtă su prtă) cu dul îcojurător. Luc Gvrl Bltur d trl s d rg 95

96 BILANŢUL TERMIC o Î czul procslor cotu cr dcurg î rg stţor, cuţ (52) dv: Q Q xt Q (53) o Pt. procs dbtc (fără schb d căldură cu dul îcojurător), trul Q xt s ulză ş c. (53) s rduc l: Q Q (54) Luc Gvrl Bltur d trl s d rg 96

97 BILANŢUL TERMIC oecuţ (53) s pot scr ş sub for: Q Q Q A procs xt Q A (55) prul tr su ct. d căldură trodus î sst d cătr fluxurl d trl trt, l dol tr su ct. d căldură grt su cosut î procs pr: rcţ chc su bochc, procs d trsforr d fză, procs d trsfr d să îtr fz, ultul tr su ct. d căldură vcut d sst d cătr fluxurl d trl şt. Luc Gvrl Bltur d trl s d rg 97

98 BILANŢUL TERMIC o Prul ş ultul tr l c. (55) s cocrtzză î fucţ d tur fzlor. o Ptru o fză gzosă (stc d gz dl), tlp pot f clcultă dtv: T T Q[] C dt Q[] C dt (56) g 298 p o Dbtl olr l cop. l trr/şr d procs, sut cuoscut d blţul d trl, cr s fctuză îtotdu ît blţulu trc. otp.t ş T s ăsoră l trr, rspctv şr d procsul cosdrt. g Luc Gvrl Bltur d trl s d rg p

99 BILANŢUL TERMIC optru o fză lchdă cr s coportă c o soluţ dlă (soluţ ft dlută) sut vlbl rlţl (56) stblt ptru gz dl. o Î czul soluţlor rl (coctrt), tlp u s pot dtr dtv. Luc Gvrl Bltur d trl s d rg 99

100 BILANŢUL TERMIC o Cpctăţl trc olr Cp [J/(kol.K)], sc C [J/(kg.K)] l soluţlor rl vrză fucţ d coctrţ ş d tprtură: C p[] l f ( x, T ) (57) C [] l f ( x, T ) (57b) Luc Gvrl Bltur d trl s d rg 100

101 BILANŢUL TERMIC o Î cst codţ, cuţl (56) dv: Q [] l [] l T C p ( x T ), dt (58) 298 Q [] l [] l T C p ( x, T ) dt (58) 298 Luc Gvrl Bltur d trl s d rg 101

102 BILANŢUL TERMIC Ptru fz sold s plcă: orlţl (56) î czul î cr copotl fz sold forză u stc cc, orlţl (58) î czul î cr copotl fz sold forză o soluţ soldă. Luc Gvrl Bltur d trl s d rg 102

103 BILANŢUL TERMIC o Dtrr vlorlor urc l căldurlor trodus/vcut d sst cu fluxurl d trl trt/şt, cstă cuoştr: tur fzlor plct î procs, copozţ ţl ş fl, blţulu d să, tprturlor ţl (T) ş fl (T), uor dt xprtl su cuţ prc ptru clculul cpctăţlor trc olr su sc l copotlor ş fzlor plct î procs. Luc Gvrl Bltur d trl s d rg 103

104 BILANŢUL TERMIC optru substţ pur, cpctt trcă olră l prsu costtă, dftă pr rlţ: C p H T (59) st corltă cu tprtur sub pr trdul uor cuţ d tpul: C C C p p p d g b h T T T P c f T T 2 2 (60) Luc Gvrl Bltur d trl s d rg 104

105 BILANŢUL TERMIC o Uor s pot utlz vlor d cpctăţ trc olr, dftă pr rlţ: C p T 2 1 T 1 T 2 T 1 C p ( T ) dt (61) o Î grl, fctul prsu supr cpctăţ trc s pot glj. Luc Gvrl Bltur d trl s d rg 105

106 BILANŢUL TERMIC o Ptru clcul rguros d gr, prcu ş ptru s put prt utlzr progrlor d clcultor, sut prfrt cuţl d tp (60). o Acst prt tgrr ltcă cuţlor (56). o Vlorl cpctăţlor trc, prcu ş vlorl cofcţlor d cuţl (60) sut tblt î: ul, îdrur, oogrf d spcltt. Luc Gvrl Bltur d trl s d rg 106

107 Expl: o Cpctt trc sc lptlu C tgrl (cu 3,2% grs) s pot clcul cu cut: 93, ,6659 4, T T 2 optrulpt coctrt vd tr 4,3 s 60% grs, cpctt trc sc s pot clcul tot cu cut d for: C bt c T 2 Luc Gvrl Bltur d trl s d rg J kg K

108 Expl: cr cofct, b s c sut fuct d cotutul d grs (% sc), G, l lptlu: 6292, ,3113 x G b 3,8887 4,7517 x G c 1, , x G C b T c T 2 J kg K Luc Gvrl Bltur d trl s d rg 108

109 Expl: o Cpctt trc sc st, fuct d cotutul d grs, G (% sc) s d tprtur, T (K), s pot clcul cu o rlt d for: C 3895,1 12,752G 1,0312G T kg K J ( 273) Luc Gvrl Bltur d trl s d rg 109

110 BILANŢUL TERMIC o Trul ΣQ procs s dtră p bz dtlor trodc, î fucţ d tpul d procs: trsforr chcă, trsforr bochcă, trsforr d fză, trsfr trfzc. Luc Gvrl Bltur d trl s d rg 110

111 BILANŢUL TERMIC o L odul cl grl, cst tr pot f xprt sub for: Q procs Q Q Q rj tr. tf. j j (62) o prul tr fctul trc l rcţlor (chc su bochc) plct î procs, o l dol tr fctul trc l procslor d trsforr d fză, o ultul tr fctul trc l procslor d trsfr d substţă îtr fzl plct î procs. Luc Gvrl Bltur d trl s d rg 111

112 BILANŢUL TERMIC o Efctul trc l u rcţ chc st dt d produsul dtr tlp d rcţ ş uărul d ol d rctt (dbtul olr) cosuţ: Q rj j η ν j j ( 0 ) Δ H Rj T (63) Luc Gvrl Bltur d trl s d rg 112

113 BILANŢUL TERMIC 0 Δ Rj H T - rprztă tlp d rcţ l tprtur T [kj/ol]; j η j j - rprztă uărul d ol d rctt A k trsfort î rcţ j. S îprt pr ν j dorc î rcţl î cr ν 1 j tlp d rcţ d lg lu Hss st rporttă l ν j. j Luc Gvrl Bltur d trl s d rg 113

114 BILANŢUL TERMIC o Î czul rcţlor ultpl s dtră su lgbrcă fctlor trc l rcţlor dvdul. o Etlp d rcţ vrză, î grl, cu tprtur ş cu prsu. o Î jortt czurlor (xcpţ făcâd procsl cr dcurg l P > 5 MP) fluţ prsu supr tlp d rcţ pot f gljtă. Luc Gvrl Bltur d trl s d rg 114

115 BILANŢUL TERMIC ovrţ tlp d rcţ cu tprtur pot f xprtă pr trdul lg lu Krchhoff. o Î for s tgrlă, cst r xprs: T Δ R H 0 T Δ R H ΔC p ( T ) dt (64) 298 Luc Gvrl Bltur d trl s d rg 115

116 oud: Δ C BILANŢUL TERMIC p ν C A ' o r tlp d rcţ stdrd s clculză d 0 tlpl olr d forr d lt ( ΔH f ) cu rlţ: Δ R H o Etlpl olr d forr d lt sut tblt î îdruătorl d spcltt. pa ' ΔH ν ΔH 298 fa 0 A ' 0 fa ' ν A C A pa 0 (65) ν (66) Luc Gvrl Bltur d trl s d rg 116

117 BILANŢUL TERMIC o Î ul czur, ptru vrţ c l tp., s pot folos î locul cuţ (64) o cuţ splfctă, cosdrâd o vlor d ptru cpctt trcă olră: Δ R H 0 T Δ R H ΔC ( T 298) o Ptru clcul proxtv, su î lps uor rlţ Cp f(t), tgrl d cuţ (64) s pot glj, cosdrâd: p (67) Δ 0 R H T Δ R H (68) Luc Gvrl Bltur d trl s d rg 117

118 BILANŢUL TERMIC o Efctul trc l procslor d trsforr d fză st dt d produsul dtr r. d ol d copot trsfort (cr trc dtr-o str d grgr î lt) ş tlp trsforăr d fză: Q tr. η [ η ] ( ΔH ) [ tr. ( ΔH ) tr. î cr ] rprztă grdul d trsforr d fză l copotulu A k î procsul d trsforr d fză. Luc Gvrl Bltur d trl s d rg 118 (69)

119 BILANŢUL TERMIC o Etlp trsforărlor d fză s dtră p bz rlţlor: Pt. procsl d vporr codsr: ΔH vp ΔH cod ΔH 0 ΔH 0 ( g ) ( l ) Pt. procsl d sublr dsublr: ΔH subl ΔH dsubl ΔH 0 ΔH 0 ( g ) ( s ) Pt. procsl d soldfcr topr: ΔH soldfcr ΔH topr ΔH ΔH 0 0 ( s ) ( l ) (70) (71) (72) Luc Gvrl Bltur d trl s d rg 119

120 ΔH dz ΔH rt ΔH sol BILANŢUL TERMIC o Efctul trc l procslor d trsfr d substţă st dt d rlţ: Q tf ( ΔH ) ( H ) η Δ. [ ] tf. tf. (73) η [ rprztă grdul d trcr l ] copotulu A k dtr-o fză î lt î procsul ltr ΔH tf. rprztă tlp procsulu ltr cosdrt. Luc Gvrl Bltur d trl s d rg 120

121 BILANŢUL TERMIC o Dtr procsl ltr d trsfr trfzc, portt d puct d vdr trc sut: dzolvr crstlzr dlur Luc Gvrl Bltur d trl s d rg 121

122 BILANŢUL TERMIC o Etlp d dzolvr dpd, î prul râd, d tur ş str solutulu ş solvtulu. o L dzolvr crstllor oc îtr-u solvt polr (p d xplu), procsul costă d două tp cu fct trc cotrr: Luc Gvrl Bltur d trl s d rg 122

123 BILANŢUL TERMIC o procsul d dstrugr rţl crstl ş trcr olor î soluţ, sub cţu dpollor solvtulu; procsul st dotr, fd crctrzt d tlp d rţ, ΔH rt > 0; o procsul d solvtr (trcţu dtr o substţ dzolvt ş olcull solvtulu); procsul st xotr, fd crctrzt d tlp d solvtr, ΔH sol < 0. Luc Gvrl Bltur d trl s d rg 123

124 BILANŢUL TERMIC o Etlp d dzolvr st su lgbrcă clor două fct trc d s cotrr: ΔH dz ΔH rt ΔH sol ΔH rt > ΔH sol dzolvr st dotr utorăcr soluţ. Subst. cu dzolvr dotră sut sărurl cu rţl crstl stbl, cr u forză hdrţ su sut crstlohdrţ cu u uăr r d olcul d pă. ΔH rt < ΔH sol dzolvr st xotr îcălzr soluţ. (74) Subst. cu dzolvr xotră sut, d rgulă, L ş G cr u u rg d rţ, î proc. d dzolvr prdoâd fctul d solvtr. Luc Gvrl Bltur d trl s d rg 124

125 BILANŢUL TERMIC o Vlorl tlp d dzolvr sut rportt l u ol d substţă dzolvtă îtr-o cttt r d solvt (pst 300 d ol) l tp. stdrd tlp tgrlă d dzolvr. o Etlp dfrţlă d dzolvr fctul trc l dzolvăr uu ol d substţă îtr-o cttt ft r d soluţ. ocl două ăr pot să dfr ult îtr l, ls î czul soluţlor coctrt. o Etlp d dzolvr vrză fucţ d coctrţ soluţ fort; odpdţ ΔH dz f(x A ) s dt. xprtl. Luc Gvrl Bltur d trl s d rg 125

126 BILANŢUL TERMIC o Etlp d crstlzr (ΔH crst ) st cosdrtă, î clcull thc, glă ş d s cotrr cu tlp d dzolvr. o Î rltt, codţ ΔH crst ΔH dz st dorcd substţ s dzolvă îtr-o soluţ prop sturtă, l tprtur l cr ultror r loc crstlzr. o Pt. clcul rguros, tlp d crstlzr s dtră cu rlţ: ΔH crst ΔH dz ΔH dl (75) î cr ΔH dl tlp d dlur soluţ sturt pâă l o coc. tât d că după cr u st fluţtă d vtul dlur ultroră. Luc Gvrl Bltur d trl s d rg 126

127 BILANŢ TERMIC ÎN REGIM ADIABAT o Cttt d căldură schbtă cu dul xtror st ulă. oistlţ su utljul ptru cr s fctuză blţul sut prfct zolt trc ş u sut prvăzut cu suprfţ tror d trsfr d căldură. o Rgul dbt rg dl, xstâd trl prfct zolt (vâd coductvtt trcă λ 0). oexstă totuş procs dustrl cr pot f cosdrt că dcurg î rg trc dbt. Luc Gvrl Bltur d trl s d rg 127

128 BILANŢ TERMIC ÎN REGIM ADIABAT o Pt. rgul dbt, c. (55) cpătă for: Q Q A procs Q A (76) o Probl cr s pu: dtrr vlor tprtur fl s d rcţ, T, cuoscâd tprtur ţlă s d rcţ, T ş blţul d trl. Luc Gvrl Bltur d trl s d rg 128

129 BILANŢ TERMIC ÎN REGIM IZOTERM o Rgul trc zotr st crctrzt pr gltt tprturlor l trr ş şr d procs: T T costt (77) o Probl cr s pu: dtrr cttăţ d căldură schbt cu xtrorul stfl îcât tprtur î procs să răâă costtă. Luc Gvrl Bltur d trl s d rg 129

130 BILANŢ TERMIC ÎN REGIM IZOTERM o Cttt d căldură schbtă cu xtrorul s dtră p bz cuţ (55) pusă sub for: Q xt Q Q Q procs A A (78) Luc Gvrl Bltur d trl s d rg 130

131 BILANŢ TERMIC ÎN REGIM NONADIABAT ŞI NONIZOTERM o Mjortt procslor dustrl dcurg î rg ozotr ş odbt, codţ î cr: Q xt 0 T T o Scopul îtocr blţulu trc: d dtr vlor căldur schbt cu xtrorul, Q xt, stfl îcât procsul să dcurgă îtr ltl d tprtură T ş T, cu grdul d trsforr η ş l copozţ ţlă dtă. Luc Gvrl Bltur d trl s d rg 131

132 BILANŢ TERMIC ÎN REGIM NONADIABAT ŞI NONIZOTERM o Tr cuţ (55) sut xplctţ î fucţ d cst ăr: Q A F1 A, (, x T ) Q A F2 A η, (, x, T ) Q procs F η 3, (, T ) (79) (80) (81) Luc Gvrl Bltur d trl s d rg 132

133 BILANŢ TERMIC ÎN REGIM NONADIABAT ŞI NONIZOTERM oecuţ (55) dv: Q xt F ( ), x,, T, T F F F η A (82) o P bz vlor Q xt clcult cofor rlţ (82) s proctză î cotur sstul d trsfr d căldură, p bz cuţ grl trsfrulu trc: Q K AΔ (83) xt T cuţ d cr s dtră r suprfţ csr d trsfr d căldură, A. Luc Gvrl Bltur d trl s d rg 133

134 APLICATIE o S supu frtr ctc 100 kg solut pos cu 10% (sc) tol. Grdul d trsforr tolulu cd ctc st d 95%. C cttt d cldur trbu dprtt d sst ptru c procsul s dcurg codt zotr l t 35 0 C? o Not: s gljz portul d cldur l rulu csr procsulu d oxdr. Luc Gvrl Bltur d trl s d rg 134

135 REZOLVARE o Procsul d frtt ctc dcurg cofor cut crctrstc: [ Et OH H O] [ O N ] [ H AC H O Et OH ] [ ] 2 L N2 O2 G o S rct bochc globl: 2 L Actobctr ct CH CH OH O CH 3 COOH H 2O o P bz odllor ttc d blt d s, cu η Et-OH 0,95 s obt urtorul tbl d blt d trl: 2 2 G Actobctr ct Luc Gvrl Bltur d trl s d rg 135

136 Fz Lchd Gzos Copot Et-OH H-Ac H 2 O Totl fz lchd Totl fz gzos TOTAL GENERAL REZOLVARE kg O ,3125 3,392 0,1060 N 2 32,92 1, ,92 1, ,92 142,92 Itl kol 0, ,2174 1,4881 6,7055 kg 0,5 12,39 93, ,607 36, ,919 Fl kol 0,0109 0,2065 5,2065 5,4239 1,2816 6,7055 Luc Gvrl Bltur d trl s d rg 136

137 REZOLVARE Q procs Q r Q lchd FERMENTATIE ACETICA LA T ct. (Q procs ) Q r Q lchd Q xtror Luc Gvrl Bltur d trl s d rg 137

138 REZOLVARE o Ecut grl d blt trc: [] L [] G procs [] L [] G Q Q Q Q Q xtror oexprsq xt (cttt d cldur cr trbu dprtt ptru t t ct.): Q Q xtror Q [] L Q [] L Q [] G Q [] G Q procs Q [] L Q [] L Q procs Luc Gvrl Bltur d trl s d rg 138

139 REZOLVARE o Clculul cldurlor trt: Q [] L Q sol. Et-OH10% [] L C [] L ( ) T 273 C [] L C 0 t 35 C sol. Et-OH10% 4270 kg J K Q [] L , J Luc Gvrl Bltur d trl s d rg 139

140 REZOLVARE o Clculul cldurlor st: Q [] L Q sol. H-Ac11,6% [] L C [] L ( ) T 273 C [] L C 0 t 35 C sol. H-Ac10% 3700 kg J K * Q [] L 106, ,80610 * - I lps dtlor xprtl, C s- clcult dtv, cu cut: 6 J Luc Gvrl Bltur d trl s d rg 140

141 REZOLVARE C 0 t 35 C H Ac11,6% x H 2 O C t 35 H O 2 0 C x H Ac C 0 t 35 C H Ac J 0, , , kg K o Coctrt Et-OH solut fl fd fort c (0,47%), s- gljt portul cstu l C. Luc Gvrl Bltur d trl s d rg 141

142 oclcululq procs : Q procs M Et OH Et OH Q rct η Et OH REZOLVARE Et OH M ( 0 Δ H ) ( 0 ) ( 0 H H ) Et OH Δ η Δ R η Et OH T R Et OH T Et OH R 298 Δ R ( 0 0 ) ( 0 0 H H H H ) H f CH3 COOH f H2O f CH3 CH2 -OH f O2 H 0 f CH 3 -COOH (L) H 2 O (L) C 2 H 5 -OH (L) O 2 (G) J/ol -484,9-187,02-277,6 0 Luc Gvrl Bltur d trl s d rg 142

143 oclcululq procs : Δ H R Q procs ,40,95 REZOLVARE 484,9 187,02 444,32 227,6 444,32 J/ol 91, J oclcululq xt : Q xtror Q Q Q [] L [] L procs 14, , , , J 1,231MJ Luc Gvrl Bltur d trl s d rg 143

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,

Διαβάστε περισσότερα

Cursul 10 T. rezultă V(x) < 0.

Cursul 10 T. rezultă V(x) < 0. ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()

Διαβάστε περισσότερα

Probabilităţi şi statistică. Nicoleta Breaz - coordonator Lucia Căbulea Ariana Pitea Gheorghe Zbăganu Rodica Tudorache

Probabilităţi şi statistică. Nicoleta Breaz - coordonator Lucia Căbulea Ariana Pitea Gheorghe Zbăganu Rodica Tudorache roltăţ ş sttstcă Ncolt Brz - coordotor Luc Căul r t Ghorgh Zăgu Rodc Tudorch Io Rs dtur StudIS dctr@hooco Is Sos Stf cl Mr r5 Tl/f: 775 Dscrr CI Blotc Nţol Roâ COORDONTOR: NICOLT BRZ Luc Căul r t Ghogh

Διαβάστε περισσότερα

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite. CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

x (s-a neglijat curentul de câmp faţă de cel de difuzie, tranzistor fără câmp intern) * ecuaţiile de continuitate (valabile pentru orice x şi t ):

x (s-a neglijat curentul de câmp faţă de cel de difuzie, tranzistor fără câmp intern) * ecuaţiile de continuitate (valabile pentru orice x şi t ): D omlr TP N. oţ.6. omlr TP. ţl ş modll brs-oll * s d ţ ş modl vlbl r or rgm d ţor - s drmă lgăr dr rţ ş sl l l bor * oz smlor: - rzsor oţ l l dmsol ' - bz m slb doă mrăţ >> - lgml zolor r l morl ş olorl

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

ΓΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύττ* *Αρ. 870 της 23ης ΑΠΡΙΛΙΟΥ 1971 ΝΟΜΟΘΕΣΙΑ

ΓΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύττ* *Αρ. 870 της 23ης ΑΠΡΙΛΙΟΥ 1971 ΝΟΜΟΘΕΣΙΑ ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΝ ΓΗΣ ΕΠΙΣΗΜΥ ΕΦΗΜΕΡΙΔΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ ύττ* *Αρ. 87 της 2ης ΑΠΡΙΛΙΥ 1971 ΝΜΘΕΣΙΑ ΜΕΡΣ Ι Ό περί Τελνειακών Δασμών και Φόρν Καταναλώσες ('Επιβλή και Επιστρφή τύταιν) (Τρππιητικός) (Άρ. 2) Νόμς

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Laborator Transportul şi distribuţia energiei electrice - B. Neagu

Laborator Transportul şi distribuţia energiei electrice - B. Neagu Laborator Trasportul ş dstrbuţa rg lctrc - B. Nagu ALGORITM ŞI PROGRAM DE CALCL DETINATE ANALIZEI REGIMRILOR PERMANENTE IMETRICE DE FNCŢIONARE ALE ITEMELOR DE DITRIBŢIE FOLOIND METODA TENINILOR NODALE.

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

CÂMPUL ELECTROMAGNETIC CVASISTAŢIONAR ÎN CONDUCTOARE MASIVE

CÂMPUL ELECTROMAGNETIC CVASISTAŢIONAR ÎN CONDUCTOARE MASIVE 6 CÂMPUL ELECTROMAGNETC CVASSTAŢONAR ÎN CONDUCTOARE MASVE 6.. ECUAŢLE CÂMPULU ELECTROMAGNETC CVASSTAŢONAR ÎN CONDUCTOARE MASVE MOBLE În mdl conductor mobl, cuţl câmpulu lctromgntc s obţn scrnd lgl gnrl

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

Pentru această problemă se consideră funcţia Lagrange asociată:

Pentru această problemă se consideră funcţia Lagrange asociată: etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ & Φ.ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ & Φ.ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ & Φ.ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ; ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΓΕΩΦΥΣΙΚΩΝ ΚΑΤΑΓΡΑΦΩΝ ΣΕ ΥΔΡΟΓΕΩΤΡΗΣΕΙΣ

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

2. Metoda celor mai mici pătrate

2. Metoda celor mai mici pătrate Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ. ΤΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ υπ* Άρ. 932 της 14ης ΑΠΡΙΛΙΟΥ 1972 ΝΟΜΟΘΕΣΙΑ

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ. ΤΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ υπ* Άρ. 932 της 14ης ΑΠΡΙΛΙΟΥ 1972 ΝΟΜΟΘΕΣΙΑ Ν. 17/72 ΠΑΑΤΜΑ ΠΩΤΝ ΤΣ ΕΠΙΣΜΥ ΕΦΜΕΙΔΣ ΤΣ ΔΜΚΑΤΙΑΣ υπ* Άρ. 92 της 14ης ΑΠΙΛΙΥ 1972 ΝΜΘΕΣΙΑ Ό περί Τελνειακών Δασμών και Φόρν Καταναλώσες (Επιβλή και 'Επιστρφή τύτν) (Τρππιητικός) Νόμς τυ 1972 εκίεται ια

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

2. Functii de mai multe variabile reale

2. Functii de mai multe variabile reale . Fuct de m multe vrble rele.. Elemete de topologe R Fe u sptu lr (XK. Det. Se umeste produs sclr plct < > < < λ > λ < v < > < > ; XX K cu omele: > ( X < > ( X ( λ K >< > < > ( X ( Xs < > ; dc s um dc

Διαβάστε περισσότερα

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx 7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă

Διαβάστε περισσότερα

ALGEBRA, GEOMETRIE ANALITICA ȘI DIFERENȚIALA SINTEZE TEORETICE ȘI APLICAȚII

ALGEBRA, GEOMETRIE ANALITICA ȘI DIFERENȚIALA SINTEZE TEORETICE ȘI APLICAȚII LGEBR GEOMETRIE NLITIC ȘI DIFERENȚIL SINTEZE TEORETICE ȘI PLICȚII cs mrl rpră u supor d curs ds sudțlor d ul I c cuprd s orc ș prolm rolv dsprs d volumul Elm d lgră lră gomr lcă ș drțlă uor: Io Vldmrscu

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

ot ll1) r/l1i~u (X) f (Gf) Fev) f:-;~ (v:v) 1 lý) æ (v / find bt(xi (t-i; i/r-(~ v) ta.jpj -- (J ~ Cf, = 0 1l 3 ( J) : o-'t5 : - q 1- eft-1

ot ll1) r/l1i~u (X) f (Gf) Fev) f:-;~ (v:v) 1 lý) æ (v / find bt(xi (t-i; i/r-(~ v) ta.jpj -- (J ~ Cf, = 0 1l 3 ( J) : o-'t5 : - q 1- eft-1 - la /:_ )( -( = Y () :: ÚlJl:: ot ll) r/li~u (X) f (Gf) Fev) f:-;~ (v:v) lý) æ (v / find bt(i (t-i; i/r-(~ v) bj Ll, :: Qy -+ 4",)( + 3' r.) '.J ta.jpj -- (J ~ Cf, = l 3 ( J) : o-'t5 : - q - eft- F ~)ç2..'

Διαβάστε περισσότερα

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU: Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó

Διαβάστε περισσότερα

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica

Διαβάστε περισσότερα

PROBLEME (toate problemele se pot rezolva cu ajutorul teoriei din sinteze)

PROBLEME (toate problemele se pot rezolva cu ajutorul teoriei din sinteze) Uverstte Spru Hret Fcultte de Stte Jurdce Ecoome s Admstrtve Crov Progrmul de lcet Cotbltte ş Iormtcă de Gestue Dscpl Mtemtc Aplcte î Ecoome tulr dscplă Co uv dr Lur Ugureu SUBIECE ote subectele se regsesc

Διαβάστε περισσότερα

Functii de distributie in fizica starii solide

Functii de distributie in fizica starii solide uc sbu zc s sol I cusul zc solulu s- olos c uc sbu -Dc D u sc obbl ocu cu lco l o slo -u l uc sbu Mwll-olz M u sc obbl ocu cu lco slo -u scouco cul u scouco sc uc sbu os-s Plc czul oolo s o uc sbu o cs

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Assessment of otoacoustic emission probe fit at the workfloor

Assessment of otoacoustic emission probe fit at the workfloor Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΧλΘ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 8 Απριλίου

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION

UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION UVERSÀ DEG SUD D BOOGA DPAREO D GEGERA EERCA Vl Rogo - 36 BOOGA (AA AAYCA SOUOS FOR HE CURRE DSRBUO A RUHERFORD CABE WH SRADS. F. Bch Ac h gocl o of h ol co coffc og h of Rhfo cl vg. h olo fo h gl l c

Διαβάστε περισσότερα

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

Για τις παρακάτω προτάσεις 1.1 και µέχρι 1.3 να σηµειώσετε ποιες είναι οι σωστές.

Για τις παρακάτω προτάσεις 1.1 και µέχρι 1.3 να σηµειώσετε ποιες είναι οι σωστές. Θέµα ο Για τις παρακάτω προτάσεις και µέχρι να σηµειώσετε ποιες είναι οι σωστές Η ισχύς του δεσµού Η : Α Βρίσκεται µεταξύ της ισχύος του δεσµού διπόλου-διπόλου και του δεσµού ιόντος-διπόλου Β είναι µεγαλύτερη

Διαβάστε περισσότερα

Supplemental file 3. All 306 mapped IDs collected by IPA program. Supplemental file 6. The functions and main focused genes in each network.

Supplemental file 3. All 306 mapped IDs collected by IPA program. Supplemental file 6. The functions and main focused genes in each network. LIST OF SUPPLEMENTAL FILES Supplemental file 1. Primer sets used for qrt-pcr. Supplemental file 2. All 1305 differentially expressed genes. Supplemental file 3. All 306 mapped IDs collected by IPA program.

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

CURS 4 METODE NUMERICE PENTRU PROBLEMA DE VALORI PROPRII. Partea I

CURS 4 METODE NUMERICE PENTRU PROBLEMA DE VALORI PROPRII. Partea I CURS 4 MEODE NUMERICE PENRU PROBLEM DE VLORI PROPRII ------------------------------------------------------------------------------------------------------------ Prte I. Defț, propretăț.. Metod puter ş

Διαβάστε περισσότερα

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des

Διαβάστε περισσότερα

Logique et Interaction : une Étude Sémantique de la

Logique et Interaction : une Étude Sémantique de la Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].

Διαβάστε περισσότερα

Prof. dr. ing. ANTON HADAR Prof. dr. ing. CORNEL MARIN Conf. dr. ing. CRISTIAN PETRE As. drd. ing. ADRIAN VOICU METODE NUMERICE ÎN INGINERIE

Prof. dr. ing. ANTON HADAR Prof. dr. ing. CORNEL MARIN Conf. dr. ing. CRISTIAN PETRE As. drd. ing. ADRIAN VOICU METODE NUMERICE ÎN INGINERIE Pro dr g ANTON HADAR Pro dr g CORNE ARIN Co dr g CRISTIAN PETRE A drd g ADRIAN VOICU ETODE NUERICE ÎN INGINERIE Polt Pr Buurşt Drr CIP Blot Nţol Roâ Hdr Ato tod ur î gr 9 p - Uvrtr I r Corl II Ptr Crt

Διαβάστε περισσότερα

XHMEIA ΚΑΤΕΥΘΥΝΣΗΣ. Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων. ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β. Β1. α.

XHMEIA ΚΑΤΕΥΘΥΝΣΗΣ. Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων. ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β. Β1. α. 27 Μαΐου 2015 XHMEIA ΚΑΤΕΥΘΥΝΣΗΣ Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β Β1. α. Σωστό Το γινόμενο της Κ a ασθενούς οξέος ΗA με

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

&+, + -!+. " #$$% & # #'( # ) *

&+, + -!+.  #$$% & # #'( # ) * ! &+,+-!+. "#$$%&##'( 0 1 2 #$$% 3! 4 4 &5 -! 3 &-! 4 &5 -!63 &-!6 41 7+ 8 " : 4 ; 4( & 4 # < 4/45 45 4 &- 4= 4 6 % 8 " 8 ' : "#$$%&/#'( > #$$% 8 8 4! " 4 3!??? - "#$$%&=#'( ( #..1@+A >+." (% &+.*+1+.B1.1>6+!#$$=A#$$%(%

Διαβάστε περισσότερα

Na/K (mole) A/CNK

Na/K (mole) A/CNK Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

CAPITOLUL 1 BAZELE TEORIEI MACROSCOPICE A ELECTROMAGNETISMULUI

CAPITOLUL 1 BAZELE TEORIEI MACROSCOPICE A ELECTROMAGNETISMULUI CAPITOLUL BAZELE TEORIEI MACROSCOPICE A ELECTROMAGNETISMULUI.. MĂRIMI PRIMITIVE ŞI MĂRIMI DERIVATE Stăl ş foml fzc s cctzză cu jutoul mămlo fzc c s clsfcă î ouă ctgo: măm pmtv - s touc p cl xpmtlă, câ

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:

Διαβάστε περισσότερα

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl 1 ( - ) ( ) : 5 ( CH 3 COOH ).1 0 /1M NaOH35ml CH COOH 3 = /3 gr mol 211/05 mg 3 /5mgr 210 /1gr 3 /5gr ppm.2 mg mlit mg lit g lit µg lit.3 1mol (58 /8 NaCl ) 0 /11F 14 /9ml NaCl.4 14 /9 96 0 /0149 0 /096

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 Για τις ερωτήσεις 11-1 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση 11 Ο µέγιστος αριθµός

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

7. CONVOLUŢIA SEMNALELOR ANALOGICE

7. CONVOLUŢIA SEMNALELOR ANALOGICE 7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 15 / 12 / 2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 15 / 12 / 2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 15 / 12 / 2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.5 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό

Διαβάστε περισσότερα

CURSUL I PROBABILITATI DISTRIBUTII VARIABILE ALEATOARE. Curs 1 1

CURSUL I PROBABILITATI DISTRIBUTII VARIABILE ALEATOARE. Curs 1 1 CURSUL I ROBABILITATI DISTRIBUTII VARIABILE ALEATOARE Curs ELEMENTE DE TEORIA ROBABILITĂŢILOR CÂMURI DE ROBABILITATE Tora matmatcă a probabltăţlor porşt d la faptul că fcăru rzultat posbl al uu xprmt alator,

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi

[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi NSW BOS Mhics Esio Soluios 8 F dowlod d pi fo wwwiuco Do o phoocopy opyigh 8 iuco Q L u 5 d ( ) c u u 5 Q Qc ( ) ( ) d 5 u d c d d l c d [ ] [ ] ( ) d l ( ) l l Qd L u fo > ( ) u d Wh u ; wh u d d ( u

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Βιομάζα είναι κάιε υλικό που παράγεται από ζωντανοφσ οργανιςμοφσ: Ξύλο και ϊλλα δαςικϊ προώόντα, Τπολεύμματα καλλιεργειών, Κτηνοτροφικϊ απόβλητα,

Βιομάζα είναι κάιε υλικό που παράγεται από ζωντανοφσ οργανιςμοφσ: Ξύλο και ϊλλα δαςικϊ προώόντα, Τπολεύμματα καλλιεργειών, Κτηνοτροφικϊ απόβλητα, Βιομάζα είναι κάιε υλικό που παράγεται από ζωντανοφσ οργανιςμοφσ: Ξύλο και ϊλλα δαςικϊ προώόντα, Τπολεύμματα καλλιεργειών, Κτηνοτροφικϊ απόβλητα, Απόβλητα βιομηχανιών τροφύμων κ.λπ. Βαςικθ χρθςη: καύςιμο

Διαβάστε περισσότερα