Tema: şiruri de funcţii

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tema: şiruri de funcţii"

Transcript

1 Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, = +, tuci lim f f =.. Arătţi că şirul de fucţii f: [ 0, ) R, f( ) = este uiform coverget + + Limit simplă (puctulă) şirului de fucţii este lim f ( ) = ; î cocluzie, dcă s otăm f : [ 0, ) R, f ( ) =, tuci f f. Arătăm că limit este uiformă, ir petru cest observăm că: f ( ) f ( ) = + <, su, echivlet, ( ) ( ) sup f f + < Deorece 0,, idepedet de rezultă că limit este uiformă.. Arătţi că şirul de fucţii f: R R, f( ) = rctg u este uiform coverget. π π Petru < 0,lim f ( ) =, petru > 0,lim f ( ) = şi lim f ( ) 0 = 0. π, < 0 s Î cocluzie, dcă otăm f: R R, f ( ) = 0, = 0, tuci f f. π, > 0 Utilizăm firmţi: limit uiformă uui şir de fucţii cotiue este o fucţie cotiuă. Observăm că fucţi f u este cotiuă deci covergeţ u pote fi uiformă. 0 = + 4. Arătţi că şirul de fucţii f :(, ), f ( ) R u este uiform coverget. Şirul este coverget puctul (simplu) l fucţi costtă f: (, ), f ( ) Covergeţ depide îsă de deorece + < > ε ε 0 R =. + = + ir. Se observă cu uşuriţă că petru ε şi ε dte, eistă > 0 stfel îcât ieglitte u mi este devărtă, respectiv petru cre ε. ε Î coseciţă, covergeţ u este idepedetă de deci u este uiformă.

2 . Clculţi lim 0 + d = + Şirul de fucţii f [ ] f ( ) : 0,, fucţi costtă f: [ 0, ] R, f ( ) = 0. R este coverget puctul (simplu) l Covergeţ este uiformă deorece f ( ) f ( ) = + 0,, idepedet de. Petru clculul efectiv l limitei di euţul problemei folosim propriette: lim b ( ) = lim ( ), deci lim f d f d 6. Clculţi lim e d b Şirul de fucţii [ ] ( ) :,, fucţi costtă f: [, ] R, f ( ) = d = f f = e R este coverget puctul (simplu) l Covergeţ este uiformă deorece f ( ) f ( ) 4 = e e 0,, idepedet de. Petru clculul limitei folosim ceeşi propriette c l eerciţiul terior, deci lim e d = lim e d = 0. Este de remrct fptul că itegrl u pote fi clcultă direct deorece fucţi u re primitive eprimbile pri fucţii elemetre.

3 . Seri de fucţii ( )!! 0 Demostrţie. ( + ) Tem: serii de fucţii este uiform covergetă pe [, ] Utilizăm criteriul geerl l lui Cuchy: ( ) ( ) ( + p +! ) + + ( + )! ( ) + p + p ( + p + )! p = = 0,, + + p + p, şi idepedet de p deci seri este uiform bsolut + + idepedet de [ ] covergetă. si. Seri de fucţii este uiform bsolut covergetă pe R Demostrţie. Utilizăm criteriul lui Weierstrss si. Seri de fucţii [ r, r], r < 0, R este covergetă Demostrţie. Utilizăm criteriul lui Dirichlet este uiform bsolut covergetă pe orice itervl de form + r s = r+ + r = r < r deci este mărgiit = este mooto descrescător şi coverget l Seri de fucţii ( ) [ r, r], r < 0 este uiform covergetă pe orice itervl de form Demostrţie. Utilizăm criteriul lui Leibitz ( ) = este descrescător petru fit, + îcepâd de l u rg, ( + ), şi ume de îdtă ce r + +

4 . Clculţi: ( ) , (, ) Arătăm că seri de fucţii pote fi derivtă terme cu terme pe orice itervl de form [ rr, ], r<. Petru cest rătăm că tât cest, cât şi seri formtă cu derivtele fucţiilor (dică seri dtă î euţ) sut uiform covergete. Seri este uiform covergetă î bz criteriului lui Weierstrss deorece r ir seri geometrică r este covergetă petru r <. Seri formtă cu derivtele fucţiilor, ( + ) +... este de semee uiform covergetă î bz criteriului lui Weierstrss deorece ( ) + ( + ) r ir seri + r+ r ( + ) r +... este covergetă î bz criteriului ( ) rportului: lim r + + = r <. ( + ) Petru clculul efectiv l sumei seriei observăm că sum prţilă + s ( ) = = este uiform covergetă l fucţi seriei di euţ se v obţie pri derivre,dică: ( ) 6. Clculţi: z , z [ 0, ) pe [ ] 0, deci sum z z Am văzut dej că seri de fucţii este uiform covergetă 0, r, r <, î coseciţă pote fi itegrtă terme cu terme pe orice itervl z d z z 0 [ 0, z], z<, şdr sum seriei este = l( ) = l ( ) 0

5 Tem: mulţime de covergeţă seriilor de puteri. Determiţi mulţime de covergeţă seriei de puteri Determiăm rz de covergeţă utilizâd corolrul teoremei Cuchy + ( + ) Hdmrd ω = lim = lim = lim = şi ρ = =, deci seri este bsolut ( + ) ω covergetă petru (, ) şi uiform bsolut covergetă pe orice itervl [ rr, ] (, ). Petru = seri devie cre este covergetă (seri rmoică geerliztă cu α = ). ( ) Petru = seri devie cre este bsolut covergetă (seri modulelor este ect ce terioră). A =,. Mulţime de covergeţă este [ ]. Determiţi mulţime de covergeţă seriei de puteri Determiăm rz de covergeţă utilizâd corolrul teoremei Cuchy + + Hdmrd ω = lim = lim = lim + = şi ρ = = ; seri este bsolut ω covergetă pe (, ) şi uiform bsolut covergetă pe orice itervl [ rr, ] (, ). Leibitz ( Petru = seri Petru = seri este divergetă (seri rmoică geerliztă cu α = ). ( ) este mooto descrescător şi coverget l 0). Mulţime de covergeţă este A = [, ). este bsolut covergetă î bz criteriului lui

6 . Determiţi mulţime de covergeţă seriei de puteri! Determiăm rz de covergeţă utilizâd corolrul teoremei Cuchy + ( + )!! Hdmrd ω = lim = lim = lim = lim ( + )! + = 0 şi ρ =, deci seri este! bsolut covergetă petru R şi uiform bsolut covergetă pe orice itervl de form [ r, r]. Mulţime de covergeţă este A=R. 4. Determiţi mulţime de covergeţă seriei de puteri Determiăm rz de covergeţă utilizâd corolrul teoremei Cuchy + + ( + ) Hdmrd ω = lim = lim = lim( + ) + şi ρ = 0, Mulţime de covergeţă este A = { 0 }.. Determiţi mulţime de covergeţă seriei de puteri Determiăm rz de covergeţă utilizâd corolrul teoremei Cuchy + + Hdmrd ω = lim = lim = şi ρ =. deci seri este bsolut covergetă petru r. [, r],, şi uiform bsolut covergetă pe orice itervl de form Petru = seri devie cre este divergetă. Petru = seri ( ) este divergetă Mulţime de covergeţă este A,. =

7 Tem: dezvoltre î serie fucţiilor. Dezvoltţi î serie, după puterile lui, fucţi f : R R, f ( ) = e Utilizăm dezvoltre î serie Tylor. ( ) Derivtele sut f ( ) = e şi sut mărgiite pe orice mulţime [ r, r] deorece r e e, [ r, r] deci fucţi se dezvoltă î serie Tylor pe orice mulţime de form [ r, r], dică petru orice R. ( ) Avem f ( 0) = deci seri Tylor socită fucţiei dte, petru = 0, este e = !!!. Dezvoltţi î serie, după puterile lui, fucţi f: R R, f ( ) = si Utilizăm dezvoltre î serie Tylor. ( k ) k Derivtele fucţiei sut f ( ) ( ) ( k + ) k = si şi f ( ) = ( ) cos şi sut mărgiite pe R deci fucţi se dezvoltă î serie Tylor pe R. ( k) ( k + ) k Avem f ( 0) = 0 şi f ( 0) = ( ) deci seri Tylor socită petru = 0 este 7 9 si = + +!!! 7! 9!.... Dezvoltţi î serie, după puterile lui, fucţi f: R { } R, f ( ) = + Utilizăm seri biomilă petru α = :..., (, ) + = + 4. Dezvoltţi î serie, după puterile lui, fucţi f: (, ) R, f ( ) = l( + ) Derivt fucţiei este f ':(, ) R, f '( ) = cre m văzut că se dezvoltă î + serie Tylor după puterile lui (, ): + = +..., pe cre o itegrăm terme cu terme şi rezultă ( ) l + = +... Pe de ltă prte, ştim că +... = l deci (, ], (, ).

8 . Dezvoltţi î serie, după puterile lui, fucţi f: R R, f ( ) = rctg Derivt fucţiei este f ': R R, f '( ) = cre se dezvoltă î serie Tylor + după puterile lui : 4 6 = +..., + pe cre o itegrăm terme cu terme şi rezultă rctg = +..., (, ). Pe de ltă prte,, şi coform teoremei II- lui Abel: A, deci [ ) π 4 = Dezvoltţi î serie, după puterile lui, fucţi f : R {,} R, f ( ) = + 6 Descompuem + 6 = şi dezvoltăm fiecre terme folosid seri biomilă, stfel: ( )( ) ( ) ( ) = = = =,!! 0, ; Dezvoltre se pote obţie şi porid de l seri geometrică: ( ) = =,,. 0 Alog, cel de-l doile terme este: ( ) = 0,,, deci ( ) ( ) ( ) ( ) + 6 =,,, =,. 0 f f = + 7. Dezvoltţi î serie, după puterile lui, fucţi :, R, ( ) Puem î evideţă fctorul stfel îcât să putem utiliz dezvoltre î serie biomilă: + = ( ) + = + ( ) = !! ( ) ( ) + ( )...! ( ) ( ) +... =, 7,

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

REZIDUURI ŞI APLICAŢII

REZIDUURI ŞI APLICAŢII Mtemtici specile şi metode umerice EZIDUUI ŞI APLICAŢII. Formule petru reiduuri Câd sigulrităţile du vlore şi uţ. Teorem reiduurilor Defiiţi. Fie f() o fucţie cre re î C u pol su u puct sigulr eseţil iolt.

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

, să scriem un program pentru a afla rangul n 1 începând de la care

, să scriem un program pentru a afla rangul n 1 începând de la care Serii - lbrtr Ştiid că = k = k π = π π s = . =; S=S./.^;ed» [,S] s =.. Fie seri ; să scriem u prgrm

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi.

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi. Poliome ) Form lgebrică uui poliom Pri form lgebrică su form coică îţelegem f X X X Prescurtt putem scrie f X,,, sut coeficieţii poliomului cu, se umeşte coeficiet domit şi X terme domit tuci poliomul

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM IAŞI 27 2 Cuprins 1 Integrle improprii 9 1.1 Introducere............................ 9 1.2 Definiţi integrlei improprii................... 1 1.3

Διαβάστε περισσότερα

ELEMENTE DE CALCUL INTEGRAL (material incomplet, în curs de redactare) Paul GEORGESCU

ELEMENTE DE CALCUL INTEGRAL (material incomplet, în curs de redactare) Paul GEORGESCU ELEMENTE DE CALCUL INTEGRAL (mteril incomplet, în curs de redctre) Pul GEORGESCU Cuprins PRIMITIVE. Primitive................................... Operţii cu funcţii cre dmit primitive................ 7.3

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στο Φοιτητή: Δευτέρα 9 Ιανουαρίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στο Φοιτητή: Δευτέρα 9 Ιανουαρίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στο Φοιτητή: Δευτέρα 9 Ιανουαρίου 0 Ημερομηνία παράδοσης της Εργασίας: Τρίτη 4 Φεβρουαρίου

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D

ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D ANALIZA NUMERICA ECUATII NELINIARE PE R (http://bavara.utclu.ro/~ccosm) ECUATII NELINIARE PE R. INTRODUCERE e D R D R : s sstemul: ( x x x ) ( x x x ) D () Daca se cosdera aplcata : D R astel ca: ( x x

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predare-învăţare-evaluare pentru

Διαβάστε περισσότερα

ΜΑΣ 303: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. u bu au, u au bu. c U du 0, d a b

ΜΑΣ 303: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. u bu au, u au bu. c U du 0, d a b ΜΑΣ 33: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Σελ 4 Φξεζηκνπνηώληαο ηελ αιιαγή κεηαβιεηώλ u bu cu Λύση: Έρνπκε κε ηελ αιιαγή κεηαβιεηώλ Άξα ε δνζείζα ΜΔΕ γξάθεηαη σο ή b b u( U ( u bu U u U bu θαη

Διαβάστε περισσότερα

Algoritmul QR cu deplasare explicită

Algoritmul QR cu deplasare explicită Algoritmul Q cu deplasare explicită Algoritmul Q cosiderat drept uul ditre rezultatele cele mai remarcabile ale calculului umeric matriceal (elaborat î forma sa cea mai evoluată idepedet de către V.N.

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

AkoloujÐec sunart sewn A. N. Giannakìpouloc, Tm ma Statistik c OPA

AkoloujÐec sunart sewn A. N. Giannakìpouloc, Tm ma Statistik c OPA AkoloujÐec sunrt sewn A. N. Ginnkìpouloc, Tm m Sttistik c OPA Eisgwg Στη διάλεξη αυτή θα μελετήσουμε την έννοια της σύγκλισης ακολουθίων συναρτήσεων και συγκεκριμένα την έννοια της ομοιόμορφης σύγκλισης.

Διαβάστε περισσότερα

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a 7 Έστω Το θεώρηµα του Tylor στη µια µεταβλητή Ι ανοικτό διάστηµα Ι και : Ι φορές διαφορίσιµη συνάρτηση στο Ι, (. Γράφουµε, ( = + +... + +,, Ι, όπου!, είναι το υπόλοιπο Tylor ( κέντρου και τάξης και ( Ρ

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

PROBLEME PROPUSE- SET4 Controlul interferenţei intersimbol. Criteriile lui Nyquist Transmisiuni codare corelativă.

PROBLEME PROPUSE- SET4 Controlul interferenţei intersimbol. Criteriile lui Nyquist Transmisiuni codare corelativă. PROBLEME PROPUSE- SE4 Cotrolul iterfereţei itersimbol. Criteriile lui Nyquist rasmisiui codare corelativă. Problema Fie modelul adoptat petru trasmisia î bada de bază cu repartizarea filtrării ître emiţător

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

Για την κωδικοποίηση της αρμανικής. Prof. Dr. Thede KAHL POLIS ART CAFE ΑΘΗΝΑ 23 IAN 2014

Για την κωδικοποίηση της αρμανικής. Prof. Dr. Thede KAHL POLIS ART CAFE ΑΘΗΝΑ 23 IAN 2014 Για την κωδικοποίηση της αρμανικής Prof. Dr. Thede KAHL POLIS ART CAFE ΑΘΗΝΑ 23 IAN 2014 Τάσεις και περίοδοι στην κωδικοποίηση της αρμανικής 1. Ελληνοποίηση (1700-1840) 2. Ρουμανική προπαγάνδα (1820-1945)

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Κώστας Φελουκατζής Σημειώσεις εξετάσεων ΠΛΗ-20 / 2004-2005 ΣΥΝΔΥΑΣΤΙΚΗ

Κώστας Φελουκατζής Σημειώσεις εξετάσεων ΠΛΗ-20 / 2004-2005 ΣΥΝΔΥΑΣΤΙΚΗ Κώστας Φελουκατζής Σημειώσεις εξετάσεων Η-2 / 24-25 ΣΥΝΔΥΑΣΤΙΚΗ Κανόνας Γινομένου: Αν ένα ενδεχόμενο μπορεί να πραγματοποιηθεί με m διαφορετικούς τρόπους ενώ ένα άλλο, ανεξάρτητο ενδεχόμενο μπορεί να πραγματοποιηθεί

Διαβάστε περισσότερα

ΤΥΠΟΣ ΤΟΥ TAYLOR. ,. Το πολυώνυμο αυτό ονομάζεται πολυώνυμο του Taylor και έχει τύπο ( n) Αποδεικνύεται ότι υπάρχει μοναδικό πολυώνυμο p n. 1! 2! n!

ΤΥΠΟΣ ΤΟΥ TAYLOR. ,. Το πολυώνυμο αυτό ονομάζεται πολυώνυμο του Taylor και έχει τύπο ( n) Αποδεικνύεται ότι υπάρχει μοναδικό πολυώνυμο p n. 1! 2! n! ΤΥΠΟΣ ΤΟΥ TAYLOR Δίδεται μια συνάρτηση f, ένα εσωτερικό σημείο του πεδίου ορισμού της f και ένας φυσικός αριθμός Στην παράγραφο αυτή μελετάται το πρόβλημα προσέγγισης των τιμών της συνάρτησης f ) για «κοντά

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

αριθμός δοχείου #1# control (-)

αριθμός δοχείου #1# control (-) Μόνο απιονισμένο νερό #1# control (-) Μακροστοχεία: Ν, P, K, Ca, S, Εάν κάποια έλλειψη μετά 1 μήνα έχει σημαντικές επιπτώσεις προσθέτουμε σε δόσεις την έλλειψη έως ότου ανάπτυξη ΟΚ #2# control (+) Μακροστοχεία:

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Το ορισµένο ολοκλήρωµα

ΚΕΦΑΛΑΙΟ 7. Το ορισµένο ολοκλήρωµα ΚΕΦΑΛΑΙΟ 7 Το ορισµένο ολοκλήρωµα Εισαγωγή Ο Ολοκληρωτικός Λογισµός γεννήθηκε από την ανάγκη ανάπτυξης µιας γενικής µεθόδου υπολογισµού όγκων εµαδών και κέντρων άρους Οι αρχές ολοκλήρωσης ανάγονται στη

Διαβάστε περισσότερα

ΠΡΟΣΦΟΡΕΣ ΤΩΝ ΕΜΠΟΡΩΝ ΤΟΥ BMWFORUM.GR ΓΙΑ ΤΑ PREMIUM & GOLDEN ΜΕΛΗ

ΠΡΟΣΦΟΡΕΣ ΤΩΝ ΕΜΠΟΡΩΝ ΤΟΥ BMWFORUM.GR ΓΙΑ ΤΑ PREMIUM & GOLDEN ΜΕΛΗ Εκδοση 4-01-12 ΠΡΟΣΦΟΡΕΣ ΤΩΝ ΕΜΠΟΡΩΝ ΤΟΥ BMWFORUM.GR ΓΙΑ ΤΑ PREMIUM & GOLDEN ΜΕΛΗ CHIPTRONIC (ΑΝΑΒΑΘΜΙΣΕΙΣ ΒΕΛΤΙΩΣΕΙΣ) Μοντελο Οχηματος /Ιπποδυναμη Ιπποδυναμη Chiptronic Ροπη Nm Ροπη Nm Chiptronic Τιμη

Διαβάστε περισσότερα

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα Αντιπαράγωγος μίας συνάρτησης f() ορισμένης σε ένα διάστημα [α,β] λέγεται κάθε συνάρτηση F() που επαληθεύει την ισότητα F( ) f ( ) F( ) c επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα

Διαβάστε περισσότερα

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής

Διαβάστε περισσότερα

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ Radu Gologan, Tania-Luminiţa Costache 2 * Prefaţă Textul de faţă este construit pe scheletul subiectelor date la examenul de Analiză Matematică în perioada

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/16 Πρόβλημα 1 (βιβλίο σελίδα 146) Να υπολογιστεί ο ML της

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

Σειρές πραγματικών αριθμών

Σειρές πραγματικών αριθμών ΚΕΦΑΛΑΙΟ Σειρές πραγματικών αριθμών Προσέγγιση του π < π < Αρχιμήδης ο Συρακούσιος (87 π.χ - π.χ.) 7 7 π = Frçois Viète (54-6) + + + π 4 4 6 6 8 8 = Joh Wllis (66-7) 5 5 7 7 9 4 π = + Viscout Broucker

Διαβάστε περισσότερα

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni

pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni Ήχος Γα pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni i lor scă pând is ra e li tea nul stri ga: iz bă vi to ru lui și Dum ne ze u lui nos tru să-icân tăm fin ţi lor mu ce nici ru ga a ţi

Διαβάστε περισσότερα

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!) 1. Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 (αʹ) Υπάρχει μια ομάδα ασκήσεων για κάθε κεφάλαιο των σημειώσεων,

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

2 Variabile aleatoare

2 Variabile aleatoare Variabile aleatoare În practică, variabilele aleatoare apar ca funcţii ce depind de rezultatul efectuării unui anumit experiment. Spre exemplu, la aruncarea a două zaruri, suma numerelor obţinute este

Διαβάστε περισσότερα

Προσωπική Αλληλογραφία Επιστολή

Προσωπική Αλληλογραφία Επιστολή - Διεύθυνση Andreea Popescu Str. Reşiţa, nr. 4, bloc M6, sc. A, ap. 12. Turnu Măgurele Jud. Teleorman 06102. România. Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας,

Διαβάστε περισσότερα

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ε Π Ι Σ Τ Ο Λ Η Δ Ι Ο Ι Κ Η Τ Η Α Υ Γ Ο Υ Σ Τ Ο Σ Μ η ν ι α ί α Ε π ι σ τ ο λ ή ι ο ι κ η τ ή 1 Π ε ρ ι ε χ ό μ ε ν α Σ ε λ ί δ ε ς Τ ο μ ή ν υ μ α τ

Διαβάστε περισσότερα

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης Σηµειώσεις Μιαδικής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Κεφάλαιο 1. Εισαωικά 5 Η αλεβρική δοµή 5 Η τοπολοική δοµή τού 6 Το εκτεταµένο µιαδικό επίπεδο 7 Συνεκτικότητα

Διαβάστε περισσότερα

CIRCUITE DE TELECOMUNICAŢII

CIRCUITE DE TELECOMUNICAŢII UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA GÁL JÁNOS ANDREI CÂMPEANU CIRCUITE DE TELECOMUNICAŢII LUCRĂRI DE LABORATOR TIMIŞOARA 4 Cupri Îdrumător de laborator Lucrarea r. Tehici de modelare pe calculator

Διαβάστε περισσότερα

(G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe Άρτιο και Περιττό μέρος Συνάρτησης Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας e και μιας περιττής συνάρτησης, ως εξής: Αν e και,

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #7 Μοντέλα διαφορικών εξισώσεων για ΓΧΑ Συστήματα Επίλυση Διαφορικών Εξισώσεων Η γραμμική διαφορική εξίσωση δεύτερης τάξης Παραδείγματα Μοντέλα διαφορικών εξισώσεων

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΟ ΔΕΛΤΙΟ ΑΣΦΑΛΕΙΑΣ. Methanol

ΠΛΗΡΟΦΟΡΙΑΚΟ ΔΕΛΤΙΟ ΑΣΦΑΛΕΙΑΣ. Methanol ΠΛΗΡΟΦΟΡΙΑΚΟ ΔΕΛΤΙΟ ΣΕΛΙΔΑ : 1/ 11 Αριθμός αναθεώρησης Ημερομηνία έκδοσης : ΕΝΟΤΗΤΑ 1: Στοιχεία ουσίας/παρασκευάσματος και εταιρείας/επιχείρησης 1.1. Αναγνωριστικός κωδικός προϊόντος Εμπορική Ονομασία

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

Διανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις

Διανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις Διανύσματα ΦΥΣ 131 - Διάλ. 2 1 q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις q Διανύσματα περιγράφουν μέτρο αλλά και κατεύυνση q Αντίετα, βαμωτά μεγέη περιγράφονται μόνο από το μέτρο

Διαβάστε περισσότερα

Ακολουθίες πραγματικών αριθμών

Ακολουθίες πραγματικών αριθμών ΚΕΦΑΛΑΙΟ Ακολουθίες πραγματικών αριθμών Όταν διαδοχικές τιµές που παίρνει µία μεταβλητή προσεγγίζουν απεριόριστα µία συγκεκριµένη τιµή έτσι ώστε τελικά να διαφέρουν από αυτήν λιγότερο από όσο επιθυµεί

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

PVC. D oor Panels. + accessories. &aluminium

PVC. D oor Panels. + accessories. &aluminium PVC &aluminium D oor Panels + accessories 1 index panels dimensions accessories page page page page 4-11 12-46 48-50 51 2 Η εταιρία Dorland με έδρα τη Ρουμανία, από το 2002 ειδικεύεται στην έρευνα - εξέλιξη

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις : Η Εξίσωση Helmholtz Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή εξίσωση Helmholtz σε χωρικές διαστάσεις : ( + k Ψ ( r f( r ( k (6 Η εξίσωση αυτή συνοδεύεται (συνήθως από συνοριακές συνθήκες

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο

Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Σημειώσεις ια το μάθημα Μιαδική Ανάλυση Ι Θέμης Μήτσης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Στις σημειώσεις αυτές, αν η απόδειξη κάποιου θεωρήματος δεν δίνεται, τότε είτε είναι σχεδόν αυτολεξεί

Διαβάστε περισσότερα

1. Bazele aritmetice al calculatoarelor numerice

1. Bazele aritmetice al calculatoarelor numerice . Bzele ritmetice l clcultorelor numerice.. Sisteme de numerţie Un sistem de numerţie (SN) este formt din totlitte regulilor de reprezentre numerelor cu jutorul unor simboluri numite cifre. SN sunt de

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Lenovo

Ανταλλακτικά για Laptop Lenovo Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 4 Διαίρεση τάσης και ρεύματος Λευκωσία, 00 Εργαστήριο 4 Διαίρεση τάσης και ρεύματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Διαταραχών Λογισμού Μεταβολών Άσκηση 3.10, σελίδα 35 από το βιβλίο

Διαβάστε περισσότερα

v r T, 2 T, a r = a r (t) = 4π2 r

v r T, 2 T, a r = a r (t) = 4π2 r Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που

Διαβάστε περισσότερα

6 ΠΑΡΑΓΩΓΟΙ. 6.1 Ορισµοί. Συναρτήσεις

6 ΠΑΡΑΓΩΓΟΙ. 6.1 Ορισµοί. Συναρτήσεις SECTION 6 ΠΑΡΑΓΩΓΟΙ 6. Ορισµοί Συναρτήσεις Γενικά, µε τον όρο συνάρτηση εννοούµε µια απεικόνιση αντιστοίχιση σύµφωνα µε έναν κανόνα) από ένα σύνολο D σε ένα σύνολο R, έτσι ώστε κάθε στοιχείο του D να αντιστοιχίζεται

Διαβάστε περισσότερα

Σηµειώσεις για τα Μαθήµατα Εισαγωγή στην Ανάλυση Ι και Εισαγωγή στην Ανάλυση ΙΙ Θέµης Μήτσης

Σηµειώσεις για τα Μαθήµατα Εισαγωγή στην Ανάλυση Ι και Εισαγωγή στην Ανάλυση ΙΙ Θέµης Μήτσης Σηµειώσεις για τα Μαθήµατα Εισαγωγή στην Ανάλυση Ι και Εισαγωγή στην Ανάλυση ΙΙ Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Κεφάλαιο. Το Αξίωµα τής Πληρότητας 5 Ασκήσεις 9

Διαβάστε περισσότερα

Leonard Dăuş ALGEBRĂ LINIARĂ

Leonard Dăuş ALGEBRĂ LINIARĂ Leod Dăuş LGEBRĂ ş GEOMETRIE LINIRĂ NLITICĂ PefŃă lge lă ş geomet ltcă epetă de multă veme stumete fudmetle petu dscplele mtemtce stcte su plcte Cusule de lgeă lă ş geomete se egăsesc î pogm ltcă ocăe

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΕΣ ΑΛΥΣΙΔΕΣ ΛΙΑΝΙΚΗ ΜΕ ΦΠΑ ΛΙΑΝΙΚΗ ΜΕ ΦΠΑ. ΤΥΠΟΣ AFAM ΜΗΚΟΣ AFAM ΚΩΔΙΚΟΣ ΤΥΠΟΣ AFAM ΚΩΔΙΚΟΣ 415 /0 415F 1 Μέτρο A415F 14,30 AR AR A415F 2,00

ΑΣΦΑΛΕΙΕΣ ΑΛΥΣΙΔΕΣ ΛΙΑΝΙΚΗ ΜΕ ΦΠΑ ΛΙΑΝΙΚΗ ΜΕ ΦΠΑ. ΤΥΠΟΣ AFAM ΜΗΚΟΣ AFAM ΚΩΔΙΚΟΣ ΤΥΠΟΣ AFAM ΚΩΔΙΚΟΣ 415 /0 415F 1 Μέτρο A415F 14,30 AR AR A415F 2,00 ΜΕ ΦΠΑ ΑΣΦΑΛΕΙΕΣ ΜΕ ΦΠΑ 415 /0 415F 1 Μέτρο A415F 14,30 AR AR A415F 2,00 ΜΑΥΡΗ 94 A415F 94L 17,30 MR MR A415F 1,80 ΜΑΥΡΗ 96 A415F 96L 17,70 ΜΑΥΡΗ 98 A415F 98L 18,10 ΜΑΥΡΗ 100 A415F 100L 18,40 ΜΑΥΡΗ 102

Διαβάστε περισσότερα

Φυσική Χημεία Υλικών και Ηλεκτροχημεία. Φασματοσκοπία Εμπέδησης. κινητική μεταφοράς φορτίου. ιδανική χωρητική συμπεριφορά. φ = α π/2 έλεγχος από την

Φυσική Χημεία Υλικών και Ηλεκτροχημεία. Φασματοσκοπία Εμπέδησης. κινητική μεταφοράς φορτίου. ιδανική χωρητική συμπεριφορά. φ = α π/2 έλεγχος από την Φυσική Χημεία Υλικών και Ηλεκτροχημεία Φασματοσκοπία Εμπέδησης PE ρά C εριφο φ έλεγχος έλεγχος από από τη τη διάχυση διάχυση κινητική μεταφοράς φορτίου f *= 1 2 π Rct Cdl συμπ έλεγχος από την αγωγιμότητα

Διαβάστε περισσότερα

( ) Δειγματοληψία από discrete uniform. Έστω τυχαία µεταβλητή Θ που ακολουθεί την διακριτή κατανοµή ( ) = 1, σχηµατικά. 1 2 i i.

( ) Δειγματοληψία από discrete uniform. Έστω τυχαία µεταβλητή Θ που ακολουθεί την διακριτή κατανοµή ( ) = 1, σχηµατικά. 1 2 i i. Δειγματοληψία από discrete uiform Έστω τυχαία µεταβλητή Θ που ακολουθεί την διακριτή κατανοµή π ϑ = ϑ = π για i i i και π i= i =, σχηµατικά ϑ ~ π ϑ ϑ ϑ 2 = π π2 K π Το samplig scheme για την παραπάνω διακριτή

Διαβάστε περισσότερα

Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος.

Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος. Κεφάλαιο ΙΙ Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος. Στο παρόν κεφάλαιο παρουσιάζονται προβλήματα τα οποία αφορούν κυρίως τις εντολές της C οι οποίες ελέγχουν την ροή εκτέλεσης

Διαβάστε περισσότερα

Εξαρτήματα Bosch για ηλεκτρικά εργαλεία 09/10. Αναρρόφηση σκόνης

Εξαρτήματα Bosch για ηλεκτρικά εργαλεία 09/10. Αναρρόφηση σκόνης Αναρρόφηση Επισκόπηση 657 Αναρρόφηση σκόνης Το πρόγραμμα εξαρτημάτων για εξωτερική αναρρόφηση με ειδικούς απορροφητήρες Bosch κατά τη χρήση των επαγγελματικών ηλεκτρικών εργαλείων. Περιστροφικά πιστολέτα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Μαρτίου 7 Ημερομηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

t 1 f[n] t 2 t 3 t 4 f [n] f [-n] -k n

t 1 f[n] t 2 t 3 t 4 f [n] f [-n] -k n Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 221: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 2: Σήματα διακριτού χρόνου!"#!"#! "#$% Σημειώσεις διαλέξεων

Διαβάστε περισσότερα