ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (24 Φεβρ. 2008, 12-3µµ) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (24 Φεβρ. 2008, 12-3µµ) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ"

Transcript

1 ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (24 Φεβρ. 2008, 12-3µµ) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1. α) Σ - Λ : Οι εντολές BLAS-2 µπορούν να υλοποιηθούν να έχουν καλύτερη επίδοση από τις BLAS-3. Απάντηση. Λάθος : Οι εντολές BLAS-3 έχουν µικρότερο ελάχιστο αριθµό µεταφορών ανά πράξη α.κ.υ. από τις πράξεις BLAS «µικρότερων κατηγοριών». Εποµένως, υπό την προϋπόθεση ότι αναφερόµαστε σε υλοποιήσεις που έχουν γίνει µε στόχο την επίτευξη του µικρότερου λόγου µεταφορών προς πράξεις για κάθε κατηγορία, οι πράξεις BLAS-3 ϑα έχουν καλύτερη επίδοση (µετρούµενου µε ϐάση τα Mflops). ϐ) Σ - Λ : Ξεδίπλωµα ϐρόχου γενικά χρησιµοποιείται για να µειώσει το πλήθος πράξεων α.κ.υ. Απάντηση. ΛΑΘΟΣ το ξεδίπλωµα δεν επιφέρει αλλαγή του Ω, µόνον ο ϐρόχος εκτελείται λιγότερες ϕορές αλλά µε περισσότερες εντολές σε κάθε επανάληψη. γ) Εστω στη MATLAB οι εκφράσεις M M, M + 20 M 10, M 10 M Να εξηγήσετε τις τιµές που υπολογίζονται αν το M αρχικοποιηθεί ως realmax. Απάντηση. Το realmax της α.κ.υ. διπλής ακρίβειας είναι της µορφής εποµένως η προσθαφαίρεση αριθµών σαν το 10 και 20 µε αυτό δεν επιφέρει καµια αλλαγή λόγω της απαιτού- µενης κανονικοποίησης και επακόλουθου µηδενισµού τους κατά την πρώτη ϕάση της διαδικασίας. Εποµένως τα αποτελέσµατα ϑα είναι ((M + 20) 10) M = (M 10) M = M M = 0, ((M + 20) M) 10 = (M M) 10 = 10, ((M 10) M) + 20 = (M M) + 20 = 20. δ) Εστω αντιστρέψιµο A R n n µε µικρό δείκτη κατάστασης, b R n και ο υπολογισµός [L, U] = lu(a); x = U\(L\b) (η MATLAB χρησιµοποιεί LAPACK). Ισχύει ή όχι ότι το εµπρός σφάλµα στο υπολογισµένο x δεν ϑα είναι µεγάλο ; Απάντηση. Για την LU γενικού µητρώου δεν µπορεί να αποδειχτεί µικρή πίσω ευστάθεια, που είναι απαραίτητη για να εγγυηθούµε µικρό εµπρός σφάλµα λόγω µικρού δείκτη κατάστασης, εποµένως ΕΝ ΙΣΧΥΕΙ. Βασιζόµαστε και στον γνωστό τύπο (εµπρός σφ.) < (πίσω σφ.) (δείκτης κατ. A). 2. Μας δίδονται α.κ.υ. και ένας αλγόριθµος για να τους αθροίσουµε. Να εξηγήσετε ποιοί από τους παρακάτω ισχυρισµούς είναι σωστοί και ποιοί λάθος : α) Αν αλλάξουµε τον αλγόριθµο άθροισης, µπορεί να αλλάξουν το πίσω σφάλµα και το εµπρός σφάλµα. ϐ) Αν γνωρίζουµε τους α.κ.υ. και τον αλγόριθµο άθροισης, µπορούµε να υπολογίσουµε το ακριβές εµπρός σφάλµα. γ) Αν οι αριθµοί είναι οµόσηµοι, ενας καλός τρόπος άθροισης είναι από το µικρότερο προς το µεγαλύτερο. δ) Αν η απόλυτη τιµή του υπολογισµένου αθροίσµατος είναι πολύ µικρότερη του µέσου όρου των απολύτων τιµών των στοιχείων που αθροίστηκαν, µπορούµε να υποθέσουµε µε ασφάλεια ότι το σχετικό εµπρός σφάλµα στο άθροισµα ϑα είναι και αυτό µικρό. Απάντηση. α) ΣΩΣΤΟ, και τα δυο εξαρτώνται από τον αλγόριθµο και εποµένως τη σειρά άθροισης (εξάλλου το πίσω σφάλµα µετρά τον «δείκτη κατάστασης του αλγορίθµου».) ϐ) ΛΑΘΟΣ, το ακριβές σφάλµα δεν µπορεί να υπολογιστεί γενικά γιατί χρειαζόµαστε αριθµητική άπειρης ακρίβειας. γ) ΣΩΣΤΟ, γιατί τότε µειώνεται η πιθανότητα σφάλµατος από την πρόσθεση αριθµών που διαφέρουν πάρα πολύ σε µέγεθος που ϑα είχε για συνέπεια µηδενισµό των µικρότερων λόγω κανονικοποίησης των εκθετών. Επίσης τα «δ» που συσσωρεύονται στη διάδοση του σφάλµατος επιβαρύνουν περισσότερο τους µικρότερους όρους του αθροίσµατος. δ) ΛΑΘΟΣ : Τυπικό παράδειγµα (1+δ 1 ) (1 δ 2 ) = δ 1 +δ 2 όπου τα δ j είναι πολύ µικρά και περιέχουν κυρίως «ϑόρυβο» από προηγούµενες πράξεις. Κλασικό παράδειγµα που δηµιουργείται πρόβληµα από καταστροφικη απαλοιφή. 3. ίδονται τα στοιχεία A R 10 m και b R m, c R 10 και ϑέλουµε να υπολογίσουµε το y c + Ab. Το n δεν έχει κανέναν περιορισµό. α) Ποιό είναι το Φ min για την πράξη ; ϐ) Να δείξετε πώς µπορείτε να υλοποιήσετε τον πολλαπλασιασµό µε Φ = Φ min χρησιµοποιώντας κρυφή µνήµη και καταχωρητές O(1) (δηλ. προσωρινή µνήµη άµεσης προσβασης µεγέθους ανεξάρτητου του m). Απάντηση. α) Με απλή καταµέτρηση των α.κ.υ. εισόδου/εξόδου που χρησιµοποιούνται στον υπολογισµό, έχουµε 10m για ϕόρτωση του A, m + 10 για ϕόρτωση των c, b, και 10 για την αποθήκευση

2 στο y, συνολικά δηλ. Φ min = 11m ϐ) Η σχετική ύλη υπάρχει και στις διαφάνειες. Συνοψί- Ϲουµε λέγοντας ότι η υλοποίηση µπορεί να κωδικοποιηθεί ως εξής, εφόσον διατίθεται χώρος για την αποθήκευση σε καταχωρητές και cache της τάξης του O(1). Η µεταβλητή temp έχει αναφέρεται σε καταχωρητές µήκους LOAD c 2. for j = 1 : m 3. LOAD b(j) 4. for i = 1 : LOAD A(i, j) 6. temp(i) = c(i) + A(i, j) b(j) 7. end 8. end 9. STORE y = temp 4. α) Τι ϑα εµφανιστεί στην οθόνη αν εκτελέσετε τις παρακάτω εντολές σε περιβάλλον MATLAB και n=3: for j=1:n, A = kron(ones(j,1),[1:j]), end Απάντηση. A = 1 ( ) 1 2 A = 1 2 A = Υπενθυµίζουµε ότι η εντολή kron(a,b) επιστρέφει το γινόµενο Kronecker A B. ϐ) Να ενθέσετε (αιτιολογώντας, πάντα) σε επιπλέον κώδικα που να υπολογίζει όσο µπορείτε πιο α- ξιόπιστα (επιστρέφοντας σε κάποια µεταβλητή) τα Mflop/s των παραπάνω εντολών στο υπολογιστικό σας περιβάλλον. Μπορείτε να υποθέσετε ότι άν A R m A n A, B R m B n B τότε το κόστος του kron(a,b) είναι Ω = m A n A m B n B. Απάντηση. Για συντοµία συµβολίζουµε µε τις εντολές for j=1:n, A = kron(ones(j,1),[1:j]), end. Προσέξτε ότι το Ω ϑα είναι n j=1 j2. Μπορεί να υπολογιστεί από κλασικούς τύπους αθροισµάτων προόδων ή στο πρόγραµµα, συσσωρεύοντας τις πράξεις κάθε επανάληψης σε µεταβλητή. Τότε % εκτέλεση για να αποφευχθεί «ϑόρυβος» από την αρχικοποίηση tic; for j=1:itmax, ; end; optime = toc/itmax; ops = 0; for j=1:itmax, ops = ops+j*j; end; mflops = ops*1e-6/toc; 5. α) Είναι το µοντέλο διάδοσης του σφάλµατος στον πολλαπλασιασµό κινητής υποδιαστολής, x y = x y(1 + δ) όπου δ u, u η µονάδα στρογγύλευσης και x, y αριθµοί κινητής υποδιαστολής, άµεσο επακόλουθο της «αρχής ακριβούς στρογγύλευσης»; Αν ναι, να το δείξετε, αν όχι να εξηγήσετε γιατί. Απάντηση. ΕΙΝΑΙ : Η αρχή προσδιορίζει ότι µε τις παραπάνω συνθήκες, για τον πολλαπλασιασµό ισχύει ότι η πράξη που εκτελείται στη µηχανή έχει ως αποτέλεσµα την ποσότητα που ϑα υπολογιζόταν µε αριθµητική άπειρης ακρίβειας (δηλ. το x y) µε στρογγύλευση (υποθέτουµε προς το πλησιέστερο) µετά, εποµένως το τελικό αποτέλεσµα ϑα είναι x y(1 + δ) όπου δ u. ϐ) Γνωρίζουµε ότι ο κλασικός δείκτης κατάστασης ενός µητρώου ως προς την επίλυση συστήµατος Ax = b ορίζεται ως κ(a) := A A 1 για επιλεγµένη νόρµα. Να δείξετε ένα µητρώο 3 3 για το οποίο το κ(a) είναι πάρα πολύ µεγάλο και το υπολογισµένο x να έχει συγκριτικά πολύ µικρό σχετικό σφάλµα. Απάντηση. Μπορείτε να διαλέξετε ένα διαγώνιο µητρώο A, µε διαγώνιο [1, 1, 1e 10], οπότε ο δείκτης κατάστασης είναι 1e10. Από την άλλη, αν λύσετε το σύστηµα Ax = b, λόγω της διαγώνιας δοµής του A, κάθε στοιχείο της λύσης x υπολογίζεται µε µια διαίρεση, εποµένως το άνω ϕράγµα για το σχετικό σφάλµα κάθε στοιχείου της υπολογισµένης λύσης x ϑα είναι u. 2

3 6. α) Εστω ότι ένα µητρώο H R n n έχει µηδενικά στις ϑέσεις που ϐρίσκονται κάτω από την πρώτη υποδιαγώνιο, δηλ. (3 : n, 1), (4 : n, 2),..., (n, n 1). Να δείξετε ότι (χωρίς οδήγηση και εφόσον υπάρχει) η παραγοντοποίηση LU του H κοστίζει Ω = αn 2 + O(n). Επίσης να υπολογίσετε τον κυρίαρχο συντελεστή α. Απάντηση. Προσέχουµε ότι σε κάθε ϐήµα k = 1,..., n 1 της κλασικής απαλοιφής, χρειάζεται να απαλείψουµε µόνον ένα υποδιαγώνιο στοιχείο (στη ϑέση (k + 1, k)). Εποµένως το κόστος ϑα είναι Ω = n 1 k=1 (1 + n j=k+1 2) εποµένως Ω = n(n 1) + O(n) άρα α = 1. Ο κώδικας µπορεί να είναι ο εξής (προαιρετικά): for k=1:n-1 H(k+1,k) = H(k+1,k)/H(k,k) for j=k+1:n H(k+1,k+1:n) = H(k+1,k+1:n) - H(k+1,k)*H(k+1,k+1:n) end end ϐ) ίδεται A = Να υπολογίσετε διάνυσµα Householder ώστε ο (ορθογώνιος) ανακλαστής P που παράγεται από το διάνυσµα, να µηδενίζει τη ϑέση (4, 2) του µητρώου P A καθώς επίσης και του B = P AP. Επίσης να υπολογίσετε το B (να ϕέρετε σε πέρας όλες τις αριθµητικές πράξεις.) Προσοχή : εν χρειάζεται (δεν είναι εφικτό) να είναι 0 το στοιχείο στη ϑέση (3, 2). Απάντηση. Σε MATLAB, u = [0; 0; A(3 : 4, 2)] + [0, 0, 1, 0] norm(a(3 : 4, 2)), εποµένως u = [0, 0, 8, 4] και υπολογίζεται ότι B = γ) Για κάθε A, µπορεί να υπολογιστεί (π.χ. η συνάρτηση hess στη MATLAB ) ορθογώνιο µητρώο Q ως γινόµενο ανακλαστών Householder, ώστε το QAQ να έχει µηδενικά κάτω από την υποδιαγώνιο. Ο υπολογισµός των Q και QAQ κοστίζουν συνολικά περί τις 5n 3 πράξεις α.κ.υ. Εστω ότι χρειάζεται να υπολογίσετε τις λύσεις x j, j = 1,..., s των s συστηµάτων (A ω j I)x j = b j όπου A R n n και τα ω j είναι πραγµατικοί αριθµοί τέτοιοι ώστε τα µητρώα A ω j I να είναι αντιστρέψιµα και I το ταυτοτικό µητρώο. Να περιγράψετε τα ϐασικά ϐήµατα αλγορίθµου που επιτυγχάνει τη λύση των s συστηµάτων µε κόστος Ω 5n 3 + O(sn 2 ) αντί για O(sn 3 ) που ϑα στοίχιζε αν χρησιµοποιούσατε απευθείας LU. Απάντηση. ΒΙΒΛΙΟ 7. ίδεται η διαφορική εξίσωση u (x)+10 2 (20 u) = 0 στο διάστηµα [0, 10] µε συνοριακές συνθήκες u(0) = 40, u(10) = 200 και ϑέλουµε να προσεγγίσουµε τη λύση µε κεντρισµένες πεπερασµένες διαφορές και ακρίβεια τάξης O(h 2 ), όπου h είναι η απόσταση µεταξύ των ισαπέχοντων κόµβων του πλέγµατος που ϑα χρησιµοποιήσουµε στη διακριτοποίηση. α) Να εξηγήσετε σύντοµα γιατί συνήθως απαιτούµε από τη συνάρτηση u(x) να έχει παραγώγους µέχρι και 4ης τάξης και αυτές να είναι συνεχείς στο διάστηµα [0, 10]. Απάντηση. Από τη ϑεωρία γνωρίζουµε ότι η διακριτοποίηση ϐασίζεται στο συνδυασµό τιµών της συνάρτησης σε επιλεγµένους (γειτονικούς) κοµβους του πλέγµατος και στα σχετικά αναπτύγµατα Taylor. Ειδικότερα, υπό την προϋπόθεση ότι η u διαθέτει τουλάχιστον 4 παραγώγους και συµβολίζοντας µε u j την τιµή της συνάρτησης στον κόµβο j ενός ϕυσικά αριθµηµένου πλέγµατος, µπορούµε να γράψουµε u j±1 = u j ± hu (1) j + h2 2 u(2) j ± h3 6 u(3) j + h4 24 u(4) (x i + θ ± i h) 3

4 όπου 1 < θ i < 0 < θ + i < 1. Εποµένως u j 1 + u j+1 2u j = h 2 u (2) j ) + (u h4 (4) (ξ j + θ + i 24 h) + u(4) (ξ j + θ i h) Εποµένως, το σφάλµα διακριτοποίησης της 2ης παραγώγου σε κάθε σηµείο εξαρτάται άµεσα από την διακριτοποίηση (δηλ. το h) και τη διακύµανση της τιµής του u (4). Το h το επιλέγεται από εµάς, εποµένως µπορούµε να το επιλέξουµε όσο µικρό ϑέλουµε (µόνος περιορισµός είναι το µέγεθος του προκύπτοντος συστήµατος) για να πετύχουµε αποδεκτό σφάλµα. Οµως, παράλληλα, ϑα πρέπει να αποκλείσουµε την περίπτωση να γίνεται το h πολύ µεγάλο. Αυτό εξασφαλίζεται «αυτόµατα» όταν η συνάρτηση u (4) είναι συνεχής στο κλειστό διάστηµα ορισµού της, καθώς τότε, από γνωστό στοιχειώδες ϑεώρηµα της Μαθηµατικής Ανάλυσης, έπεται ότι το u (4) ϑα είναι ϕραγµένο σε όλο το διάστηµα. ϐ) Να υπολογίσετε µητρώο A R 4 4 και δεξιό µέλος b R 4 τέτοια ώστε το διάνυσµα g που ικανοποιεί το σύστηµα Ag = b να προσεγγίζει τη λύση u στους κόµβους. Απάντηση. ιαµερίζουµε το διάστηµα [0,10] σε 4 ισαπέχοντες εσωτερικούς κόµβους εποµένως h = 10/5 = 2 και οι κόµβοι ϑα είναι ξ j = jh για j = 1,..., 4. Χρησιµοποιώντας κεντρισµένες πεπερασµένες διαφορές 2ης τάξης για την προσέγγιση της 2ης παραγώγου ϑα έχουµε u(ξ j 1 ) 2u(x j ) + u(ξ j+1 ) h u(x j ) = 0 εποµένως οι εξισώσεις σε κάθε σηµείο καθορίζονται από τον τύπο που ξαναγράφουµε ως Εποµένως το σύστηµα ϑα είναι 1 h 2 U j 1 ( 2 h )U j + 1 h 2 U j+1 = U j 1 + ( )U j 1 4 U j+1 = U 1 U 2 U 3 U 4 = 1 5 γ) Εστω ότι η παραπάνω διαφορική εξίσωση τροποποιείται σε u (x) (20 u) (1 + x 2 ) = 0. Ποιοί ϑα είναι τώρα οι νέοι παράγοντες A και b; Απάντηση. Για να ληφθεί υπόψη ο νέος παράγοντας 1 + x 2, διαφοροποιείται µόνον το δεξιό µέλος : b = [15.2, 17.2, 37.2, 115.2]. δ) Στη συνέχεια, αλλάζουµε τη συνοριακή συνθήκη του αρχικού προβλήµατος (δηλ. του µέρους (α) ) από u(0) = 40 σε u (0) = 2. Χρησιµοποιώντας κεντρισµένες πεπερασµένες διαφορές 2ης τάξης να γράψετε το νέο σύστηµα που ϑα προκύψει, έστω Âĝ = ˆb. Προσοχή : Τα Â, ˆb µπορεί να έχουν διαφορετικό µέγεθος από πριν. Απάντηση. Με την αλλαγή αυτή δεν γνωρίζουµε πλέον το u(0) αλλά την παράγωγο την οποία προσεγγίζουµε ως U 1 U 1 2h u (0) = 40 U 1 = U ϑεωρώντας ότι U 1 είναι προσέγγιση του u στο 2. Επίσης, γράφουµε την εξίσωση για το σηµείο 0, δηλ. 1 4 U 1 + ( )U U 1 =

5 οπότε 1 4 (U 1 160) + ( )U U 1 = άρα επαυξάνουµε το αρχικό σύστηµα ως εξής : U 0 U 1 U 2 U 3 U 4 = Εστω η διαφορική εξίσωση u (t) = 1000u(t) 300u (t) 30u (t) µε αρχικές τιµές u(0) = 1, u (0) = 0, u (0) = 1. α) Να υπολογίσετε το u(1.6) χρησιµοποιώντας εµπρός Euler και ϐήµα h = 0.8. (Προσοχή : Η εξίσωση είναι 3ης τάξης και είναι προτιµότερο να την µετατρέψετε σε γραµµικό σύστηµα συνήθων διαφορικών εξισώσεων). ϐ) Να εξηγήσετε αν µε το παραπάνω ϐήµα µπορεί να παρουσιαστεί αστάθεια αν συνεχίσετε την προσέγγιση για πολλά ϐήµατα και αν ναι, να υπολογίσετε άνω ϕράγµα για το ϐήµα h ώστε να αποφευχθεί η αστάθεια. Απάντηση. α) Οπως προτείνεται µετατρέπουµε το παραπάνω σε σύστηµα µε την εισαγωγή ϐοηθητικών µεταβλητών (δείτε ϐιβλίο και διαφάνειες): u 1 (t) := u(t), u (t) := u 2 (t), και u (t) := u 3 (t) οπότε η διαφορική µετατρέπεται σε σύστηµα 3 σύνηθων διαφορικών, ως εξής ή για συντοµία d dt u 1(t) u 2 (t) u 3 (t) = d dt u = Au u 1(t) u 2 (t) u 3 (t) όπου u := [u 1, u 2, u 3 ] (παραλείπουµε το t το οποίο εννοείται). Εφαρµόζοντας εµπρός Euler µε το ϐήµα h = 0.8 και U(0) = [1, 0, 1], για να υπολογίσουµε την τιµή στο t = 2h έχουµε έχουµε ότι U(2h) = (I ha)((i ha)u(0)) = [1.64, 657.6, 17937]. Με παχειά γραφή έχουµε συµβολίσει το Ϲητούµενο, δηλ. την προσέγγιση στο u(2h) µε εµπρός Euler. ϐ) Προσέξτε ότι από τη διακύµανση των στοιχείων ϕαίνεται ότι µάλλον υπάρχει αστάθεια! Για να το επιβεβαιώσουµε, εξετάζουµε τη µέγιστη ιδιοτιµή του I ha για το ϐήµα h που χρησιµοποιήσαµε. Οι ιδιοτιµές του A είναι οι ϱίζες του πολυωνύµου λ + 30λ 2 + λ 3 = 0, οπότε λ 1 = λ 2 = λ 3 = 10. Εποµένως µε h = 0.8 η ϕασµατική ακτίνα του I ha ϑα είναι 7 = και ϑα έχουµε αστάθεια. Εδικότερα, το ϐήµα h πρέπει να επιλέγεται µικρότερο από 2/ max λ j = 0.5. γ) Γενικά στην Euler για την επίλυση ενός γραµµικού προβλήµατος του τύπου u = Au, είναι σωστό ή λάθος ότι αν µειωθεί το ϐήµα στο µισό, τότε το µέγιστο ολικό σφάλµα διακριτοποίησης ϑα υποτετραπλασιαστεί. Απάντηση. ΛΑΘΟΣ, το ολικό σφάλµα συµπεριφέρεται όπως το O(1/h) άρα περιµένουµε να υποδιπλασιαστεί. δ) Για καθένα από τα παρακάτω σχετικά µε τις άµεσες µεθόδους Runge-Kutta τάξης 2 και πάνω για την επίλυση της Σ Ε u (t) = f(t, u), να κυκλώσετε αν είναι σωστό ή λάθος : (Σ - Λ) Προβλέπουν τη νέα τιµή συνδυάζοντας την προσέγγιση στο t k µε προσεγγίσεις της παραγώγου της u σε µια ή περισσότερες τιµές του t στο διάστηµα [t k, t k+1 ). Απάντηση. ΣΩΣΤΟ, οι µέθοδοι RK είναι µονοβηµατικές και χρησιµοποιούν ως πληροφορία την προσέγγιση στο t k µε εκτιµήσεις της παραγώγου στο t k και άλλα σηµεία στο παραπάνω διάστηµα. Ο γενικός τύπος είναι s U n+1 = U k + h b i K i i=1 5

6 όπου s K i = f(t n + c i h, U n + h a ij K j ) j=1 (Σ - Λ) Εχουν πιο εκτεταµένο χωρίο ευστάθειας από την πίσω Euler. Απάντηση. ΣΩΣΤΟ, η πίσω ευστάθεια καθορίζεται από χωρία της µορφής D := {z := hλ p n (z) 1}, p n (z) = όπου το πολυώνυµο προκύπτει από την εφαρµογή της µεθόδου στο u = λu. s j=0 z j j! 6

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 5 : Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 8 : Το ιακριτό Μοντέλο Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Ασκηση 1 Εστω ένα µητρώο A το οποίο χρησιµοποιούµε και µητρώο συντελεστών κάποιου γραµµικού συστήµατος A x = b 1.Πώς ϑα λύνατε το γραµµικό

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 08, 5 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Νόρμες πινάκων 2. Δείκτης κατάστασης πίνακα 3. Αριθμητική κινητής

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 27/3/13 Μέθοδος ελαχίστου υπολοίπου (Minimum residual) Θέµα:

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι 2η Εργαστηριακή Ασκηση

Επιστηµονικός Υπολογισµός Ι 2η Εργαστηριακή Ασκηση Επιστηµονικός Υπολογισµός Ι 2η Εργαστηριακή Ασκηση Ηµεροµηνία επιστροφής γιά πλήρη ϐαθµό : 12/12/11, 9 π.µ. Προσοχή: Μπορείτε να συζητήσετε την άσκηση µε συναδέλφους σας αλλά αν διαπιστωθεί αντιγραφή,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

1 Αριθµητική Γραµµική Άλγεβρα: Ασκήσεις

1 Αριθµητική Γραµµική Άλγεβρα: Ασκήσεις Αριθµητική Γραµµική Άλγεβρα: Ασκήσεις. Να επιλυθεί το σύστηµα µε απαλοιφή Gauss: 3x 2x 3 +x 4 = 2x + +x 3 +3x 4 = 6 x +3 +2x 3 +4x 4 = 2x 2 +3x 3 2x 4 = 7 [ΑΠΑΝΤΗΣΗ:x 4 = 0, =, x 3 = 3, x = 2] 2. Να επιλυθεί

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

y r = y r y r 1. y r+ 1 + y r 1 δy r = y r+ 1 y sinh 1 z = z 1 6 z z z7 +,

y r = y r y r 1. y r+ 1 + y r 1 δy r = y r+ 1 y sinh 1 z = z 1 6 z z z7 +, 58 ΚΕΦΑΛΑΙΟ 6. ΙΑΦΟΡΙΚ ΕΣ ΕΞΙΣ ΩΣΕΙΣ Συνεπώς, E = e hd και hd = ln E = ln1 + ). Από την τελευταία σχέση µπορούµε να υπολογίσουµε την τιµή της παραγώγου µιας συνάρτησης σε ένα σηµείο x r, όταν είναι γνωστές

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος ΤΜΗΥΠ Πανεπιστήµιο Πατρών ιαφάνειες διαλέξεων 28/2/12 Μαθηµατική Οµάδα Οµάδα είναι ένα σύνολο F µαζί µε µία πράξη + : F F F έτσι ώστε (Α1) α + (β + γ) = (α + β) + γ για

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

3. Γραμμικά Συστήματα

3. Γραμμικά Συστήματα 3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 2: Παραγοντοποίηση LU Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

1 Πολυωνυµική Παρεµβολή

1 Πολυωνυµική Παρεµβολή 1 Πολυωνυµική Παρεµβολή εδοµένων n + 1 ανά δύο διαφορετικών σηµείων x o, x 1, x,..., x n και των αντίστοιχων συναρτησιακών τιµών y o = f(x o ), y 1 = f(x 1 ), y = f(x ),...,y n (x n ) επιθυµούµε να προσεγγίσουµε

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ . ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Αριθµητική επίλυση γραµµικών συστηµάτων Στην παρούσα ενότητα µελετούµε αριθµητικές µεθόδους επίλυσης γραµµικών συστηµάτων, συστηµάτων δηλαδή της µορφής = b =

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν Επαναληπτικές δοµές Η λογική των επαναληπτικών διαδικασιών εφαρµόζεται όπου µία ακολουθία εντολών εφαρµόζεται σε ένα σύνολο περιπτώσεων που έχουν κάτι κοινό. Όταν ψάχνουµε θέση για να παρκάρουµε κοντά

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 1 ο 1 Εισαγωγή Έντυπα εγχειρίδια ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, ΑΚΡΙΒΗΣ Γ.Δ., ΔΟΥΓΑΛΗΣ Β.Α. Αριθμητική ανάλυση με εφαρμογές σε matlab & mathematica,

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 4 : Μοντέλο Αριθµητικής και Σφάλµατα Υπολογισµού Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4) -- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,

Διαβάστε περισσότερα

Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα)

Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) ιδάσκων: Επίκ Καθηγητής ΦΤζαφέρης 14 Μαρτίου 2019 ιδάσκων: Επίκ Καθηγητής ΦΤζαφέρης Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) 14 Μαρτίου

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι εύτερη εργαστηριακή άσκηση

Επιστηµονικός Υπολογισµός Ι εύτερη εργαστηριακή άσκηση Επιστηµονικός Υπολογισµός Ι εύτερη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 29/12/2010 26 Νοεµβρίου 2010 Με fl (x) συµβολίζεται (όπως και στις σηµειώσεις του µαθήµατος) η αναπαράσταση σε αριθµητική

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Παρεµβολή και Προσέγγιση Συναρτήσεων

Παρεµβολή και Προσέγγιση Συναρτήσεων Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 27/2/13 Επαναληπτικές µέθοδοι και «τεχνολογία αραιών µητρώων»

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Ιδιότητες. Σχετικά µετο. είναι το αντίστροφο τουαβ ΑΒ; Ποιό. Προσοχή. Αντίστοιχα µε τους βαθµωτούς: αρκεί αβ 0 ισχύει (A+B) ισχύουν όµως

Ιδιότητες. Σχετικά µετο. είναι το αντίστροφο τουαβ ΑΒ; Ποιό. Προσοχή. Αντίστοιχα µε τους βαθµωτούς: αρκεί αβ 0 ισχύει (A+B) ισχύουν όµως Ιδιότητες Ποιό είναι το αντίστροφο τουαβ ΑΒ; Αντίστοιχα µε τους βαθµωτούς: (αβ) -1 = β -1 α -1 αρκεί αβ 0 ισχύει (ΑΒ) -1 = B -1 A -1 αρκεί να υπάρχουν τα A -1, B -1 Προσοχή υπάρχει µια διαφορά ποιά; Σχετικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2016/nt2016.html Πέµπτη 7 εκεµβρίου 2016 Ασκηση 1. Για κάθε

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 19 εκεµβρίου 2015 Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση Κεφάλαιο 3 Πρόβλημα δύο σημείων Σε αυτό το κεφάλαιο θα μελετήσουμε τη μεθόδο πεπερασμένων διαφορών για προβλήματα Σ.Δ.Ε. δεύτερης τάξεως, τα οποία καλούνται και προβλήματα δύο σημείων. Ο λόγος που θα ασχοληθούμε

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Συστήματα Γραμμικών Εξισώσεων Εισαγωγή Σύστημα γραμμικών εξισώσεων a x a x a x b 11

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα