n n su realni brojevi, a n, koji mora biti cjelobrojna

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "n n su realni brojevi, a n, koji mora biti cjelobrojna"

Transcript

1 Aproksmrnje podtk Aproksmrnje podtk krvuljom Aproksmrnje podtk krvuljom (engl. curve ttng), nzv se još regresjsk nlz (engl. regresson nlss), je postupk uklpnj unkcje u skup točk koje predstvljju određene podtke. T unkcj može služt ko mtemtčk model th podtk možd neće prolzt n kroz jednu točku, l modelr podtke s njmnjom mogućom pogreškom. Izor unkcj koje se mogu upotrjet z proksmrnje podtk krvuljom nje nčm ogrnčen. Vrlo često se korste polnom, rconlne, eksponencjlne logrtmske unkcje. Buduć d postoj velk roj unkcj, pronlženje odgovrjuće unkcje z proksmrnje podtk krvuljom može t složen postupk. Ponekd postoje određene nznke n osnovu kojh se može zključt koj vrst unkcje odgovrl određenom skupu podtk. U drugm slučjevm, potreno je sprovt rzlčte krvulje kko se otkrl moguć olc unkcje koj doro proksmrl podtke. Polnom (engl. polnomls) su mtemtčk zrz koj se često korste z rješvnje zdtk modelrnje u prrodnm tehnčkm znnostm. Polnom su unkcje koje mju sljedeć olk: n n ( ) 0 n n K Koecjent polnom, n n, K,, 0 su reln rojev, n, koj mor t cjelorojn poztvn vrjednost, predstvlj stupnj l red polnom. Rješenj polnom su vrjednost rgument z koje je vrjednost polnom jednk nul, p se često zovu nule (l korjen) polnom. Polnom se mogu upotrjet z proksmrnje podtk n dv nčn. U prvom slučju polnom prolz kroz sve točke, dok u drugom slučju, polnom ne prolz ovezno kroz sve točke, l pk doro proksmr podtke. Kd postoj n točk (, ), može se npst polnom stupnj n- koj prolz kroz sve točke. Koecjent polnom se mogu odredt tko što se svk točk zmjen u polnomu, ztm se rješ sstem s n jedndž d se zrčunl koecjent. Kd postoj n točk, može se npst polnom stupnj mnjeg od n-, koj ne prolz možd n kroz jednu točku, l omogućv proksmrnje podtk. Njčešć metod pronlženj njolje proksmcje točk, je metod njmnjh kvdrt (engl. lest squres method). Po toj metod, koecjent polnom se određuju mnmzrnjem zroj kvdrt rzlke zmeđu vrjednost polnom određenog stupnj vrjednost podtk u svm

2 Aproksmrnje podtk točkm. Rezdul (engl. resdul) u svkoj točk se denr ko rzlk zmeđu vrjednost polnom vrjednost podtk. Nek je potreno odredt koecjente polnom prvog stupnj koj proksmr podtke točke. Nek su koordnte točk (, ), (, ), (, ) (, ), polnom prvog stupnj može se npst ko ( ) 0 zmeđu vrjednost unkcje koordnt (, ), R ( ). Rezdul u svkoj točk predstvlj rzlku R. Jedndž koj zrčunv zroj kvdrt rezdul R u svm točkm zgled ovko: R [ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] l nkon zmjene jedndžom polnom prvog stupnj u svkoj točk: R [ ] [ ] [ ] [ ] Rezdul R je unkcj. Njmnj vrjednost R se može zrčunt prcjlnm dervrnjem R u odnosu n, što dje dvje jedndže koje se ztm zjednče s nulom: 0 R 0 R 0 0 Rezultt je sstem od dvje jedndže s dvje nepoznnce, te rješvnje th jedndž dje vrjednost koecjent polnom prvog stupnj koj njolje proksmr podtke. Ist postupk se može upotrjet n vše točk d se dol polnom všeg stupnj. Potreno je stknut d polnom koj prolz kroz sve točke, l polnom všeg stupnj, ne predstvljju ovezno njolju proksmcju podtk. Polnom vsokog stupnj mogu ponekd znčjno odstupt od podtk. Prmjer. Nek je zdn skup od 7 točk (, ) kojeg je potreno proksmrt polnomm od prvog do šestog stupnj: 0,9,,0,0,0 8,0 9, 0,9,,,,,9,

3 Aproksmrnje podtk n n n n n n Slk. Aproksmrnje podtk pomoću polnom rzlčtog stupnj

4 Aproksmrnje podtk Polnom prvog stupnj (n): 0,88 0,998,0 Polnom drugog stupnj (n): 0,07,00 0,080,99 Polnom trećeg stupnj (n): 0,0 0,00,8,8, Polnom četvrtog stupnj (n): 0,00 0,89,07,09,7, Polnom petog stupnj (n): 0,00 0,078 0,88,77,9,9 Polnom šestog stupnj (n):,97 0,00 0,7,790 9,9,990 8,0 0,00 Aproksmrnje podtk plohom Moguće je proksmrt podtke u m dmenzj, odnosno ko postoj n podtk (,, K, m, z ) može se pronć mtemtčk unkcj (,, K, m ) koj proksmr te podtke. Nek je potreno odredt koecjente polnom drugog stupnj s dvje vrjle koj proksmr podtke točke. Nek su koordnte točk (, z ), (, z ) (,,,, z,, z ), polnom drugog stupnj s dvje vrjle može se npst ko (, ) zmeđu vrjednost unkcje koordnt. Rezdul R u svkoj točk predstvlj rzlku (,, z ), R ( ) z ( ),,. Jedndž koj zrčunv zroj kvdrt rezdul R u svm točkm zgled ovko:

5 Aproksmrnje podtk ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ],,,, z z z z R Rezdul R je u ovom slučju unkcj,,,,. Njmnj vrjednost R se može zrčunt prcjlnm dervrnjem R u odnosu n,,,,, što dje šest jedndž koje se ztm zjednče s nulom: 0 R, 0 R, 0 R, 0 R, 0 R 0 R Rezultt je sstem od šest jedndž s šest nepoznnc,,,,, te rješvnje th jedndž dje vrjednost koecjent polnom drugog stupnj s dvje vrjle koj njolje proksmr podtke. Ist postupk se može upotrjet n vše točk d se dol polnom všeg stupnj s dvje vrjle. I u vše dmenzj se često korste polnom rconlne unkcje z proksmrnje podtk. Tko npr. polnom drugog stupnj s dvje vrjle m sljedeć olk: ( ), z, polnom trećeg stupnj s dvje vrjle m sljedeć olk: ( ) , z, rconln unkcj drugog stupnj s dvje vrjle m sljedeć olk: ( ), z, te rconln unkcj trećeg stupnj s dvje vrjle m sljedeć olk: ( ) , z

6 Aproksmrnje podtk Iz ovh prmjer je vdljvo d je roj koecjent koje je potreno zrčunt velk te d se povećv s stupnjem polnom dmenzjom prolem. Izor unkcj u vše dmenzj koje se mogu upotrjet z proksmrnje podtk, ko u dvodmenzonlnom slučju, nje nčm ogrnčen. U nstvku će t prkzno nekolko proksmcj podtk plohom z slučjeve polnom drugog stupnj s dvje vrjle rconlne unkcje drugog stupnj s dvje vrjle. U sv tr, u nstvku prkzn, prmjer podc su proksmrn unkcjm n temelju prethodnog znnj. Orgnln podc doven su pomoću polnom drugog stupnj s dvje vrjle poznth koecjent s dodtkom šum (prmjer..) rconlne unkcje drugog stupnj s dvje vrjle poznth koecjent s dodtkom šum (prmjer.). Šum su slučjn rojev z normlne rzdoe s srednjom vrjednošću nul određenom stndrdnom devjcjom (uočjeno oznčvnje slučjnh rojev koj se ponšju prem normlnoj rzdo je N ( μ,σ )). U stvrnm slučjevm kd nje poznto prem kojoj mtemtčkoj unkcj se ponšju podc potreno je sprovt rzlčte unkcje kko se odredlo koj od njh njolje proksmr podtke. Prmjer. Nek je zdn skup od 00 točk (, z ) polnomom drugog stupnj s dvje vrjle:, kojeg je potreno proksmrt z -,0000 -,0000,009 -,0000 -, 0,90 -,0000 -,,0 -,0000-0,7 7,8 -,0000-0, 7,89 -,0000 0,, -,0000 0,7,888 -,0000, 0,878 -,0000, 7,87 -,0000,0000,0 -, -,0000,9 -, -,,9 -, -,,709 -, -0,7,788 -, -0,,9 -, 0, 7,99 -, 0,7,8 -,, 9,08 -,,,9 -,,0000 0,9 -, -,0000 7,8 -, -,,9779 -, -,,7

7 Aproksmrnje podtk -, -0,7,79 -, -0,,70 -, 0, -,878 -, 0,7,09 -,, 9,7 -,,, -,,0000,08-0,7 -,0000,97-0,7 -,,78-0,7 -, 7, -0,7-0,7, -0,7-0,,0-0,7 0, 0,70-0,7 0,7,70-0,7,,00-0,7,,8-0,7,0000 7,8-0, -,0000, -0, -,,99-0, -,,9-0, -0,7,0-0, -0, 0,909-0, 0, -0,98-0, 0,7,8870-0,,,9-0,, 9,879-0,,0000 7,907 0, -,0000,800 0, -, 8,8 0, -,,79 0, -0,7,7 0, -0, -,87 0, 0, 0,7 0, 0,7,8 0,,,98 0,, 7,0 0,,0000,988 0,7 -,0000 7,8 0,7 -,,7 0,7 -,,88 0,7-0,7 0,8 0,7-0,,089 0,7 0,,0 0,7 0,7-0,7 0,7, 7,7 0,7,, 0,7,0000,779, -,0000 8,08, -,,7, -,,09, -0,7,, -0,,0 7

8 Aproksmrnje podtk, 0,,070, 0,7,007,, 0,87,,,9,,0000 0,7, -,0000,979, -,,8, -,,797, -0,7,77, -0,,97, 0,,0, 0,7,8,,,080,,,87,,0000 9,97,0000 -,0000,7,0000 -, 9,9,0000 -,,7,0000-0,7 9,077,0000-0,,8,0000 0,,97,0000 0,7 0,9,0000,,89,0000, 8,088,0000,0000,8 Metodom njmnjh kvdrt zrčunt su koecjent polnom drugog stupnj s dvje vrjle: (, ) z (, ) 0,0 0,08 0,0 0,,9,09 z 0,07 Orgnln podc doven su unkcjom: (, ) N(0, ) z 8

9 Aproksmrnje podtk.. Slk. Orgnln podc () podc proksmrn polnom drugog stupnj s dvje vrjle () Prmjer. Nek je zdn skup od 00 točk (, z ) polnomom drugog stupnj s dvje vrjle:, kojeg je potreno proksmrt z -,0000 -,0000,88 -,0000 -,8889,00 -,0000 -,7778,9 -,0000 -,7 7,00 -,0000-0,,09 -,0000 0,,778 -,0000,7 9,7 -,0000,7778,9 -,0000,8889 8,887 -,0000,0000 0,9 -,8889 -,0000-8,807 -,8889 -,8889,87 -,8889 -,7778 0, -,8889 -,7,97 -,8889-0,, -,8889 0,,9 -,8889,7,8 -,8889,7778 0,8 -,8889,8889-0,7 -,8889,0000-9,00 -,7778 -,0000-8,90 -,7778 -,8889 -,77 -,7778 -,7778,0 -,7778 -,7 0,9 -,7778-0,,0878 -,7778 0, -0,09 -,7778,7 8,08 -,7778,7778 -,878 -,7778,8889-9,878 9

10 Aproksmrnje podtk -,7778,0000-7,89 -,7 -,0000 -,7 -,7 -,8889-9,77 -,7 -,7778 -,8 -,7 -,7,78 -,7-0,,9 -,7 0,,7 -,7,7 -,9090 -,7,7778 -,07 -,7,8889 -,99 -,7,0000 -,97-0, -,0000-7,90-0, -,8889-0,89-0, -,7778 -, -0, -,7 -, -0, -0,,08-0, 0, -,8-0,,7-0,080-0,,7778-8,978-0,,8889-9,8-0,,0000-7, 0, -,0000-7,8 0, -,8889 -,9 0, -,7778 -,07 0, -,7 -,788 0, -0, -,98 0, 0,,807 0,,7 -,97 0,,7778 -, 0,,8889 -,97 0,,0000-9,988,7 -,0000 -,,7 -,8889 -,7,7 -,7778-0,809,7 -,7,9,7-0,,99,7 0,,89,7,7 0,98,7,7778-0,,7,8889 -,99,7,0000-0,0,7778 -,0000 -,08,7778 -,8889-7,888,7778 -,7778,78,7778 -,7,99,7778-0, 7,9,7778 0,,8,7778,7 0,0,7778,7778-0,88,7778,8889 -,0,7778,0000 -,07,8889 -,0000-0,0 0

11 Aproksmrnje podtk,8889 -,8889 -,0,8889 -,7778,9,8889 -,7,9,8889-0,,97,8889 0, 8,9,8889,7,70,8889,7778 9,9,8889,8889,8,8889,0000 -,8,0000 -,0000,,0000 -,8889 7,0,0000 -,7778 8,9790,0000 -,7,808,0000-0,,7,0000 0,,79,0000,7,00,0000,7778,777,0000,8889,8,0000,0000 -,80 Metodom njmnjh kvdrt zrčunt su koecjent polnom drugog stupnj s dvje vrjle: (, ) z z (, ) 0,9 0,080 0,9 0,0,07 0,99 7, Orgnln podc doven su unkcjom: (, ) N(0,) z.. Slk. Orgnln podc () podc proksmrn polnom drugog stupnj s dvje vrjle ()

12 Aproksmrnje podtk Prmjer.: Nek je zdn skup od 00 točk (, z ) rconlnom unkcjom drugog stupnj s dvje vrjle:, kojeg je potreno proksmrt z,0000,0000 0,8,0000,7778 0,7,0000, 0,7,0000, 0,9,0000, 0,8,0000,8889 0,0,0000,7 0,7,0000, 0,899,0000 7, 0,,0000 8,0000 0,,7778,0000 0,90,7778,7778 0,90,7778, 0,7,7778, 0,,7778, 0,799,7778,8889 0,7,7778,7 0,09,7778, 0,9,7778 7, 0,8,7778 8,0000 0,0,,0000 0,8,,7778 0,97,, 0,89,, 0,70,, 0,8,,8889 0,,,7 0,8,, 0,0, 7, 0,800, 8,0000 0,00,,0000 0,00,,7778 0,90,, 0,97,, 0,99,, 0,88,,8889 0,7,,7 0,7,, 0,9, 7, 0,77, 8,0000 0,00,,0000 0,,,7778 0,80,, 0,889,, 0,898,, 0,900,,8889 0,8077,,7 0,78

13 Aproksmrnje podtk,, 0,77, 7, 0,7078, 8,0000 0,80,8889,0000 0,787,8889,7778 0,7,8889, 0,8,8889, 0,97,8889, 0,88,8889,8889 0,890,8889,7 0,88,8889, 0,78,8889 7, 0,797,8889 8,0000 0,98,7,0000 0,09,7,7778 0,88,7, 0,879,7, 0,9,7, 0,98,7,8889 0,97,7,7 0,908,7, 0,807,7 7, 0,8,7 8,0000 0,7,,0000 0,7,,7778 0,8,, 0,88,, 0,907,, 0,89,,8889 0,888,,7 0,89,, 0,90, 7, 0,898, 8,0000 0,78 7,,0000 0,9 7,,7778 0,9 7,, 0,70 7,, 0,89 7,, 0,908 7,,8889 0,90 7,,7 0,897 7,, 0,88 7, 7, 0,8 7, 8,0000 0,880 8,0000,0000 0,08 8,0000,7778 0,9 8,0000, 0,98 8,0000, 0,8 8,0000, 0,97 8,0000,8889 0,890 8,0000,7 0,900 8,0000, 0,9078 8,0000 7, 0,8

14 Aproksmrnje podtk 8,0000 8,0000 0,89 Metodom njmnjh kvdrt zrčunt su koecjent rconlne unkcje drugog stupnj s dvje vrjle: z z (, ) 0,707 0,097 0,0789 0,87 0,09 0, 0,9 0,000 0,007 0,09 (, ) 0,0 0,7 0,089 Orgnln podc doven su unkcjom: 0, z, 0, 0, ( ) (0, 0,0) N.. Slk. Orgnln podc () podc proksmrn rconlnom unkcjom drugog stupnj s dvje vrjle ()

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

VEKTORI (m h) brzina, akceleracija, sila, kutna brzina, električno polje, magnetsko polje

VEKTORI (m h) brzina, akceleracija, sila, kutna brzina, električno polje, magnetsko polje sklr VEKTORI (m h) velčn ko e potpuno određen relnm roem (sklrom) Prmer ms, energ, tempertur, rd, sng, oum tel vektor dužn kod koe e određeno ko e nen run točk početn, ko vršn nv se usmeren dužn l vektor

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

R A D N I M A T E R I J A L I

R A D N I M A T E R I J A L I Krmen Rivier R A D N I M A T E R I J A L I M A T E M A T I K A II. dio SPLIT 7. IV. FUNKCIJE 4.. POTREBNO PREDZNANJE 4.. REALNE FUNKCIJE JEDNE VARIJABLE 4.. INTERPOLACIJA 7 4.. NEKE OSNOVNE ELEMENTARNE

Διαβάστε περισσότερα

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora ortorjske vježe z predet ootk uprvljje prozvod sste Vjež Vjež Alz stez sste regulcje rze vrtje stosjerog otor Clj vježe: Stez regultor rze vrtje stosjerog otor pooću etod tehčkog setrčog optu Alzrt dčko

Διαβάστε περισσότερα

Numerička integracija

Numerička integracija umerčk tegrcj Zdtk umerčke tegrcje umerčk tegrcj je postupk zrčuvj prlže vredost određeog tegrl: < d. z vredost podtegrle ukcje dt uređeom telom čemu pretpostvljmo d je: pr... Bzr se ko umerčko derecrje

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1. METODE RJEŠAVANJA NELINEARNE JEDNADŽBE S JEDNOM NEPOZNANICOM

1. METODE RJEŠAVANJA NELINEARNE JEDNADŽBE S JEDNOM NEPOZNANICOM . METODE RJEŠAVANJA NELINEARNE JEDNADŽBE S JEDNOM NEPOZNANICOM. METODA BISEKCIJE.. METODA Nakon početnog stražvanja unkcje poznat su nam Kako može zgledat na ntervalu [ l, d ]? <

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ : BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

Skup prirodnih brojeva...

Skup prirodnih brojeva... Kompleksn brojev Skup prrodnh brojeva Skup cjelh brojeva Skup raconalnh brojeva Skup raconalnh brojeva Skup realnh brojeva Skup magnarnh brojeva Skup kompleksnh brojeva Računske operacje s kompleksnm brojevma

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 2

I N Ž E N J E R S K A M A T E M A T I K A 2 I N Ž E N J E R S K A M A E M A I K A P r e d v j G L A V A 8 OURIEROVI REDOVI, OURIEROVI INEGRALI I OURIEROVA RANSORMACIJA 8.. U v o d m cresc eudo. [Gs rse šrejem.] Lsk posovc ourerov red je jed od jvžjh

Διαβάστε περισσότερα

Formule iz Matematike II. Mandi Orlić Tin Perkov

Formule iz Matematike II. Mandi Orlić Tin Perkov Formule iz Mtemtike II Mndi Orlić Tin Perkov INTEGRALI NEODREDENI INTEGRALI Svojstv 1. (f(x) ± g(x)) = ± g(x) 2. = Tblic integrl f(x) F(x) + C x + C x x +1 +1 + C 1 x ln x + C 1 x+b ln x + b + C e x e

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

povratnog napona 6 prekidača na slici 1.

povratnog napona 6 prekidača na slici 1. Prktikum iz elektroenergetike Lortorij Elektro Mgneti Trnzient Progrm (EMTP) Zdtk Primjer prorčun prelznog povrtnog npon (prekidnje liskog krtkog spoj) Potreno je prorčunti prijelzni povrtni npon n kontktim

Διαβάστε περισσότερα

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka?

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka? MATEMATIKA Zdci s držvne mture viš rzin Brojevi i lgebr Funkcije Jedndžbe i nejedndžbe Geometrij Trigonometrij LINEARNA FUNKCIJA 1. Uz koji uvjet jedndžb A+By+C=0 predstvlj prvc?. Koje je znčenje broj

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Ovdje će se prikazati dva primjera za funkciju cilja sa dvije varijable: kružnicu i elipsu.

Ovdje će se prikazati dva primjera za funkciju cilja sa dvije varijable: kružnicu i elipsu. Neke metode z nelnearnog programranja Od metoda nelnearnog programranja koje se korste za rješavanje nekh problema sa specfčnom funkcjom clja zdvojt će se sljedeće: a) grafčka metoda, b) metoda neposrednog

Διαβάστε περισσότερα

Elementi analitičke geometrije u prostoru R 3

Elementi analitičke geometrije u prostoru R 3 UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Vldm Tutć Element nltčke geometje u postou R 3 Mste d Nov Sd 00. godn. Sdžj ELEMENTI ANALITIČKE GEOMETRIJE U

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Elementi atomske i kvantne fizike

Elementi atomske i kvantne fizike Elekroehnčk fkule u Beogru Ker z Mkroelekronku ehnčku fzku Elemen omske kvnne fzke Dr Dejn Gvozć Dr Dejn Gvozć: Elemen omske kvnne fzke. Isorjsk perspekv. 900 R M Plnck- n prolemu zrčenj crnog el uvođenje

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine.

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine. KONSRUKIVNI ZI (ROUGO) Rešvje kotruktivih zdtk je jed od jtežih olti koj v ček ove godie. Zhtev doro predzje, pozvje odgovrjuće teorije. Zto vm mi preporučujemo d e jpre podetite teorije veze z trougo

Διαβάστε περισσότερα

Proračun kratkih spojeva 172. Poglavlje 3 PRORAČUN KRATKIH SPOJEVA

Proračun kratkih spojeva 172. Poglavlje 3 PRORAČUN KRATKIH SPOJEVA Prorčun krtkh spojev 7 Poglvlje PRORAČN KRAKH SPOJEVA Prorčun krtkh spojev 7 tk N sl monofzno je prkzn trofzn elektroenergetsk sstem s prmetrm element sstem nekom režmu r sstem kroz kč (P) protče fzn struj

Διαβάστε περισσότερα

Dru{tvo matemati~ara Srbije. Republi~ki seminar 2011, Novi Sad, Srbija. Pripremawe u~enika osnovnih {kola za takmi~ewa iz matematike

Dru{tvo matemati~ara Srbije. Republi~ki seminar 2011, Novi Sad, Srbija. Pripremawe u~enika osnovnih {kola za takmi~ewa iz matematike Dru{tvo mtemti~r Srije Repuli~ki seminr 0, Novi Sd, Srij Pripremwe u~enik osnovnih {kol z tkmi~ew iz mtemtike \or e Brli}, Mtemti~ki institut SANU, Beogrd, Srij Zdrvko Cvetkovski, Evropski univerzitet,

Διαβάστε περισσότερα

Neprekinute slu cajne varijable

Neprekinute slu cajne varijable 5 Neprekinute slu cjne vrijble Slu cjnevrijbleirzdiobe Funkcije neprekinutih slu cjnihvrijbli6 Rije senizdtci Zdtci z vje zbu 8 5 Slu cjne vrijble i rzdiobe U ovom ćemo poglvlju prou cvti slu cjne vrijble

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

SIMULACIJA TOKOVA MATERIJALA

SIMULACIJA TOKOVA MATERIJALA MAŠINSKI FAKULTET NIŠ - ROGRAMSKI AKETI 7/8 Educto d Culture redvje -3 SIMULACIJA TOKOVA MATERIJALA Modelrje Sstem Jed ojekt se može smtrt sstemom ko sujv sledeće uslove: - ko se može defst solj reoztljv

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler

Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler Integrli Frnk Mirim Brückler Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcij (primitivn funkcij) zdne funkcije f : I R (gdje je I otvoren intervl) je svk

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

( ) 2. 3 upisana je kocka. Nađite brid kocke.

( ) 2. 3 upisana je kocka. Nađite brid kocke. Zdtk 00 (Tomislv, tehničk škol) Kugli polumje upisn je kok. Nđite id koke. Rješenje 00 ko je kugli upisn kok, ond je pomje kugle jednk postonoj dijgonli koke: =. Poston dijgonl koke čun se fomulom: D =.

Διαβάστε περισσότερα

skup prirodnih brojeva N = {1, 2, 3...} skup cijelih brojeva Z = {... 3, 2, 1, 0, 1, 2, 3...} skup racionalnih brojeva Q = n : m Z, n N }

skup prirodnih brojeva N = {1, 2, 3...} skup cijelih brojeva Z = {... 3, 2, 1, 0, 1, 2, 3...} skup racionalnih brojeva Q = n : m Z, n N } SKUP KOMPLEKSNIH BROJEVA Brojev su jedno od područja najšreg nteresa matematčara matematčke znanost. Put od prrodnh do realnh brojeva, koj je trajao tsućljećma, danas svak školarac prelaz već tjekom svojeg

Διαβάστε περισσότερα

UVOD. Ovi nastavni materijali namijenjeni su studentima

UVOD. Ovi nastavni materijali namijenjeni su studentima UVOD Ovi nstvni mterijli nmijenjeni su studentim u svrhu lkšeg prćenj i boljeg rzumijevnj predvnj iz kolegij mtemtik. Ovi mterijli čine suštinu nstvnog grdiv p, uz obveznu literturu, mogu poslužiti studentim

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

I N Ţ E N J E R S K A M A T E M A T I K A 1

I N Ţ E N J E R S K A M A T E M A T I K A 1 I N Ţ E N J E R S K A M A T E M A T I K A Quod ert demostrdum. [ Što je treblo dokzti. Skrćeo: Q.e.d.] LATINSKI PREVOD EUKLIDOVIH RIJEČI. P r e d v j z š e s t u s e d m i u s t v e u kdemskoj 8/9. odii

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

IUPAC nomenklatura cikloalkana Imenuju se tako što se na ime alkana doda prefiks ciklo. Cikloalkil-grupe:

IUPAC nomenklatura cikloalkana Imenuju se tako što se na ime alkana doda prefiks ciklo. Cikloalkil-grupe: IKLOALKANI n n iklični ugljovodonici gd su tomi mñusobno povzni vzm. Prstnovi (broj tom u prstnu): mli (-4), obični (5-7), srdnji (8-1), vliki (1...). IUPA nomnkltur ciklolkn Imnuju s tko što s n im lkn

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Teorija mašina i mehanizama

Teorija mašina i mehanizama Teoj mšn mehnzm S A D R Ž A J. FUNKCIJA, VRSTE I STRUKTURA MEHANIZAMA... 3.. Funkcj mehnzm... 3.. Vste mehnzm... 5.3. Stuktu mehnzm... 6. ANALIZA POLUŽNIH MEHANIZAMA..... Polužn četvoougo..... Tenutn pol.

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

Matematička analiza 4

Matematička analiza 4 Mtemtičk nliz 4 Drgn S. Dor dević 14.5.214. 2 Sdržj Predgovor 5 1 Integrcij 7 1.1 Žordnov mer u R n....................... 7 1.1.1 Mer prvougonik u R 2................ 7 1.1.2 Mer n-intervl u R n..................

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Εισαγωγή στην Γραμμική Παλινδρόμηση

Εισαγωγή στην Γραμμική Παλινδρόμηση ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών

Διαβάστε περισσότερα

KRIVULJE RASPODJELE. Doc.dr.sc. Vesna Denić-Jukić

KRIVULJE RASPODJELE. Doc.dr.sc. Vesna Denić-Jukić KRIVULJE RASPODJELE Doc.dr.sc. Vesna Denć-Jukć Krvulje raspodjele predstavljaju zakon vjerojatnost pojave neke hdrološke velčne. Za slučajnu varjablu X kažemo da je poznata ako znamo zakon njene raspodjele.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj

GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj GEMETRIJK VERVTNĆ U slučju kd se ishod nekog oi definiše slučjnim oložjem čke u nekoj oblsi, ri čemu je roizvoljni oložj čke u oj oblsi jednko moguć, korisimo geomerijsku verovnoću. ko, recimo, obeležimo

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Mališa Žižoviæ Olivera Nikoliæ

Mališa Žižoviæ Olivera Nikoliæ Mliš Žižoviæ Oliver Nikoliæ UNIVERZITET SINGIDUNUM Prof. dr Mliš Žižović Prof. dr Oliver Nikolić KVANTITATIVNE METODE Šesto izmejeo i dopujeo izdje Beogrd,. KVANTITATIVNE METODE Autori: Prof. dr Mliš Žižović

Διαβάστε περισσότερα

M A T E M A T I Č K A A N A L I Z A

M A T E M A T I Č K A A N A L I Z A Miloš Miličić M A T E M A T I Č K A A N A L I Z A Akdemsk miso Beogrd, 2012 Dr Miloš Miličić redovni profesor Držvnog univerzitet u Novom Pzru MATEMATIČKA ANALIZA Recenzenti Dr Ćeml Dolićnin redovni profesor

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα