µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;"

Transcript

1 ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται συντελεστής και οι άγνωστοι µαζί µε τους εκθέτες τους ονοµάζονται κύριο µέρος. (π.χ. 3χ 4 συντελεστής είναι το 3 κύριο µέρος το χ 4 ) Παρατηρήσεις: Ένα µονώνυµο το ονοµάζουµε και όρο. Αν ένα µονώνυµο δεν έχει συντελεστή τότε θεωρούµε ότι έχει την µονάδα. π. χ στο χ 4 ψ το 1 είναι συντελεστής και το χ 4 ψ είναι το κύριο µέρος. ύο µονώνυµα θα λέγονται όµοια αν έχουν το ίδιο κύριο µέρος ενώ σε αντίθετη περίπτωση θα λέγονται ανόµοια.. Τι ονοµάζουµε πολυώνυµο; Ποίο είναι το σταθερό και ποίο το µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; Η παράσταση της µορφής Ρ(χ)= α ν χ ν +α ν-1 χ ν α 1 χ+α 0. µε α 1, α,.,α ν 3 και ν Ν ονοµάζεται πολυώνυµο του χ., όπου τα α 1,α,.,α ν ονοµάζονται συντελεστές του Ρ(χ) και ο α ο σταθερός όρος π.χ. 1 χ3 +5χ χ+6=0. Οι παραστάσεις-µονώνυµα α νχ ν, α ν-1 χ ν-1,...α 1 χ, α 0 ονοµάζονται όροι του πολυωνύµου Ρ(χ) Κάθε πολυώνυµο της µορφής Ρ(χ) = κ. κ 3 * λέγεται σταθερό πολυώνυµο Γεωργόπουλος Α. 1

2 Κάθε πολυώνυµο της µορφής Ρ(χ) =0 λέγεται µηδενικό πολυώνυµο. ηλαδή στο µηδενικό πολυώνυµο όλοι οι συντελεστές του και ο σταθερός είναι ίσοι µε 0. Αριθµητική τιµή Ρ(ρ) ενός πολυωνύµου ονοµάζεται η τιµή που προκύπτει αν στο πολυώνυµο αντικαταστήσω όπου χ το ρ. Ρίζα ενός πολυωνύµου Ρ(χ) ονοµάζεται κάθε ρ 3 µε Ρ(ρ) =0 Βαθµός ενός πολυωνύµου Ρ(χ) (deg(p(χ)) ονοµάζεται η µεγαλύτερη δύναµη στην οποία βρίσκεται ο χ και ο αντίστοιχος συντελεστής δεν είναι 0. Ο βαθµός του σταθερού πολυωνύµου είναι 0, ενώ του µηδενικού δεν ορίζεται. Για δυο πολυώνυµα µή µηδενικά Ρ(χ) και Τ(χ) ισχύουν τα εξής deg (P(χ) ±T(χ)) max{ deg (P(χ), deg (T(χ))} deg (P(χ) T(χ)) = deg(p(χ)+deg(t(χ)) deg (P(χ) ) ν = νdeg(t(χ)),ν Ν* υο πολυώνυµα λέγονται ίσα όταν έχουν τον ίδιο βαθµό και έχουν ίσους τους συντελεστές των οµοβάθµιων όρων τους Παρατήρηση: ιατεταγµένο ονοµάζεται ένα πολυώνυµο όταν οι εκθέτες τους αγνώστου ξεκινούν από τον µεγαλύτερο και συνεχώς µικραίνουν Πλήρες ονοµάζεται το πολυώνυµο που είναι διατεταγµένο και δεν του «λείπουν» όροι ανάµεσα στο µεγιστοβάθµιο και τον σταθερό ακόµα και αν έχουν συντελεστή 0 3. Ποια είναι η ταυτότητα της ευκλείδειας διαίρεσης για τα πολυώνυµα; Πότε ένα πολυώνυµο είναι παράγοντας κάποιου άλλου; Πότε χρησιµοποιώ σχήµα Horner; Για κάθε ζεύγος πολυωνύµων (χ) και δ(χ) µε δ(χ) 0 υπάρχουν δύο µοναδικά πολυώνυµα π(χ) και υ(χ) τέτοια ώστε (χ)=δ(χ) π(χ)+υ(χ) όπου το υ(χ) ή είναι το µηδενικό πολυώνυµο ή έχει βαθµό µικρότερο από το βαθµό του δ(χ). Στη περίπτωση που το υπόλοιπο είναι 0 λέµε ότι η διαίρεση είναι τέλεια και η ταυτότητα της διαίρεσης γράφεται (χ)=δ(χ) π(χ). Σε αυτή την περίπτωση λέµε ότι το δ(χ) διαιρεί το (χ) ή ότι το δ(χ) είναι παράγοντας του (χ). Γεωργόπουλος Α.

3 Σχόλιο:Το υπόλοιπο της διαίρεσης ενός Ρ(χ) µε το χ-ρ είναι σταθερό πολυώνυµο (βαθµός µικρότερος του 1,άρα βαθµός 0) και αποδεικνύεται (βλέπε σχολικό βιβλίο) υ=ρ(ρ). Ενα πολυώνυµο έχει παράγοντα το χ-ρ αν και µόνο αν το ρ είναι ρίζα του Ρ(χ). (Απόδειξη βέπε σχολικό βιβλίο) Σχήµα Ηorner : Το χρησιµοποιώ για να βρώ το του συντελεστές του πηλίκου και το υπόλοιπο της διαίρεσης ενός πολυωνύµου µε ένα πρωτοβάθµιο παράγοντα (χ-ρ) (Βλέπε παράδειγµα 1) Παρατηρήσεις: Έστω το ακέραιο πολυώνυµο Ρ(χ) = α ν χ ν +α ν-1 χ ν α 1 χ+α 0. Οι βασικές έννοιες που πρέπει να γνωρίζουµε είναι 1. Ρ(ρ) Είναι η αριθµητική τιµή του πολυωνύµου για χ=ρ,καθώς και το υπόλοιπο της διαίρεσης του Ρ(χ) : (χ-ρ). Π. Χ. για Ρ(χ)=χ 3-5χ +4χ+1 είναι Ρ()= =5 Επίσης το Ρ() =5 είναι και το υπόλοιπο της πολυωνυµικής διαίρεσης Ρ(χ): (χ-). Ρ(ρ) = 0 Γράφοντας αυτό εννοούµε τα παρακάτω ισοδύναµα και αντίστροφα : α)η αριθµητική τιµή του πολυωνύµου για χ=ρ είναι 0 β)το υπόλοιπο της διαίρεσης του Ρ(χ): ( χ-ρ) είναι ίσο µε 0 (υ=0) και λέµε ότι το (χ-ρ) διαιρεί το Ρ(χ) ή ότι είναι διαιρέτης του Ρ(χ) γ)το (χ-ρ) είναι παράγοντας του Ρ(χ) δηλ Ρ(χ) = (χ-ρ ) Π(χ) δ)το ρ είναι ρίζα του πολυωνύµου Ρ(χ). 3. Ένα πολυώνυµο Ρ(χ) έχει για παράγοντα το (χ-ρ) όταν το Ρ(χ) έχει για παράγοντα το (χ-ρ) [Ρ(ρ)=0] και το π(χ) όπου είναι το πηλίκο της διαίρεσης Ρ(χ) χ-ρ) έχει και αυτό για παράγοντα το (χρ) [π(ρ)=0] Παράδειγµα 1 Να βρεθεί το πηλίκο και το υπόλοιπο της διαίρεσης του Ρ(χ)=χ 3-5χ-6 µε το χ+1 ιατάσσω το πολυώνυµο κατά τις κατιούσες (φθίνουσες) δυνάµεις του χ και το κάνω πλήρες δηλ το Ρ(χ) γίνεται Ρ(χ)= χ 3 +0χ -5χ +6 Γράφω στον πίνακα του σχήµατος Ηοrner ΜΟΝΟ τους συντελεστές του χ. Επίσης είναι χ-ρ =χ+1=χ-(-1) άρα το ρ = ρ = Γεωργόπουλος Α. 3

4 ( χ χ α ο υ ) ηλ βάζω στην πρώτη γραµµή τους συντελεστές του χ. Τον συντελεστή του µεγιστοβάθµιου όρου τον «κατεβάζω» και τον πολλ/ζω µε το ρ. Αυτό που βρίσκω το προσθέτω στον ο συντελεστή, το άθροισµα το πολλ/ζω µε ρ κ.ο.κ έως ότου φθάσω στον τελευταίο συντελεστή. Ο τελευταίος αριθµός που βρήκαµε είναι το υπόλοιπο της διαίρεσης (υ = -)και οι άλλοι αριθµοί της τελευταίας γραµµής είναι οι συντελεστές του πηλίκου. Το πηλίκο φυσικά θα έχει βαθµό κατά 1 µικρότερο από το βαθµό του Ρ(χ) δηλ. εδώ θα είναι ου βαθµού. { π(χ)=1 χ -1 χ -4 = χ -χ-4 } 4. Τι ονοµάζουµε πολυωνυµική εξίσωση ν βαθµού; Πως λύνεται µια τέτοια εξίσωση. Ποίο είναι το Θεώρηµα ακεραίων ριζών(θ.α.ρ.) Πολυωνυµική εξίσωση ν βαθµού λέγεται κάθε εξίσωση Ρ(χ)=0,όπου Ρ(χ) πολυώνυµο ν βαθµού. Η βασική ιδέα στην λύση των πολυωνυµικών εξισώσεων της µορφής Ρ(χ)=0 [1] είναι να παραγοντοποιήσουµε το Ρ(χ) π.χ. Ρ(χ)= Ρ 1 (χ) Ρ (χ) Ρ 3 (χ)... Ρ κ (χ) έτσι ώστε τα Ρ 1 (χ),ρ (χ),ρ 3 (χ),,ρ κ (χ) να είναι πρωτοβάθµιοι ή δευτεροβάθµιοι παράγοντες και η λύση της [1] να αναχθεί στη λύση της Ρ 1 (χ) Ρ (χ) Ρ 3 (χ)... Ρ κ (χ) =0 όπου κατά τα γνωστά θα έχουµε Ρ 1 (χ)=0 ή Ρ (χ)=0 ή Ρ 3 (χ) = 0 ή... Ρ κ (χ) =0. Για να παραγοντοποιήσουµε το Ρ(χ) χρησιµοποιούµε τους γνωστούς τρόπους παραγοντοποίησης (κοινός παράγοντας, διακρίνουσα - Τριώνυµο κτλ) ή το σχήµα Horner. Στη περίπτωση που χρησιµοποιήσουµε τον Ηοrner, είναι απαραίτητο να ξέρουµε µια ρίζα της εξίσωσης στο ξεκίνηµα. Στην εύρεση µιας τέτοιας ρίζας χρησιµοποιούµε το (Θ.Α.Ρ.) Θεώρηµα ακεραίων ριζών Έστω ένα πολυώνυµο Ρ(χ) µε ακέραιους συντελεστές (και µη µηδενικό σταθερό όρο α ο ). Τότε εάν ο ακέραιος ρ 0 είναι ρίζα του Ρ(χ) ο ρ θα διαιρεί τον α ο (χωρίς αναγκαία να ισχύει το αντίθετο) Σχόλια στο ΘΑΡ 4 Γεωργόπουλος Α.

5 1. Για να χρησιµοποιήσουµε το Θ.Α.Ρ. πρέπει να έχει το Ρ(χ) ακέραιους συντελεστές και να είναι α ο 0. π.χ στην εξίσωση 1 χ3 +5χ - 3 χ+6=0 δεν µπορώ να εφαρµόσω ΘΑΡ 4. Κάθε ακέραιος που δεν είναι ρίζα του α ο δεν µπορεί να είναι ρίζα του Ρ(χ). π.χ η 9χ 3 + 7χ +4χ-1 =0 δεν µπορεί να έχει ρίζα το +7 ή -7 αφού δεν διαιρούν το Το αντίστροφο του ΘΑΡ δεν ισχύει. ηλαδή δεν είναι αναγκαίο όποιος ακέραιος διαιρεί το α ο θα είναι και ρίζα του Ρ(χ). Μάλιστα µερικές φορές κανένας διαιρέτης του α ο δεν είναι ρίζα του Ρ(χ) οπότε το Ρ(χ) ή δεν έχει ρίζες ή έχει µη ακέραιες ρίζες. Σε αυτήν τη περίπτωση λέµε ότι δεν έχει ακέραιες ρίζες. π.χ. χ 3-6 χ -9χ+54=0, το διαιρεί το 54 αλλά Ρ() = 0 0 ενώ στην 3χ -χ +4 =0 ενώ οι διαιρέτες είναι οι ±1,±, ±3, ±4 κανένας από αυτούς δεν είναι ρίζα του Ρ(χ). 4. Αν ένα Ρ(χ) έχει συντελεστές που δεν είναι όλοι ακέραιοι τότε µπορεί να έχει ρίζα που να µην διαιρεί το α ο. π.χ. η χ 3 - χ + 3 χ- 7 έχει ρίζα το (Ρ()=0 ) ενώ το δεν είναι διαιρέτης του -7 Παρατηρήσεις-Μεθοδολογία 1. Αν η Ρ(χ) =0 έχει ρητούς συντελεστές τότε πολλαπλασιάζω την εξίσωση µε το ΕΚΠ των παρονοµαστών των συντελεστών και στην καινούρια ισοδύναµη εξίσωση εφαρµόζω ΘΑΡ, και µάλιστα εάν οι συντελεστές έχουν κοινό διαιρέτη τότε διαιρώ µε αυτόν γιατί προκύπτει πολυώνυµο µε λιγότερες πιθανές ακέραιες ρίζες Παράδειγµα : Να λυθεί η εξίσωση χ 3 -χ + 3 χ-7=0 Είναι ΕΚΠ(, 1) = και πολλαπλασιάζω µε οπότε η εξίσωση γίνεται χ 3 -χ +3χ-14=0 και έχει πιθανές ακέραιες ρίζες τους αριθµούς ±1, ±, ±7, ±14. Με δοκιµές βρίσκουµε ότι έχει ρίζα το + οπότε χρησιµοποιώντας σχήµα Horner έχουµε ρ= και έτσι η εξίσωση γίνεται (χ-) (χ -χ-7)=0 και έχουµε {χ-=0 ή χ -χ-7 = 0}και χρησιµοποιώντας διακρίνουσα έχουµε ότι { χ= ή χ= 1 + ή 1 } Γεωργόπουλος Α. 5

6 . Όταν όλοι οι συντελεστές ενός πολυωνύµου Ρ(χ) είναι οµόσηµοι τότε το Ρ(χ) δεν έχει θετική ρίζα οπότε επιλέγω µόνο τους αρνητικούς διαιρέτες. Παράδειγµα Το πολυώνυµο Π(χ) = 5χ 4 +3χ 3 +4χ +χ+ δεν µπορεί να έχει Θετικές ρίζες οπότε τις λύσεις της εξίσωσης Π(χ) = 0 θα τις αναζητήσω στους αριθµούς -1, Εάν έχω Ρ(χ) =0 µε deg(px(x)) >=4 εφαρµόζω ΘΑΡ µε Ηorner πάνω από µια φορά και κάθε φορά στο πηλίκο της διαίρεσης. Παράδειγµα Να λυθεί η εξίσωση Π(χ)=χ χ 3 +19χ +16χ+1=0 Οι διαιρέτες του σταθερού όρου είναι ±1, ±, ±3, ±4, ±6, ±1, παρατηρώ ότι ο - είναι ρίζα και κάνοντας σχήµα Horner η εξίσωση γίνεται (χ+) (χ 3 +7χ +5χ+6)=0. π(χ) =χ 3 +7χ +5χ+6 το πηλίκο της διαίρεσης. Ξανακάνοντας Horner στο π(χ) δοκιµάζω για πιθανέ ς ακέραιες ρίζες τους ±1, ±, ±3, ±6,παρατηρώ ότι ο -3 είναι ρίζα. Η εξίσωση τώρα γίνεται (µε βάση το πηλίκο του Horner) (χ+)(χ+3)(χ +χ+)=0. Τέλος για το π (χ) = χ +χ+ δεν είναι ανάγκη να κάνω Horner αφού είναι Β βάθµια. Παίρνω λοιπόν την διακρίνουσα και επειδή είναι αρνητική ( -15) δεν έχει ρίζες.τελικά {χ=- ή χ=-3 } 4. Τα σηµεία τοµής της γραφικής παράστασης µιας πολυωνυµικής συνάρτησης f είναι τα σηµεία που έχουν τετµηµένες τις ρίζες της f(χ)=0 και τεταγµένες το 0 5. Υπάρχουν ασκήσεις που ο άγνωστος εµφανίζεται σε µια επαναλαµβανόµενη παράσταση. Τότε µπορούµε να θέσουµε την παράσταση ίση µε έναν άλλο άγνωστο και να λύσουµε µια πιο απλή εξίσωση. Παράδειγµα όταν µου ζητούν τις ρίζες της (χ+1) 6-7(χ+1) 3 +10=0 (* ) τότε θέτω ψ=(χ+1 ) 3 και η (*) γίνεται ψ -7ψ+10= 0 η οποία έχει διακρίνουσα = 9 και ρίζες ψ= και ψ=5. Άρα ψ==(χ+1 ) χ+1= χ= -1 ή ψ=5=(χ+1 ) χ+1= 5 χ= Εάν έχουµε να λύσουµε µια ανίσωση τότε παραγοντοποιούµε την ανίσωση που µας δίνεται σε πρωτοβάθµιους ή το πολύ δευτεροβάθµιους παράγοντες και βρίσκουµε τις ρίζες κάθε παράγοντα. Στη συνέχεια βάζουµε τις ρίζες πάνω στον άξονα Τώρα εάν έχουµε ρίζες τότε o άξονας θα χωριστεί σε Κ+1 διαστήµατα και ξεκινώντας από το δεξιότερο άκρο του διαστήµατος βάζουµε το πρόσηµο του συντελεστή της µεγαλύτερης δύναµης. Έπειτα συνεχίζοντας προς τα αριστερά κάθε φορά που συναντάµε ρίζα ζυγής πολλαπλότητας ( διπλή ρίζα ή τετραπλή ρίζα κτλ) αφήνουµε το ίδιο πρόσηµο ενώ αν συναντάµε ρίζα περιττής πολλαπλότητας αλλάζουµε το πρόσηµο 6 Γεωργόπουλος Α.

7 7. Υπάρχουν και εξισώσεις που δεν είναι πολυωνυµικές, που µε κατάλληλες αλλαγές µετατρέπονται σε ισοδύναµες πολυωνυµικές εξισώσεις. Τέτοιες είναι οι κλασµατικές και οι εξισώσεις µε ρίζες. Το πρώτο πράγµα που κάνουµε και στις δύο περιπτώσεις είναι να βρούµε το ΠΕ ΙΟ ΟΡΙΣΜΟΥ της εξίσωσης. Για τις κλασµατικές ο παρονοµαστής διάφορος του µηδέν, για τις εξισώσεις µε ρίζες τα υπόριζα µεγαλύτερα ή ίσα του µηδέν. Μετά α) στις κλασµατικές βρίσκω το Ε.Κ.Π. των παρονοµαστών, απαλείφω τους παρονοµαστές και καταλήγω σε µια πολυωνυµική β) στις εξισώσεις µε ρίζες αποµονώνω τις ρίζες (τις βάζω "µόνες τους" σε ένα µέλος) και υψώνω στο τετράγωνο. Αν εξακολουθούν να υπάρχουν ρίζες επαναλαµβάνω την διαδικασία, δηλαδή αποµονώνω τις ρίζες και ξαναϋψώνω στο τετράγωνο. Κάθε φορά που υψώνουµε στο τετράγωνο υποχρεώνουµε αυτό που ισούται µε τη ρίζα να είναι θετικό. Τέλος τις ρίζες που βρίσκουµε επιβεβαιώνουµε ότι είναι µέσα στο πεδίο ορισµού της εξίσωσης και τις επαληθεύουµε. Π.χ. να λυθεί η εξίσωση χ + 3 =1+ χ + χ Καταρχήν έχουµε και χ + 0 χ 3 και χ -3/ χ Επιπλέον πρέπει 1+ χ + 0 χ + -1 που ισχύει για κάθε χ 3. Άρα χ -3/ χ + 3 =1+ χ + ( χ + 3 ) = (1+ χ + ) χ+3=1+χ++ χ + χ= χ + χ =( χ + ) χ -4χ-8=0 ρίζες χ 1 =+ 3 και χ =- 3. εκτή µόνο η χ 1-3/ Γεωργόπουλος Α. 7

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

K. Μυλωνάκης Αλγεβρα B Λυκείου

K. Μυλωνάκης Αλγεβρα B Λυκείου ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ 4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΟΝΥΜΙΚΕΣ Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί Όταν έχουμε μία εξίσωση που περιέχει παρονομαστές ή ρίζες, πρέπει να βάζουμε περιορισμούς. Το νόημα

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

- 1 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ

- 1 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ - ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com - ΠΟΛΥΩΝΥΜΑ ν Μονώνυμο του χ ονομάζουμε κάθε αλγεβρική παράσταση της μορφής α χ με χ R και ν Ν. Πολυώνυμο του χ

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 / 1 / 0 1 6 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης. 14/2/2012

Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης.  14/2/2012 Πολυώνυμα Πολυωνυμικές εξισώσεις Άλγεβρα 01 Β Λυκείου Athens 01 13 14//01 1. Περί πολυωνύμων (Α) Πολυώνυμα P x a x a x... a x a v v 1 Πολυώνυμο ονομάζουμε κάθε παράσταση της μορφής: όπου a v, a v-1,,a

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

( ) ( ) ( ) 1. α 0. Η παράσταση. Τα αποτελέσµατα σχετικά µε τις ρίζες της εξίσωσης συνοψίζονται στον παρακάτω πίνακα: Αν = 0

( ) ( ) ( ) 1. α 0. Η παράσταση. Τα αποτελέσµατα σχετικά µε τις ρίζες της εξίσωσης συνοψίζονται στον παρακάτω πίνακα: Αν = 0 IΛΥΣΗ ΕΞΙΣΩΣΗΣ Β ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Εξίσωση β βαθµού λέγεται κάθε εξίσωση της µορφής α, β, γ R µε α Η παράσταση α = β 4αγ λέγεται διακρίνουσα της εξίσωσης Τα αποτελέσµατα σχετικά µε τις ρίζες της

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ 1 ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ 1. Τι καλούμε μονώνυμο, τι πολυώνυμο, τι όροι,τι συντελεστές

Διαβάστε περισσότερα

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί 1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ

4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ 4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Για να λύσω μια κλασματική εξίσωση, δηλ. μια εξίσωση που έχει άγνωστο στον παρανομαστή, Βήμα : παραγοντοποιώ

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν

Διαβάστε περισσότερα

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x O ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f ) Εντοπίζω τα σημεία που συναντώνται οι δύο καμπύλες ) Η τεταγμένη y αυτού του σημείου είναι το όριο της f και η τετμημένη η θέση y lim f Πλευρικά όρια lim f λ lim

Διαβάστε περισσότερα

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ρ= ρ= ρ= P x με παραγοντοποίηση κατά ομάδες οπότε θα προσπαθήσουμε να το

ρ= ρ= ρ= P x με παραγοντοποίηση κατά ομάδες οπότε θα προσπαθήσουμε να το Να λύσετε την παρακάτω εξίσωση 3 ου βαθμού: 3 Λύση 4 4 0 Ας ονομάσουμε παραγοντοποιηθεί εύκολα το P το πολυώνυμο στο πρώτο μέλος.εκ πρώτης όψεως δεν φαίνεται να μπορεί να P με παραγοντοποίηση κατά ομάδες

Διαβάστε περισσότερα

Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Παραγοντοποίηση Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ενότητα 4 η Ταυτότητες Παραγοντοποίηση Σκοπός Ο σκοπός της 4 η ενότητας είναι να αποκτήσουν την ικανότητα

Διαβάστε περισσότερα

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 2 η δεκάδα θεµάτων επανάληψης 11. Α. Αν α > 0 µε α 1 τότε για οποιουσδήποτε πραγµατικούς αριθµούς θ 1, θ 2 > 0 να αποδείξετε ότι log α (θ 1 θ 2 ) = log α θ 1 + log α θ 2 Β. Έστω το σύστηµα Σ : α1x +

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

Η ΕΞΙΣΩΣΗ :α x+β=0. Μοναδική λύση. α=0 και β 0 Αδύνατη. α=0 και β=0 Αληθεύει για κάθε τιμή του x Ταυτότητα

Η ΕΞΙΣΩΣΗ :α x+β=0. Μοναδική λύση. α=0 και β 0 Αδύνατη. α=0 και β=0 Αληθεύει για κάθε τιμή του x Ταυτότητα Η ΕΞΙΣΩΣΗ :α x+= ου Η εξίσωση αx+ = είναι μια εξίσωση 1 αθμού. Όπου x ο άγνωστος της εξίσωσής μας, όπου α ο συντελεστής του πρωτοάθμιου όρου, όπου ο σταθερός όρος. Για να έχει νόημα η εξίσωση θα πρέπει:

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΧΡΗΣΙΜΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΟΡΙΩΝ

ΧΡΗΣΙΜΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΟΡΙΩΝ ΧΡΗΣΙΜΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΟΡΙΩΝ Όταν lim f ( ) =l, εννοούµε ότι οι τιµές f () βρίσκονται όσο θέλουµε κοντά στο l, για τα τα οποία βρίσκονται αρκούντως κοντά στο. f () y f() y f() y 9 f ( ) =l f () l f() l

Διαβάστε περισσότερα

Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4.1 πωλυωνυμα Η έννοια του πολυωνύμου Έστω x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε πραγματική τιμή. Καλούμε μονώνυμο του x κάθε παράσταση της μορφής

Διαβάστε περισσότερα

g 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου

g 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ή ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου Με τη φράση «πρόσημο τριωνύμου» δηλώνουμε τη μέθοδο με την οποία μπορούμε να γνωρίζουμε ποιο πρόσημο

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016 ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 06 version -6-06 Παρακάτω υπάρχουν θέματα θεωρίας και ασκήσεις που καλύπτουν πιστεύω σε μεγάλο βαθμό την εξεταστέα ύλη. Εχουν στόχο να μας βοηθήσουν να θυμηθούμε την

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1 1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να διαιρέσουμε δύο πολυώνυμα Δίνονται τα πολυώνυμα: P x x x x 8x 4 = + +4 και δ ( x) = x x α) Να βρεθεί το πηλίκο και το υπόλοιπο της διαίρεσης

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 1: Βασικές Γνώσεις Άλγεβρας Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων 1. Μια παράσταση που περιέχει πράξεις µόνο µε αριθµούς, λέγεται αριθµητική παράσταση. Παράδειγµα: + + 1 =. είναι µια αριθµητική παράσταση, το αποτέλεσµα των

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( ) ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα