Ανακεφαλαίωση. T!q i. Q i δ q i q i. d T. ! r j. F j = V. r j. δ q j. Τι είδαμε την προηγούμενη φορά: "" r ) δ r! i i. m i. ! r i

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανακεφαλαίωση. T!q i. Q i δ q i q i. d T. ! r j. F j = V. r j. δ q j. Τι είδαμε την προηγούμενη φορά: "" r ) δ r! i i. m i. ! r i"

Transcript

1 Ανακεφαλαίωση Τι είδαμε την προηγούμενη φορά: N Αρχή D Alembert: ( F i m i "" r ) δ r i i = 0 i=1 για σύστημα με k ολόνομους δεσμούς και n=n-k γενικευμένες συντεταγμένες q i : d r i = θεωρώντας δυνητικές μετατοπίσεις (dt=0): δ r i = καταλήξαμε: n i=1 d dt T q i T Q i δ q i = 0 q i και ορίσαμε την γενικευμένη δύναμη: Q i = N j=1 F j r j q i d T εφόσον δq i ανεξάρτητα: dt q i T Q i = 0 q i V Για συντηρητικές δυνάμεις F = V Q i = j r j n j=1 n j=1 r i q j dq j r i q j δ q j + r i t χωρίς δυνάμεις δεσμών r j q i = V q i

2 Τι θα δούμε σήμερα q Αρχή D Alembert σε συστήµατα µε δυνάµεις τριβής q Αρχή του Hamilton Ø θα εξάγουμε και πάλι τις εξισώσεις Lagrange q Εύρεση των δυνάμεων δεσμών: Ø πολλαπλασιαστές Lagrange (Lagrange multipliers)

3 Δυνάμεις τριβής ΦΥΣ Διαλ.07 3 Όταν βγάλαμε τις εξισώσεις Lagrange αποφύγαμε τις δυνάμεις τριβής. Στην ακρίβεια αυτό που κάναμε ήταν να διαχωρίσουμε τη ολική δύναμη σε κάθε υλικό σημείο σε F i F (e) i + f i και υποθέσαμε ότι: f i δ r i = 0 όπου f i οι δυνάμεις δεσμών i Δηλαδή συμπεριλάβαμε στην F i όλες τις δυνάμεις για τις οποίες F i δ r i 0 Σε μια τουλάχιστον πρακτική περίπτωση, μπορούμε να συμπεριλάβουμε δυνάμεις τριβής στο φορμαλισμό Lagrange. Ø Δυνάμεις τριβής ανάλογες της ταχύτητας: F = 1 2 i k x v 2 ix + k y v 2 2 ( iy + k z v iz ) F fi x = k x v ix Εμφανίζεται συχνά (π.χ. αρμονικός ταλαντωτής με απόσβεση) Επομένως: F fi a = F v ia όπου α =x,y,z Διανυσματικά: F fi a = v F Η γενικευμένη δύναμη σ αυτή την περίπτωση είναι: Q j = i F fi r i q j Q j = F r i i r i q j Δυναμική ενέργεια Rayleigh Θυμηθείτε ότι: r i q j = r i q j i

4 ΦΥΣ Διαλ.07 4 Δυνάμεις τριβής Επομένως καταλήγουμε ότι: Θέτοντας: Q j = i q j L = T V όπου V από συντηρητικές δυνάµεις καταλήγουµε: d T dt q j T + V + F = 0 d L q j q j q j dt q j L + F = 0 q j q j F Ø O όρος εξαρτάται από την γενικευμένη ταχύτητα αλλά q j δεν εισέρχεται στην παράγωγο ως προς χρόνο του 1 ου όρου Ποια είναι η φυσική σημασία αυτής της συνάρτησης F Θεωρήστε το έργο που παράγει το σύστημα ενάντια στην τριβή: dw f = F f d r = F f vdt = F fa v a dt = k a v a 2 dt dw f dt = a k a v a 2 = 2F a=x,y,z Δηλαδή: 2F είναι ο ρυθμός διάχυσης της ενέργειας. F a

5 ΦΥΣ Διαλ.07 5 Μή συντηρητικές δυνάμεις q Μια δύναμη F είναι συντηρητική αν ικανοποιεί τις ακόλουθες 2 συνθήκες: Ø Η F εξαρτάται μόνο από τη θέση του σωματιδίου όχι από την ταχύτητά του F = F( v, r ή το χρόνο t, ή κάποια άλλη μεταβλητή Δηλαδή ) Ø Για δυο οποιαδήποτε σημεία 1 και 2, το έργο W(1->2) που παράγεται από τη δύναμη F είναι το ίδιο για οποιαδήποτε διαδρομή μεταξύ 1 και 2 q Η πρώτη συνθήκη ισοδυναμεί με το να γράψουμε F = U(r) 2 q Η δεύτερη συνθήκη, ότιw 12 = F d r ανεξάρτητο της διαδρομής 1 ικανοποιείται αν ο στροβιλισμός της δύναμης είναι 0 δηλαδή: F = 0 q Όταν οι δυνάμεις που δρουν σε ένα σύστημα είναι συντηρητικές τότε όπως ξέρουμε η μηχανική ενέργεια διατηρείται.

6 Δυναμική ενέργεια εξαρτώμενη από το χρόνο F = 0 q Μερικές φορές μπορεί να έχουμε και επομένως δεν ικανοποιείται η πρώτη συνθήκη q Μπορούμε και πάλι να F = U ορίσουμε μια δυναμική ενέργεια με την ιδιότητα F = 0 ΦΥΣ Διαλ.07 6 U = U( r,t) Επομένως μπορούμε να ορίσουμε μια συνάρτησηu = U( r,t) U( r,t) r = F( r 1,t) d r F( r,t) = U( r,t) τέτοια ώστε r 0 Ø Στην περίπτωση αυτή όμως: du( r,t) = U U U dx + dy + x y z dz + U t dt du( r,t) = F d r + U t dt Η μεταβολή στη κινητική ενέργεια είναι: dt = dt dt dt = m v " ( v )dt = F d r Προσθέτοντας τις 2 σχέσεις έχουμε: d T + U αλλά η F εξαρτάται από το χρόνο Ø Στην περίπτωση αυτή η ολική μηχανική ενέργει, E, δεν διατηρείται q Το γεγονός ότι σημαίνει ότι το ολοκλήρωμα έργου κάποια στιγμή t είναι ανεξάρτητο της διαδρομής ( ) = de = U t dt E δεν διατηρείται

7 ΦΥΣ Διαλ.07 7 Χώρος μορφής configuration space ü H εξίσωση Euler-Lagrange γενικεύεται για ένα αυθαίρετο αριθμό εξαρτημένων μεταβλητών q i (t) Ø Η ανεξάρτητη μεταβλητή στη μηχανική είναι ο χρόνος t. ü Οι γενικευμένες συντεταγμένες q 1,,q n περιγράφουν πλήρως την κατάσταση του συστήματος σε οποιαδήποτε χρονική στιγμή Ø Σκεφθείτε ένα χώρο n-διαστάσεων χώρος μορφής Ø Κάθε σημείο στο χώρο αυτό (q 1,,q n ) αντιστοιχεί σε μια συγκεκριμένη κατάσταση του συστήματος Ø Καθώς το σύστημα εξελίσσεται χρονικά à διαδρομή στο χώρο μορφής πραγματικός χώρος θεσεογραφικός χώρος

8 ΦΥΣ Διαλ.07 8 Ολοκλήρωμα δράσης q Ένα σύστημα κινείται σύμφωνα με q j =q j (t) j=1,,n q To ολοκλήρωμα S του οποίου η στάσιμη τιμή προσδιορίζει την εξέλιξη ενός μηχανικού συστήματος καλείται ολοκλήρωμα δράσης q Η ολοκληρώσιμη ποσότητα είναι η Lagrangian L και είναι ολοκληρώνοντας L(q, q,t) = L(q(t), q(t),t) = L(t) S = Ldt Δράση ή ολοκλήρωμα δράσης q Η δράση εξαρτάται από ολόκληρη την διαδρομή από το στο Ø H εκλογή των συντεταγμένων q j δεν επηρεάζει Ø Η δράση είναι ανεξάρτητη κάτω από μετασχηματισμούς συντεταγμένων

9 ΦΥΣ Διαλ.07 9 Η αρχή του Hamilton Tο ολοκλήρωμα δράσης ενός φυσικού συστήματος είναι στάσιμο για την πραγματική διαδρομή S = L(q(t), q(t),t)dt δs = δ L(q(t), q(t),t)dt = 0 Ø Αυτό είναι ισοδύναμο με τις εξισώσεις Lagrange Επομένως έχουμε 3 ισοδύναμους φορμαλισμούς Ø Εξισώσεις του Newton εξαρτώνται πλήρως από x-y-z συντεταγμένες q Οι εξισώσεις Lagrange είναι ίδιες για οποιεσδήποτε γενικευμένες συντεταγμένες Ø Η αρχή του Hamilton δεν αναφέρεται σε συντεταγμένες Τα πάντα βρίσκονται στο ολοκλήρωμα δράσης

10 ΦΥΣ Διαλ Στάσιμο ή στατικό ολοκλήρωμα q Φανταστείτε δυο διαδρομές οι οποίες είναι πολύ κοντά μεταξύ τους Η διαφορά τους είναι απειροελάχιστη q Στάσιμο ολοκλήρωμα σημαίνει ότι η διαφορά των ολοκληρωμάτων δράσης είναι μηδέν κατά πρώτη προσέγγιση ως προς δq(t) Ø Ανάλογο του «πρώτη παράγωγος = 0» v Σχεδόν ίδιο σα να λέμε «ελάχιστο» δs = L(q + δq, q + δ q,t)dt L(q, q,t)dt = 0 Θα μπορούσε να ναι και μέγιστο χώρος μορφής q(t) q(t)+δq(t) Τα ακραία σημεία της διαδρομής 1 και 2 είναι σταθερά: δq( ) = δq( ) = 0

11 ΦΥΣ Διαλ Απειροελάχιστη μεταβολή τροχιάς q Τι είναι δq(t); Ø Είναι αυθαίρετη... Σχεδόν χώρος μορφής Ø Πρέπει να είναι μηδέν στα και Ø Συμπεριφέρεται πολύ καλά q(t) Συνεχής, μη απειριζόμενη συνεχείς 1 ες και 2 ες παράγωγοι q Πρέπει να τη συρρικνώσουμε σε μηδέν q(t)+δq(t) Ø Το τέχνασμα είναι να την γράψουμε ως δq(t) = aη(t) q(t,α) = q(t)+αη(t) Ø α είναι μια παράμετρος, την οποία θα κάνουμε να πηγαίνει στο 0 Ø η(t) είναι μια καλώς συμπεριφερόμενη αυθαίρετη συνάρτηση Ø η( ) = η( ) = 0 Η δράση θα ναι S(a) L( q(t, a), q(t, a),t )dt Εξαρτάται από το η(t)

12 ΦΥΣ Διαλ Λογισμός μεταβολών q Ορίσαμε S(a) q Αν η δράση είναι στάσιμη ds(a) da = L q dq da + L q L( q(t, a), q(t, a),t )dt d q da dt ds(a) da a=0 = 0 Για οποιοδήποτε η(t) = πράξεις L q d dt =η(t) L q Αυθαίρετη συνάρτηση q(t,a) = q(t) + aη(t) dq da dt Ο 2 ος όρος με ολοκλήρωση κατά μέρη δίνει: L d q q da dt = L d dq q dt da dt = L dq d L dq q da t1 dt q da dt 0 Επειδή dq da = η(t) και η( ) = η( ) = 0

13 ΦΥΣ Διαλ Εξίσωση Lagrange Θεμελιώδες Λήμμα: x 2 M ( x)η( x)dx = 0 x 1 q Παίρνουμε: t L q d 2 L dt q η(t)dt = 0 για κάθε η(x) M (x) = 0 για x 1 < x < x 2 L q d dt π.χ. α-παράγωγος στο α=0 δs ds da da = d L(q(t, a), q(t, a),t)dt a=0 da δq dq da da = η(t)da a=0 ( ) da H αρχή του Hamilton μπορεί να γραφεί L q = 0 q Για συντομία χρησιμοποιούμε το συμβολισμό δ για τις απειροελάχιστες μεταβολές Εξίσωση Lagrange δs L q d dt L q δqdt

14 ΦΥΣ Διαλ Δουλεύοντας με n-συντεταγμένες q Η προηγούμενη μεθοδολογία µπορεί να αναπτυχθεί για περισσότερες συντεταγμένες q à q 1,,q n δ S i L q i d dt L q i δ q i dt =0 για κάθε i Υπόθεση: δq 1,δq 2, είναι αυθαίρετα και ανεξάρτητα Ø Δεν ισχύει για x-y-z συντεταγμένες αν υπάρχουν δεσμοί Ø Ισχύει για γενικευμένες συντεταγμένες αν το σύστημα είναι ολόνομο

15 ΦΥΣ Διαλ Η αρχή του Hamilton δs = δ L(q, q,t)dt = 0 Ø H δράση S, περιγράφει όλη την κίνηση του συστήματος Είναι αρκετό να εξαγάγουμε τις εξισώσεις κίνησης Ø Η δράση S, δεν εξαρτάται από την εκλογή των συντεταγμένων Ο φορμαλισμός Lagrange είναι αναλλοίωτος από εκλογή συντεταγμένων Οι εξισώσεις Lagrange και η αρχή του Hamilton είναι ισοδύναμες Ωστόσο: Οι εξισώσεις Lagrange είναι διαφορικές εξισώσεις. Μας λένε πως θα εξελιχθεί χρονικά το σύστημα παίρνοντας κάθε φορά απειροστά χρονικά βήματα Η αρχή του Hamilton είναι ολοκληρωτική. Απαιτεί το σύστημα να λάβει υπόψην διάφορες κινήσεις από την αρχή ως το τέλος του χρονικού διαστήματος και να επιλέξει την διαδρομή που κάνει το ολοκλήρωμα δράσης στάσιμο

16 ΦΥΣ Διαλ Η αρχή του Hamilton Πτώση σώματος σε βαρυτικό πεδίο Σώμα σε ηρεμία αφήνεται να πέσει κάτω από την επίδραση της βαρύτητας y t δy και δ y μικρές μεταβολές δ y από την πραγματική θέση και ταχύτητα δy t y Η δυναμική ενέργεια: mgy Η κινητική ενέργεια: my 2 2 Η μεταβολή στη δράση θα είναι: t my δ S = δ 2 2 L dt = δ 2 mgy dt δ S = ( myδ y mgδ y )dt Ολοκλήρωση κατά τμήματα: myδ ydt = my d dt δ ydt = myδ y t1 αλλά: δ y ( ) = δ y( ) = 0 Επομένως το δs γίνεται: δ S = myδ ydt L = my 2 d dt δ y = d dt d dt δ y = δ y myδ ydt = myδ ydt 2 mgy ( y + δ y) dy dt ( myδ y + mgδ y)dt δ S = ( my + mg)δ ydt = 0 my + mg ( ) = 0 που για να ισχύει για τυχαία δy πρέπει: my = mg Ελεύθερη πτώση

17 ΦΥΣ Διαλ Η αρχή του Hamilton Πτώση σώματος σε βαρυτικό πεδίο Μπορούμε να δείξουμε ότι όποια διαδρομή διαφέρει από την πραγματική θα δώσει ολοκλήρωμα δράσης που δεν έχει στατική τιμή Θεωρούμε μεταβολή της y σύμφωνα με την παραμετρική μορφή: y( a,t) = y( 0,t) + aη ( t) για α=0 y = y( 0,t) = y( t) η αληθής λύση η( t) συνεχής και παραγωγίσημη στο [, ], η( ) = η( ) = 0 ( ) = L y( a,t), y ( a,t),t dt ( ) όπου: y ( 0,t) = gt L = m gt + a 2 η ( t) + g aη ( t) H δράση είναι συνάρτηση του α: S a y ( a,t) = y ( 0,t) + a η t H Lagrangian είναι: L = m y2 2 gy S a ( ) = m g 2 ag t η ( t) + η( t) ( ) a2 η 2 t dt t ag t η ( t) + η( t) dt = ag t d 2 η( t) dt + η( t) dt t Επομένως: S( a) = m g a2 η 2 ( t) dt = mg2 3 Αλλά: a2 η 2 ( t)dt 2 > 0 και επομένως: S( a) = 0 a a=0 2 0 t = agtη( t) 2 t1 t 3 3 ( 2 ) + a2 2 agη ( t)dt+ agη ( t)dt η 2 ( t)dt για α=0 και επομένως S έχει στατική τιμή μόνο για την αληθινή λύση

18 y 0 Παράδειγμα ΦΥΣ Διαλ Υποθέστε ότι ένα υλικό σημείο κινείται ακολουθώντας μια ημιτονοειδή τροχιά από το σημείο x=0 στο x=x 1 κατά το χρονικό διάστημα Δt. To σωματίδιο κινείται ελεύθερα (δεν υπάρχει πεδία δυνάμεων). Δείξτε ότι το πλάτος της ημινοειδούς τροχιάς είναι 0, που δηλώνει ότι το σωματίδιο κινείται σε ευθεία τροχιά x 1 x Από την στιγµή που το σωµατίδιο δεν υπόκειται σε δυνάµεις, η κίνησή του δίνεται από: x = υ x t Κάθε άλλη µορφή κίνησης πρέπει να περατωθεί σε χρόνο: Δt = t = x υ x Αλλάζουµε κάθε πιθανή ηµιτονοειδή τροχιά: ( ) x = υ x t και y = ±ηsin πυ x t x 1 Η Lagrangian θα είναι: L = T V = 1 2 m υ 2 x + nπυ 2 x x 1 cos 2 x 1 υ x Άρα: S = L dt = mυ xx 1 + mπ 2 υ x η 2 V x x 1 υ x H τροχία αλλάζει καθώς αλλάζουµε το δη ώστε: δ S = Πρέπει να επαληθεύεται για κάθε δη. Οπότε η = 0 πυ x t x 1 mπ 2 υ x 2x 1 V η το πλάτος της ηµιτονοειδούς τροχιάς ηδη = 0

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

Εξισώσεις κίνησης του Hamilton

Εξισώσεις κίνησης του Hamilton ΦΥΣ 211 - Διαλ.11 1 Εξισώσεις κίνησης του Hamilton q Newtonian Lagrangian Hamiltonian q Περιγράφουν την ίδια φυσική και δίνουν τα ίδια αποτελέσματα q Διαφορές είναι στο τρόπο προσέγγισης των προβλημάτων

Διαβάστε περισσότερα

Για τη συνέχεια σήμερα...

Για τη συνέχεια σήμερα... ΦΥΣ 211 - Διαλ.10 1 Για τη συνέχεια σήμερα... q Συζήτηση ξανά των νόμων διατήρησης q Χρησιμοποιώντας τον φορμαλισμό Lagrange q Γραμμική ορμή και στροφορμή q Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangan,

Διαβάστε περισσότερα

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών ΦΥΣ - Διαλ.08 Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών q q Το μεγάλο πλεονέκτημα του Lagrangian φορμαλισμού είναι ότι δεν χρειάζεται να υπολογισθούν οι δυνάμεις των δεσμών Ø Υπάρχουν περιπτώσεις που χρειαζόμαστε

Διαβάστε περισσότερα

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000 Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε

Διαβάστε περισσότερα

Hamiltonian φορμαλισμός

Hamiltonian φορμαλισμός ΦΥΣ - Διαλ.0 Hamltonan φορμαλισμός q = H H Οι εξισώσεις Hamlton είναι:, p = p q Ø (p,q) ονομάζονται κανονικές μεταβλητές Ø Η είναι συνάρτηση που ονομάζεται Hamltonan Ø Κανονικές μεταβλητές ~ θέση και ορμή

Διαβάστε περισσότερα

Hamiltonian Δυναμική - Παράδειγμα

Hamiltonian Δυναμική - Παράδειγμα Hamiltonian Δυναμική - Παράδειγμα ΦΥΣ 211 - Διαλ.12 1 Μάζα m κινείται στο εσωτερικό επιφάνειας κατακόρυφου κώνου ρ=cz. Το σώμα κινείται μέσα σε ομοιόμορφο βαρυτικό πεδίο με g προς τα κάτω. Χρησιμοποιήστε

Διαβάστε περισσότερα

( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i

( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i ΦΥΣ - Διαλ.03 Ολική στροφορμή q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r = r R q Ορίζουμε επίσης τις ταχύτητες: v = " r v = και R " Ø Υπολογίζουμε την ολική στροφορμή L = r p = L = R M v

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Τί είδαµε και τι θα δούµε σήµερα

Τί είδαµε και τι θα δούµε σήµερα Τί είδαµε και τι θα δούµε σήµερα q Κίνηση σωμάτων σε κεντρικό δυναμικό Ø Το πρόβλημα ανάγεται σε κίνηση με 1 DoF: µ r = l µr + F( r) 3 q Είδαμε ποιοτική συμπεριφορά Ø Μη φραγμένες, φραγμένες και κυκλικές

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα:

ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: ΕΡΓΟ -ΕΝΕΡΓΕΙΑ Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: d F d s Παρατηρήσεις Το έργο εκφράζει την ποσότητα της ενέργειας που παράγεται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Γενικευμένες συντεταγμένες

Γενικευμένες συντεταγμένες Γενικευμένες συντεταγμένες Έστω ένα σύστημα n-υλικών σημείων. Η θέση του συστήματος ως προς ένα αδρανειακό σύστημα αναφοράς, καθορίζεται την τυχαία χρονική στιγμή t από τα διανύσματα θέσης των υλικών σημείων:

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα ΦΥΣ 11 - Διαλ.3 1 Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. q Οι δυο ιδιοσυχνότητες του συστήματος είναι ίδιες με τις ιδιοσυχνότητες

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 219 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α, Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα x με ταχύτητα,

Διαβάστε περισσότερα

Κεφάλαιο 5. Ενέργεια συστήματος

Κεφάλαιο 5. Ενέργεια συστήματος Κεφάλαιο 5 Ενέργεια συστήματος Εισαγωγή στην ενέργεια Οι νόμοι του Νεύτωνα και οι αντίστοιχες αρχές μας επιτρέπουν να λύνουμε μια ποικιλία προβλημάτων. Ωστόσο, μερικά προβλήματα, που θεωρητικά μπορούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014 4 Αρμονικές Ταλαντώσεις γενικά 7/9/4 Περιοδικά φαινόμενα Περιοδικά φαινόμενα Περίοδος Συχνότητα Γωνιακή συχνότητα Ταλαντώσεις Απλή αρμονική ταλάντωση Περιοδικό φαινόμενο Περιοδικά φαινόμενα ονομάζονται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ.: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β Ερώτηση. Ένα σώμα εκτελεί

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. γ Αα. β Α3α. β Α4α. α Αβ. γ Αβ. δ Α3β. δ Α4β. δ Α5. Σ, Λ, Σ, Λ, Σ ΘΕΜΑ Β Β. Σωστή απάντηση η γ. Ισχύει:

Διαβάστε περισσότερα

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ του ΑΣΕΠ Ένα κινητό κινείται σε κύκλο Κεντρομόλος και επιτρόχια επιτάχυνση υπάρχουν: α Και οι δύο πάντα β Η πρώτη πάντα γ Η δεύτερη πάντα δ Ενδέχεται

Διαβάστε περισσότερα

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή Εισαγωγή στις Φυσικές Επιστήμες (8-7-007) Μηχανική Ονοματεπώνυμο Τμήμα ΘΕΜΑ A. Υλικό σώμα μάζας βρίσκεται σε οριζόντιο επίπεδο με μέγιστο συντελεστή στατικής τριβής η και συντελεστή τριβής ολίσθησης μ.

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ

Διαβάστε περισσότερα

Έργο Ενέργεια Παραδείγµατα

Έργο Ενέργεια Παραδείγµατα ΦΥΣ 131 - Διαλ.17 1 Έργο Ενέργεια Παραδείγµατα Mn Επανάληψη Έργο δύναμης W = Έργο συνισταμένης δυνάμεων W = E "#$ Βαρυτική δυναμική ενέργεια U g " 1 2 F d r Ελαστική δυναμική ενέργεια U " = 1 2 kx 2 ΦΥΣ

Διαβάστε περισσότερα

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων}

Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων} Κεφάλαιο 6 ΕΡΓΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Εννοια του Εργου { Εργο και Κινητική Ενέργεια, Εργο Μεταβλητής Δύναμης, Ισχύς} Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό

Διαβάστε περισσότερα

Κίνηση σε μία διάσταση

Κίνηση σε μία διάσταση Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

dx cos x = ln 1 + sin x 1 sin x.

dx cos x = ln 1 + sin x 1 sin x. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!

Διαβάστε περισσότερα

ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ

ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ Έργο και Ενέργεια ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ Έστω ένα σωμάτιο πάνω στο οποίο εξασκείται μια σταθερή δύναμη F. Έστω ότι η κίνηση είναι ευθύγραμμη κατά την διεύθυνση του διανύσματος F. Το έργο που

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως

Διαβάστε περισσότερα

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014 4 Αρμονικές Ταλαντώσεις γενικά 7/9/4 Περιοδικά φαινόμενα Περιοδικά φαινόμενα Περίοδος Συχνότητα ωνιακή συχνότητα Ταλαντώσεις Απλή αρμονική ταλάντωση Περιοδικό φαινόμενο Περιοδικά φαινόμενα ονομάζονται

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 004 Τμήμα Π Ιωάννου & Θ Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα

Διαβάστε περισσότερα

Κίνηση σε κεντρικό δυναμικό

Κίνηση σε κεντρικό δυναμικό Κίνηση σε κεντρικό δυναμικό ΦΥΣ 211 - Διαλ.13 1 q Έστω ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης Ø Δύναμη παράλληλη στο 0 F q Υποθέτουμε ότι η δύναμη είναι συντηρητική: F = V( ) m Ø V

Διαβάστε περισσότερα

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας 1 Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας Σκοπός της δέκατης διάλεξης: 10/11/12 Η κατανόηση των εννοιών της ολικής ενέργειας, της κινητικής ενέργειας και της ορμής στην ειδική θεωρία της

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1 Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

1. Κίνηση Υλικού Σημείου

1. Κίνηση Υλικού Σημείου 1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

... Σχετικότητα. Αναίρεση λοιπόν της ιδέας απόλυτου χρόνου ή χώρου, εισαγωγή απόλυτου χωροχρόνου.

... Σχετικότητα. Αναίρεση λοιπόν της ιδέας απόλυτου χρόνου ή χώρου, εισαγωγή απόλυτου χωροχρόνου. ΝΟΜΟΙ ΤΟΥ NEWTON Αδρανειακά η Γαλιλαιϊκά συστήματα αναφοράς Μη Αδρανειακά συστήματα αναφοράς Αρχή της αιτιοκρατίας Συμμετρία αντιστροφής χρόνου Νόμοι του Newton I. O Χώρος είναι Ευκλείδειος II. Όλοι οι

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 08: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. γ Αα. β Α3α. β Α4α. α Αβ. γ Αβ. δ Α3β. δ Α4β. δ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. A.1 Μια διαφορά

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

Θέμα Β. Λύση. Έχουμε, επομένως, εκφράσει την κινητική ενέργεια ως συνάρτηση του ύψους y.

Θέμα Β. Λύση. Έχουμε, επομένως, εκφράσει την κινητική ενέργεια ως συνάρτηση του ύψους y. Θέμα Β Α. Σωστή είναι η β Στην ελεύθερη πτώση ισχύει η αρχή διατήρησης της μηχανικής ενέργειας, καθώς στο σώμα ενεργεί μόνο η δύναμη του βάρους, η οποία είναι συντηρητική. Έχουμε, επομένως, εκφράσει την

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΣΕΙΡΑΣ Εστω μη ϰενά διαστήματα J, I R, με 0 Ī. Ονομάζουμε μεταβλητή το x J ϰαι ασυμπτωτιϰή (ή διαταραϰτιϰή) παράμετρο

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

v r T, 2 T, a r = a r (t) = 4π2 r

v r T, 2 T, a r = a r (t) = 4π2 r Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που

Διαβάστε περισσότερα

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1 Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 013 ΘΕΜΑ Α [35 μόρια] Θεωρήστε τη Λαγκραντζιανή L(x, ẋ, t που εξαρτάται απο τη θέση x ενός σωματιδίου πάνω σε μια ευθεία, το χρόνο t,

Διαβάστε περισσότερα

Κλασική Μηχανική. ΦΥΣ 211 Άνοιξη 2015. Διδάσκων: Φώτης Πτωχός. e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 ΘΕΕ02 Τμήμα Φυσικής

Κλασική Μηχανική. ΦΥΣ 211 Άνοιξη 2015. Διδάσκων: Φώτης Πτωχός. e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 ΘΕΕ02 Τμήμα Φυσικής Κλασική Μηχανική ΦΥΣ 211 Άνοιξη 2015 Διδάσκων: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 ΘΕΕ02 Τμήμα Φυσικής ΦΥΣ 211 - Διαλ.01 2 Γενικές Πληροφορίες Ώρες/Αίθουσα διδασκαλίας: Δευτέρα/Πέμπτη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) 1. (α) Περιγράψτε συνοπτικά το πείραμα των Michelson και Morley (όχι απόδειξη σχέσεων). Ποιό ήταν το βασικό αποτέλεσμα του πειράματος; (β)

Διαβάστε περισσότερα

Θεωρητική Μηχανική Tεύχος ΙI Αναλυτική Μηχανική

Θεωρητική Μηχανική Tεύχος ΙI Αναλυτική Μηχανική Θεωρητική Μηχανική Tεύχος ΙI Αναλυτική Μηχανική Φωκίωνας Χατζηϊωάννου Αθήνα, 1974 Περιεχόμενα 5 Εξισώσεις Lagrange 1 5.1 Γενικευμένες συντεταγμένες................. 1 5.2 Αρχή των δυνατών έργων...................

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΤΑΛΑΝΤΩΣΕΙΣ - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. (α) Αα. (γ) Α3α. (α) Α4α. (γ) Αβ. (γ) Αβ. (δ) Α3β. (β) Α4β. (β) Α0. α.λ β.λ γ.σ δ.λ ε.σ ΘΕΜΑ B

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Το πρόβλημά μας είναι να προσδιορίσουμε την περίοδο των ταλαντώσεων του εκκρεμούς στο πρόβλημα που απεικονίζεται στο παραπάνω σχήμα υπό την προϋπόθεση ότι η δύναμη

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

Κλασσική Μηχανική. Κλασσική Μηχανική: η αρχαιότερη από τις φυσικές επιστήμες. Αντικείμενο: η μελέτη της κινήσεως των αντικειμένων.

Κλασσική Μηχανική. Κλασσική Μηχανική: η αρχαιότερη από τις φυσικές επιστήμες. Αντικείμενο: η μελέτη της κινήσεως των αντικειμένων. Κλασσική Μηχανική Κλασσική Μηχανική: η αρχαιότερη από τις φυσικές επιστήμες. Αντικείμενο: η μελέτη της κινήσεως των αντικειμένων. Χωρίζεται σε: (α) Κινηματική: το μέρος της μηχανικής που ασχολείται αποκλειστικά

Διαβάστε περισσότερα

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr Κίνηση σωματιδίου κάτω από επίδραση δύναμης ΦΥΣ 211 - Διαλ.05 1 Έστω ένα σωματίδιο κινείται κάτω από την επίδραση μιας δύναμης F = Ar α 1 που έχει διεύθυνση προς την αρχή των αξόνων. Τα Α και α είναι σταθερές.

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 2 Kg με αρχική ταχύτητα υ 0 8i κινείται με σταθερή επιτάχυνση

Διαβάστε περισσότερα

( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν

( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν ΦΥΣ 111 - Διαλ.33 1 Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις

Διαβάστε περισσότερα